1
|
Lee H, Lee MR, Fan TM, Hergenrother PJ. PAC-1 Synergizes with Sunitinib to Enhance Cell Death in Pancreatic Neuroendocrine Tumors. ACS Pharmacol Transl Sci 2025; 8:1140-1151. [PMID: 40242587 PMCID: PMC11997889 DOI: 10.1021/acsptsci.5c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are rare tumors that are often diagnosed at advanced or metastatic stages, resulting in a poor prognosis. Sunitinib is an approved therapy for treatment of patients with PNETs, but low response rates and resistance have limited its impact, with autophagy and sunitinib sequestration in the lysosome identified as key resistance mechanisms. Here, we show that the combination of sunitinib with the procaspase-3 activator PAC-1 enhances PNET cell death in cell culture and in vivo in a xenograft tumor model. PAC-1 treatment enlarges lysosomes, resulting in partial lysosomal membrane permeabilization and blocking of autophagosome-lysosome fusion. These alterations lead to increased accumulation of autophagic structures, blocking autophagic flux, and a changed distribution of sunitinib from the lysosome to the cytosol. Our data show that PAC-1 modulates sunitinib-induced autophagy and blocks lysosomal trapping, potentiating sunitinib activity and increasing death of cancer cells. As both drugs are well-tolerated in patients, the data suggest evaluation of the PAC-1/sunitinib combination in a clinical trial of patients with PNET.
Collapse
Affiliation(s)
- Hyang
Yeon Lee
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Myung Ryul Lee
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Veterinary Clinical Medicine, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Smith AJ, Hergenrother PJ. Raptinal: a powerful tool for rapid induction of apoptotic cell death. Cell Death Discov 2024; 10:371. [PMID: 39164225 PMCID: PMC11335860 DOI: 10.1038/s41420-024-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
Chemical inducers of apoptosis have been utilized for decades as tools to uncover steps of the apoptotic cascade and to treat various diseases, most notably cancer. While there are several useful compounds available, limitations in potency, universality, or speed of cell death of these pro-apoptotic agents have meant that no single compound is suitable for all (or most) purposes. Raptinal is a recently described small molecule that induces intrinsic pathway apoptosis rapidly and reliably, and consequently, has been utilized in cell culture and whole organisms for a wide range of biological studies. Its distinct mechanism of action complements the current arsenal of cytotoxic compounds, making it useful as a probe for the apoptosis pathway and other cellular processes. The rapid induction of cell death by Raptinal and its widespread commercial availability make it the pro-apoptotic agent of choice for many applications.
Collapse
Affiliation(s)
- Amanda J Smith
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Ramos MC, Crespo-Sueiro G, de Pedro N, Griñán-Lisón C, Díaz C, Pérez-Victoria I, González-Menéndez V, Castillo F, Pérez Del Palacio J, Tormo JR, Choquesillo-Lazarte D, Marchal JA, Vicente F, Fernández-Godino R, Genilloud O, Reyes F. Onychocolone A produced by the fungus Onychocola sp. targets cancer stem cells and stops pancreatic cancer progression by inhibiting MEK2-dependent cell signaling. Biomed Pharmacother 2024; 177:117018. [PMID: 38908208 DOI: 10.1016/j.biopha.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Pancreatic cancer (PC) shows a high fatality rate that can only be faced with a combination of surgery and chemotherapy or palliative treatment in the case of advanced patients. Besides, PC tumors are enriched with subpopulations of cancer stem cells (CSCs) that are resistant to the existing chemotherapeutic agents, which raises an important need for the identification of new drugs. To fill this gap, we have tested the anti-tumoral activity of microbial extracts, which chemical diversity offers a broad spectrum of potential new bioactive compounds. Extracts derived from the fungus Onychocola sp. CF-107644 were assayed via high throughput screening followed by bioassay-guided fractionation and resulted in the identification and isolation of six benzophenone derivatives with antitumoral activity: onychocolones A-F (#1-6). The structures of the compounds were established by spectroscopic methods, including ESI-TOF MS, 1D and 2D NMR analyses and X-ray diffraction. Compounds #1-4 significantly inhibited the growth of the pancreas tumoral cell lines, with low-micromolar Median Effective Doses (ED50s). Compound #1 (onychocolone A) was prioritized for further profiling due to its pro-apoptotic effect, which was further validated on 3D spheroids and pancreatic CSCs. Protein expression assays showed that the effect was mechanistically linked to the inhibition of MEK onco-signaling pathway. The efficacy of onychocolone A was also demonstrated in vivo by the reduction of tumor growth in a pancreatic xenograft mouse model generated by CSCs. Altogether, the data support that onychocolone A is a promising new small molecule for hit-to-lead development of a new treatment for PC.
Collapse
Affiliation(s)
- Maria C Ramos
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain.
| | - Gloria Crespo-Sueiro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Víctor González-Menéndez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Jose Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Jose R Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC, University of Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Rosario Fernández-Godino
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain.
| |
Collapse
|
4
|
Drown BS, Gupta R, McGee JP, Hollas MAR, Hergenrother PJ, Kafader JO, Kelleher NL. Precise Readout of MEK1 Proteoforms upon MAPK Pathway Modulation by Individual Ion Mass Spectrometry. Anal Chem 2024; 96:4455-4462. [PMID: 38458998 PMCID: PMC11008683 DOI: 10.1021/acs.analchem.3c04758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.
Collapse
Affiliation(s)
- Bryon S Drown
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Raveena Gupta
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - John P McGee
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Michael A R Hollas
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jared O Kafader
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| |
Collapse
|
5
|
Boudreau MW, Tonogai EJ, Schane CP, Xi MX, Fischer JH, Vijayakumar J, Ji Y, Tarasow TM, Fan TM, Hergenrother PJ, Dudek AZ. The combination of PAC-1 and entrectinib for the treatment of metastatic uveal melanoma. Melanoma Res 2023; 33:514-524. [PMID: 37738028 PMCID: PMC10615773 DOI: 10.1097/cmr.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The treatment of metastatic uveal melanoma remains a major clinical challenge. Procaspase-3, a proapoptotic protein and precursor to the key apoptotic executioner caspase-3, is overexpressed in a wide range of malignancies, and the drug PAC-1 leverages this overexpression to selectively kill cancer cells. Herein, we investigate the efficacy of PAC-1 against uveal melanoma cell lines and report the synergistic combination of PAC-1 and entrectinib. This preclinical activity, tolerability data in mice, and the known clinical effectiveness of these drugs in human cancer patients led to a small Phase 1b study in patients with metastatic uveal melanoma. The combination of PAC-1 and entrectinib was tolerated with no treatment-related grade ≥3 toxicities in these patients. The pharmacokinetics of entrectinib were not affected by PAC-1 treatment. In this small and heavily pretreated initial cohort, stable disease was observed in four out of six patients, with a median progression-free survival of 3.38 months (95% CI 1.6-6.5 months). This study is an initial demonstration that the combination of PAC-1 and entrectinib may warrant further clinical investigation. Clinical trial registration: Clinical Trials.gov: NCT04589832.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emily J. Tonogai
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Claire P. Schane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Min X. Xi
- HealthPartners Institute, Minneapolis, MN, USA
| | - James H. Fischer
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yan Ji
- HealthPartners Institute, Minneapolis, MN, USA
| | | | - Timothy M. Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Vanquish Oncology, Inc, Champaign, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802 USA
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Vanquish Oncology, Inc, Champaign, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arkadiusz Z. Dudek
- HealthPartners Institute, Minneapolis, MN, USA
- Vanquish Oncology, Inc, Champaign, IL
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Danciu OC, Holdhoff M, Peterson RA, Fischer JH, Liu LC, Wang H, Venepalli NK, Chowdhery R, Nicholas MK, Russell MJ, Fan TM, Hergenrother PJ, Tarasow TM, Dudek AZ. Phase I study of procaspase-activating compound-1 (PAC-1) in the treatment of advanced malignancies. Br J Cancer 2023; 128:783-792. [PMID: 36470974 PMCID: PMC9977881 DOI: 10.1038/s41416-022-02089-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Procaspase-3 (PC-3) is overexpressed in multiple tumour types and procaspase-activating compound 1 (PAC-1) directly activates PC-3 and induces apoptosis in cancer cells. This report describes the first-in-human, phase I study of PAC-1 assessing maximum tolerated dose, safety, and pharmacokinetics. METHODS Modified-Fibonacci dose-escalation 3 + 3 design was used. PAC-1 was administered orally at 7 dose levels (DL) on days 1-21 of a 28-day cycle. Dose-limiting toxicity (DLT) was assessed during the first two cycles of therapy, and pharmacokinetics analysis was conducted on days 1 and 21 of the first cycle. Neurologic and neurocognitive function (NNCF) tests were performed throughout the study. RESULTS Forty-eight patients were enrolled with 33 completing ≥2 cycles of therapy and evaluable for DLT. DL 7 (750 mg/day) was established as the recommended phase 2 dose, with grade 1 and 2 neurological adverse events noted, while NNCF testing showed stable neurologic and cognitive evaluations. PAC-1's t1/2 was 28.5 h after multi-dosing, and systemic drug exposures achieved predicted therapeutic concentrations. PAC-1 clinical activity was observed in patients with neuroendocrine tumour (NET) with 2/5 patients achieving durable partial response. CONCLUSIONS PAC-1 dose at 750 mg/day was recommended for phase 2 studies. Activity of PAC-1 in treatment-refractory NET warrants further investigation. CLINICAL TRIAL REGISTRATION Clinical Trials.gov: NCT02355535.
Collapse
Affiliation(s)
- Oana C Danciu
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Clinical Trials Office, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | - James H Fischer
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Li C Liu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Heng Wang
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Neeta K Venepalli
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rozina Chowdhery
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - M Kelly Nicholas
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Meredith J Russell
- Clinical Trials Office, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy M Fan
- Vanquish Oncology, Inc., Champaign, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, IL, USA
- Cancer Center at Illinois, Urbana-Champaign, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Paul J Hergenrother
- Vanquish Oncology, Inc., Champaign, IL, USA
- Cancer Center at Illinois, Urbana-Champaign, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
- Department of Chemistry, University of Illinois, Urbana-Champaign, IL, USA
| | | | - Arkadiusz Z Dudek
- HealthPartners Institute, Regions Cancer Care Center, St. Paul, MN, USA
- Vanquish Oncology, Inc., Champaign, IL, USA
| |
Collapse
|
7
|
Xu S, Xiong Y, Yao R, Tian R, Meng Z, Zaky MY, Fu B, Guo D, Wang L, Lin F, Lin X, Wu H. A Novel ERK2 Degrader Z734 Induces Apoptosis of MCF–7 Cells via the HERC3/p53 Signaling Pathway. Molecules 2022; 27:molecules27144337. [PMID: 35889210 PMCID: PMC9319741 DOI: 10.3390/molecules27144337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the leading causes of death worldwide, and synthetic chemicals targeting specific proteins or various molecular pathways for tumor suppression, such as ERK inhibitors and degraders, have been intensively investigated. The targets of ERK participate in the regulation of critical cellular mechanisms and underpin the progression of anticancer therapy. In this study, we identified a novel small molecule, which we named Z734, as a new mitogen–activated protein kinase 1 (ERK2) degrader and demonstrated that Z734 inhibits cell growth by inducing p53–mediated apoptotic pathways in human breast cancer cells. Treatment with Z734 resulted in the inhibition of cancer cell proliferation, colony formation and migration invasion, as well as cancer cell death via apoptosis. In addition, the Co–IP and GST pulldown assays indicated that the HECT and RLD domains containing E3 ubiquitin protein ligase 3 (HERC3) could directly interact with ERK2 through the HECT domain, promoting ERK2 ubiquitination. We also observed a strong link between HERC3 and p53 for the modulation of apoptosis. HERC3 can increase the protein and phosphorylation levels of p53, which further promotes apoptotic activity. In a xenograft mouse model, the effect was obtained in a treatment group that combined Z734 with lapatinib compared with that of the single–treatment groups. In summary, our results indicated that Z734 actively controls the development of breast cancer through apoptosis, and HERC3 may mediate ERK2 and p53 signaling, which offers new potential targets for clinical therapy.
Collapse
Affiliation(s)
- Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing 401331, China; (R.Y.); (R.T.)
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing 401331, China; (R.Y.); (R.T.)
| | - Zhuqing Meng
- Department of Pharmacy, Mianyang Fulin Hospital, Mianyang 621000, China;
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Lulu Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Feng Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
- Correspondence: (X.L.); (H.W.)
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
- Correspondence: (X.L.); (H.W.)
| |
Collapse
|
8
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
9
|
Boudreau MW, Mulligan MP, Shapiro DJ, Fan TM, Hergenrother PJ. Activators of the Anticipatory Unfolded Protein Response with Enhanced Selectivity for Estrogen Receptor Positive Breast Cancer. J Med Chem 2022; 65:3894-3912. [PMID: 35080871 PMCID: PMC9067622 DOI: 10.1021/acs.jmedchem.1c01730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 75% of breast cancers are estrogen receptor alpha-positive (ERα+), and targeting ERα directly with ERα antagonists/degraders or indirectly with aromatase inhibitors is a successful therapeutic strategy. However, such treatments are rarely curative and development of resistance is universal. We recently reported ErSO, a compound that induces ERα-dependent cancer cell death through a mechanism distinct from clinically approved ERα drugs, via hyperactivation of the anticipatory unfolded protein response. ErSO has remarkable tumor-eradicative activity in multiple ERα+ tumor models. While ErSO has promise as a new drug, it has effects on ERα-negative (ERα-) cells in certain contexts. Herein, we construct modified versions of ErSO and identify variants with enhanced differential activity between ERα+ and ERα- cells. We report ErSO-DFP, a compound that maintains antitumor efficacy, has enhanced selectivity for ERα+ cancer cells, and is well tolerated in rodents. ErSO-DFP and related compounds represent an intriguing new class for the treatment of ERα+ cancers.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States,Carl R. Woese Institute for Genomic, Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael P. Mulligan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J. Shapiro
- Cancer Center at Illinois and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Cancer, Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl R. Woese Institute for Genomic Biology University of Illinois at, Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188645. [PMID: 34793897 DOI: 10.1016/j.bbcan.2021.188645] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes the highest mortality compared to other cancers in the world according to the latest WHO reports. Non-small cell lung cancer (NSCLC) contributes about 85% of total lung cancer cases. An extensive number of risk factors are attributed to the progression of lung cancer. Epidermal growth factor receptor (EGFR), one of the most frequently mutant driver genes, is closely involved in the development of lung cancer through regulation of the PI3K/AKT and MAPK pathways. As a representative of precision medicine, EGFR-tyrosine kinase inhibitors (TKIs) targeted therapy significantly relieves the development of activating mutant EGFR-driven NSCLC. However, treatment with TKIs facilitates the emergence of acquired resistance that continues to pose a significant hurdle with respect to EGFR targeted therapy. In this review, the development of current approved EGFR-TKIs as well as the related supporting clinical trials are summarized and discussed. Mechanisms of action and resistance were addressed respectively, which serve as important guides to understanding acquired resistance. We also explored the corresponding combination treatment options according to different resistance mechanisms. Future challenges include more comprehensive characterization of unclear resistance mechanisms in different populations and the development of more efficient and precision synthetic therapeutic strategies.
Collapse
|
11
|
Hyun S, Shin D. Small-Molecule Inhibitors and Degraders Targeting KRAS-Driven Cancers. Int J Mol Sci 2021; 22:12142. [PMID: 34830024 PMCID: PMC8621880 DOI: 10.3390/ijms222212142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance continues to be a major problem associated with cancer treatment. One of the primary causes of anticancer drug resistance is the frequently mutated RAS gene. In particular, considerable efforts have been made to treat KRAS-induced cancers by directly and indirectly controlling the activity of KRAS. However, the RAS protein is still one of the most prominent targets for drugs in cancer treatment. Recently, novel targeted protein degradation (TPD) strategies, such as proteolysis-targeting chimeras, have been developed to render "undruggable" targets druggable and overcome drug resistance and mutation problems. In this study, we discuss small-molecule inhibitors, TPD-based small-molecule chemicals for targeting RAS pathway proteins, and their potential applications for treating KRAS-mutant cancers. Novel TPD strategies are expected to serve as promising therapeutic methods for treating tumor patients with KRAS mutations.
Collapse
Affiliation(s)
- Soonsil Hyun
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju-si 28160, Korea;
| | - Dongyun Shin
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
12
|
Boudreau MW, Duraki D, Wang L, Mao C, Kim JE, Henn MA, Tang B, Fanning SW, Kiefer J, Tarasow TM, Bruckheimer EM, Moreno R, Mousses S, Greene GL, Roy EJ, Park BH, Fan TM, Nelson ER, Hergenrother PJ, Shapiro DJ. A small-molecule activator of the unfolded protein response eradicates human breast tumors in mice. Sci Transl Med 2021; 13:13/603/eabf1383. [PMID: 34290053 DOI: 10.1126/scitranslmed.abf1383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Metastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darjan Duraki
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ji Eun Kim
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sean W Fanning
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | - Geoffrey L Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ben Ho Park
- Department of Medicine, Division of Heme/Onc, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Erik R Nelson
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Liu H, Ding X, Liu L, Mi Q, Zhao Q, Shao Y, Ren C, Chen J, Kong Y, Qiu X, Elvassore N, Yang X, Yin Q, Jiang B. Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation. Eur J Med Chem 2021; 223:113645. [PMID: 34217059 DOI: 10.1016/j.ejmech.2021.113645] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Protein degradation is a promising strategy for drug development. Proteolysis-targeting chimeras (PROTACs) hijacking the E3 ligase cereblon (CRBN) exhibit enormous potential and universal degradation performance due to the small molecular weight of CRBN ligands. In this study, the CRBN-recruiting PROTACs were explored on the degradation of oncogenic fusion protein BCR-ABL, which drives the pathogenesis of chronic myeloid leukemia (CML). A series of novel PROTACs were synthesized by conjugating BCR-ABL inhibitor dasatinib to the CRBN ligand including pomalidomide and lenalidomide, and the extensive structure-activity relationship (SAR) studies were performed focusing on optimization of linker parameters. Therein, we uncovered that pomalidomide-based degrader 17 (SIAIS056), possessing sulfur-substituted carbon chain linker, exhibits the most potent degradative activity in vitro and favorable pharmacokinetics in vivo. Besides, degrader 17 also degrades a variety of clinically relevant resistance-conferring mutations of BCR-ABL. Furthermore, degrader 17 induces significant tumor regression against K562 xenograft tumors. Our study indicates that 17 as an efficacious BCR-ABL degrader warrants intensive investigation for the future treatment of BCR-ABL+ leukemia.
Collapse
Affiliation(s)
- Haixia Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Institute for Advanced Immunochemical Studies, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Ding
- Shanghai Institute for Advanced Immunochemical Studies, China; School of Life Science and Technology, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linyi Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, University of South China, Hengyang City, 421001, China
| | - Qianglong Mi
- Shanghai Institute for Advanced Immunochemical Studies, China; School of Life Science and Technology, China
| | - Quanju Zhao
- Shanghai Institute for Advanced Immunochemical Studies, China
| | - YuBao Shao
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Chaowei Ren
- Shanghai Institute for Advanced Immunochemical Studies, China; School of Life Science and Technology, China
| | - Jinju Chen
- Shanghai Institute for Advanced Immunochemical Studies, China
| | - Ying Kong
- Shanghai Institute for Advanced Immunochemical Studies, China
| | - Xing Qiu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | | | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, China.
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, China; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
Sadri Nahand J, Rabiei N, Fathazam R, Taghizadieh M, Ebrahimi MS, Mahjoubin-Tehran M, Bannazadeh Baghi H, Khatami A, Abbasi-Kolli M, Mirzaei HR, Rahimian N, Darvish M, Mirzaei H. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170:105730. [PMID: 34119621 DOI: 10.1016/j.phrs.2021.105730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Wang C, Wang H, Zheng C, Liu Z, Gao X, Xu F, Niu Y, Zhang L, Xu P. Research progress of MEK1/2 inhibitors and degraders in the treatment of cancer. Eur J Med Chem 2021; 218:113386. [PMID: 33774345 DOI: 10.1016/j.ejmech.2021.113386] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Mitogen-activated protein kinase kinases 1 and 2 (MEK1/2) are the crucial part of the RAS-RAF-MEK-ERK pathway (or ERK pathway), which is involved in the regulation of various cellular processes including proliferation, survival, and differentiation et al. Targeting MEK has become an important strategy for cancer therapy, and 4 MEK inhibitors (MEKis) have been approved by FDA to date. However, the application of MEKis is limited due to acquired resistance under long-term treatment. Fortunately, an emerging technology, named proteolysis targeting chimera (PROTAC), could break through this limitation by inducing MEK1/2 degradation. Compared to MEKis, MEK1/2 PROTAC is rarely studied and only three MEK1/2 PROTAC molecules, have been reported until now. This paper will outline the ERK pathway and the mechanism and research progress of MEK1/2 inhibitors, but focus on the development of MEK degraders and their optimization strategies. PAC-1 strategy which can induce MEK degradation indirectly, other PROTACs on ERK pathway, the advantages and challenges of PROTAC technology will be subsequently discussed.
Collapse
Affiliation(s)
- Chao Wang
- National Pharmaceutical Teaching Laboratory Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Han Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Cangxin Zheng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaozuo Gao
- Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Wei J, Hu J, Wang L, Xie L, Jin MS, Chen X, Liu J, Jin J. Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. J Med Chem 2019; 62:10897-10911. [PMID: 31730343 DOI: 10.1021/acs.jmedchem.9b01528] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MEK1 and MEK2 (also known as MAP2K1 and MAP2K2) are the "gatekeepers" of the ERK signaling output with redundant roles in controlling ERK activity. Numerous inhibitors targeting MEK1/2 have been developed including three FDA-approved drugs. However, acquired resistance to MEK1/2 inhibitors has been observed in patients, and new therapeutic strategies are needed to overcome the resistance. Here, we report a first-in-class degrader of MEK1/2, MS432 (23), which potently and selectively degraded MEK1 and MEK2 in a VHL E3 ligase- and proteasome-dependent manner and suppressed ERK phosphorylation in cells. It inhibited colorectal cancer and melanoma cell proliferation much more effectively than its negative control MS432N (24), and its effect was phenocopied by MEK1/2 knockdown. Compound 23 was highly selective for MEK1/2 in global proteomic profiling studies. It was also bioavailable in mice and can be used for in vivo efficacy studies. We provide two well-characterized chemical tools to the biomedical community.
Collapse
Affiliation(s)
- Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Li Wang
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ling Xie
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Margaret S Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Xian Chen
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
17
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
18
|
Fernandes M, Barcelos D, Comodo AN, Guimarães DP, Lopes Carapeto FC, Cardili L, de Sousa Morães L, Cerutti Ap J, Landman Ap G. Acral Lentiginous Melanomas Harbour Intratumor Heterogeneity in BRAF Exon 15, With Mutations Distinct From V600E/V600K. Am J Dermatopathol 2019; 41:733-740. [PMID: 31021835 DOI: 10.1097/dad.0000000000001418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The choice of appropriate therapeutic strategies may be influenced by intratumor heterogeneity and makes cancer treatment considerably more challenging. We aimed to evaluate the heterogeneity of BRAF exon 15 mutations in different areas of acral lentiginous melanoma (ALM). The entire exon 15 was sequenced in 4 different areas of paraffin-embedded samples from 26 patients with ALM. A total of 26 of 49 cases of ≥1 mm in depth of ALM identified by clinical, anatomical, and pathological data fulfilled the inclusion and exclusion criteria for this study. Tumors had a mean Breslow depth of 7.2 mm and an average mitotic index of 3 mitosis/mm. Mutations distinct from the common V600E and V600K were detected in 31%, and intratumor heterogeneity was observed in 31% of samples. Interestingly, 63.5% of all mutations had been previously associated with cancer. Most (62.5%) of the missense BRAF exon 15 mutations found in the ALM samples examined here were deemed "detrimental" for protein function according to at least 2 functional prediction programs, and 3 mutations (37.5%) were predicted to be "neutral," with no effect on protein function. BRAF exon 15 mutations were detected frequently in ALM and displayed heterogeneity, a finding to be further investigated.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise Barcelos
- Department of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Leonardo Cardili
- Department of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lais de Sousa Morães
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Janete Cerutti Ap
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Gilles Landman Ap
- Department of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Kinase inhibitors are effective cancer therapies. Unfortunately, drug resistance emerges in response to kinase inhibition leading to loss of drug efficacy. In this issue of Cell Chemical Biology, Peh et al. (2018) demonstrate that caspase activators effectively delay onset of resistance to kinase inhibitors and are excellent co-therapeutics for a number of tumor types.
Collapse
Affiliation(s)
- Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel) 2018; 10:E471. [PMID: 30487436 PMCID: PMC6315745 DOI: 10.3390/cancers10120471] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
The progression of cancer is associated with alterations in the tumor microenvironment, including changes in extracellular matrix (ECM) composition, matrix rigidity, hypervascularization, hypoxia, and paracrine factors. One key malignant phenotype of cancer cells is their ability to resist chemotherapeutics, and elements of the ECM can promote chemoresistance in cancer cells through a variety of signaling pathways, inducing changes in gene expression and protein activity that allow resistance. Furthermore, the ECM is maintained as an environment that facilitates chemoresistance, since its constitution modulates the phenotype of cancer-associated cells, which themselves affect the microenvironment. In this review, we discuss how the properties of the tumor microenvironment promote chemoresistance in cancer cells, and the interplay between these external stimuli. We focus on both the response of cancer cells to the external environment, as well as the maintenance of the external environment, and how a chemoresistant phenotype emerges from the complex signaling network present.
Collapse
Affiliation(s)
- Gulcen Yeldag
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|