1
|
Mohan V, Vinjamuri SR, Sahoo P, Hatwar A, S N S, Krishna U, P V V, Vijayan K. Apicomplexan Espionage: Orchestrated Miscommunication at the Host-Parasite Interface. ACS Infect Dis 2024; 10:4040-4047. [PMID: 39499240 DOI: 10.1021/acsinfecdis.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Intracellular parasites, including Toxoplasma and Plasmodium, are entirely reliant on the active scavenging of host-derived nutrients to fuel their replicative cycle, as they are confined within a specialized membrane-bound compartment, the parasitophorous vacuole (PV). Initial observations, based on the proximity of host vesicles to the parasitophorous vacuole membrane (PVM), suggested that parasites utilize host vesicles to obtain essential nutrients. However, mounting evidence has now unequivocally demonstrated that intracellular pathogens establish membrane contacts with host organelles, establishing control over host cellular machinery. These intimate interactions enable the parasites to gain unimpeded access to cytosolic resources critical for development while evading host immune responses. This review consolidates the latest advancements in understanding the molecular machinery driving these transkingdom contacts and their functional roles. Further investigation into these processes promises to revolutionize our understanding of organelle communication, with profound implications for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Vaisak Mohan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Parnika Sahoo
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Abhinav Hatwar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sandra S N
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Usha Krishna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Vyshnav P V
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Nguyen GB, Cooper CA, McWhorter O, Sharma R, Elliot A, Ruberto A, Freitas R, Pathak AK, Kyle DE, Maher SP. Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol. Malar J 2024; 23:357. [PMID: 39580415 PMCID: PMC11585928 DOI: 10.1186/s12936-024-05155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Malaria, a disease caused by parasites of the genus Plasmodium, continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites. METHODS After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose-response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens' predictive value. RESULTS Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 103 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose-response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity. CONCLUSIONS This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
Collapse
Affiliation(s)
- Gia-Bao Nguyen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Olivia McWhorter
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anne Elliot
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anthony Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Rafael Freitas
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ashutosh K Pathak
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Andrawus M, David GB, Terziyska I, Sharvit L, Bergman A, Barzilai N, Raj SM, Govindaraju DR, Atzmon G. Genome integrity as a potential index of longevity in Ashkenazi Centenarian's families. GeroScience 2024; 46:4147-4162. [PMID: 38724875 PMCID: PMC11335978 DOI: 10.1007/s11357-024-01178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/24/2024] [Indexed: 06/19/2024] Open
Abstract
The aging process, or senescence, is characterized by age-specific decline in physical and physiological function, and increased frailty and genomic changes, including mutation accumulation. However, the mechanisms through which changes in genomic architecture influence human longevity have remained obscure. Copy number variants (CNVs), an abundant class of genomic variants, offer unique opportunities for understanding age-related genomic changes. Here we report the spectrum of CNVs in a cohort of 670 Ashkenazi Jewish centenarians, their progeny, and unrelated controls. The average ages of these groups were 97.4 ± 2.8, 69.2 ± 9.2, and 66.5 ± 7.0 respectively. For the first time, we compared different size classes of CNVs, from 1 kB to 100 MB in size. Using a high-resolution custom Affymetrix array, targeting 44,639 genomic regions, we identified a total of 12,166, 22,188, and 10,285 CNVs in centenarians, their progeny, and control groups, respectively. Interestingly, the offspring group showed the highest number of unique CNVs, followed by control and centenarians. While both gains and losses were found in all three groups, centenarians showed a significantly higher average number of both total gains and losses relative to their controls (p < 0.0327, 0.0182, respectively). Moreover, centenarians showed a lower total length of genomic material lost, suggesting that they may maintain superior genomic integrity over time. We also observe a significance fold increase of CNVs among the offspring, implying greater genomic integrity and a putative mechanism for longevity preservation. Genomic regions that experienced loss or gains appear to be distributed across many sites in the genome and contain genes involved in DNA transcription, cellular transport, developmental pathways, and metabolic functions. Our findings suggest that the exceptional longevity observed in centenarians may be attributed to the prolonged maintenance of functionally important genes. These genes are intrinsic to specific genomic regions as well as to the overall integrity of the genomic architecture. Additionally, a strong association between longer CNVs and differential gene expression observed in this study supports the notion that genomic integrity could positively influence longevity.
Collapse
Affiliation(s)
| | - Gil Ben David
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., 3498838, Mount Carmel, Haifa, Israel
| | | | - Lital Sharvit
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Srilakshmi M Raj
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Hesping E, Boddey JA. Whole-genome CRISPR screens to understand Apicomplexan-host interactions. Mol Microbiol 2024; 121:717-726. [PMID: 38225194 DOI: 10.1111/mmi.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.
Collapse
Affiliation(s)
- Eva Hesping
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Justin A Boddey
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Schroeder EA, Toro-Moreno M, Raphemot R, Sylvester K, Colón IC, Derbyshire ER. Toxoplasma and Plasmodium associate with host Arfs during infection. mSphere 2024; 9:e0077023. [PMID: 38349168 PMCID: PMC10964417 DOI: 10.1128/msphere.00770-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 03/27/2024] Open
Abstract
The apicomplexans Toxoplasma gondii and Plasmodium are intracellular parasites that reside within a host-derived compartment termed the parasitophorous vacuole (PV). During infection, the parasites must acquire critical host resources and transport them across their PV for development. However, the mechanism by which host resources are trafficked to and across the PV remains uncertain. Here, we investigated host ADP ribosylation factors (Arfs), a class of proteins involved in vesicular trafficking that may be exploited by T. gondii and Plasmodium berghei for nutrient acquisition. Using overexpressed Arf proteins coupled with immunofluorescence microscopy, we found that all Arfs were internalized into the T. gondii PV, with most vacuoles containing at least one punctum of Arf protein by the end of the lytic cycle. We further characterized Arf1, the most abundant Arf inside the T. gondii PV, and observed that active recycling between its GDP/GTP-bound state influenced Arf1 internalization independent of host guanine nucleotide exchange factors (GEFs). In addition, Arf1 colocalized with vesicle coat complexes and exogenous sphingolipids, suggesting a role in nutrient acquisition. While Arf1 and Arf4 were not observed inside the PV during P. berghei infection, our gene depletion studies showed that liver stage development and survival depended on the expression of Arf4 and the host GEF, GBF1. Collectively, these observations indicate that apicomplexans use distinct mechanisms to subvert the host vesicular trafficking network and efficiently replicate. The findings also pave the way for future studies to identify parasite proteins critical to host vesicle recruitment and the components of vesicle cargo. IMPORTANCE The parasites Toxoplasma gondii and Plasmodium live complex intracellular lifestyles where they must acquire essential host nutrients while avoiding recognition. Although previous work has sought to identify the specific nutrients scavenged by apicomplexans, the mechanisms by which host materials are transported to and across the parasite vacuole membrane are largely unknown. Here, we examined members of the host vesicular trafficking network to identify specific pathways subverted by T. gondii and Plasmodium berghei. Our results indicate that T. gondii selectively internalizes host Arfs, a class of proteins involved in intracellular trafficking. For P. berghei, host Arfs were restricted by the parasite's vacuole membrane, but proteins involved in vesicular trafficking were identified as essential for liver stage development. A greater exploration into how and why apicomplexans subvert host vesicular trafficking could help identify targets for host-directed therapeutics.
Collapse
Affiliation(s)
- Erin A. Schroeder
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maria Toro-Moreno
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Rene Raphemot
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Isabel C. Colón
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Emily R. Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Glennon EK, Wei L, Roobsoong W, Primavera VI, Tongogara T, Yee CB, Sattabongkot J, Kaushansky A. Host kinase regulation of Plasmodium vivax dormant and replicating liver stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566868. [PMID: 38014051 PMCID: PMC10680662 DOI: 10.1101/2023.11.13.566868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Upon transmission to the liver, Plasmodium vivax parasites form replicating schizonts, which continue to initiate blood-stage infection, or dormant hypnozoites that reactivate weeks to months after initial infection. P. vivax phenotypes in the field vary significantly, including the ratio of schizonts to hypnozoites formed and the frequency and timing of relapse. Evidence suggests that both parasite genetics and environmental factors underly this heterogeneity. We previously demonstrated that data on the effect of a panel of kinase inhibitors with overlapping targets on Plasmodium liver stage infection, in combination with a computational approach called kinase regression (KiR), can be used to uncover novel host regulators of infection. Here, we applied KiR to evaluate the extent to which P. vivax liver-stage parasites are susceptible to changes in host kinase activity. We identified a role for a subset of host kinases in regulating schizont and hypnozoite infection and schizont size and characterized overlap as well as variability in host phosphosignaling dependencies between parasite forms and across multiple patient isolates. Striking, our data point to variability in host dependencies across P. vivax isolates, suggesting one possible origin of the heterogeneity observed across P. vivax in the field.
Collapse
|
7
|
Mansfield CR, Chirgwin ME, Derbyshire ER. Labeling strategies to track protozoan parasite proteome dynamics. Curr Opin Chem Biol 2023; 75:102316. [PMID: 37192562 PMCID: PMC10895934 DOI: 10.1016/j.cbpa.2023.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Intracellular protozoan parasites are responsible for wide-spread infectious diseases. These unicellular pathogens have complex, multi-host life cycles, which present challenges for investigating their basic biology and for discovering vulnerabilities that could be exploited for disease control. Throughout development, parasite proteomes are dynamic and support stage-specific functions, but detection of these proteins is often technically challenging and complicated by the abundance of host proteins. Thus, to elucidate key parasite processes and host-pathogen interactions, labeling strategies are required to track pathogen proteins during infection. Herein, we discuss the application of bioorthogonal non-canonical amino acid tagging and proximity-dependent labeling to broadly study protozoan parasites and include outlooks for future applications to study Plasmodium, the causative agent of malaria. We highlight the potential of these technologies to provide spatiotemporal labeling with selective parasite protein enrichment, which could enable previously unattainable insight into the biology of elusive developmental stages.
Collapse
Affiliation(s)
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Mittal N, Davis C, McLean P, Calla J, Godinez-Macias KP, Gardner A, Healey D, Orjuela-Sanchez P, Ottilie S, Chong Y, Gibson C, Winzeler EA. Human nuclear hormone receptor activity contributes to malaria parasite liver stage development. Cell Chem Biol 2023; 30:486-498.e7. [PMID: 37172592 PMCID: PMC10878326 DOI: 10.1016/j.chembiol.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/14/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Chemical genetic approaches have had a transformative impact on discovery of drug targets for malaria but have primarily been used for parasite targets. To identify human pathways required for intrahepatic development of parasite, we implemented multiplex cytological profiling of malaria infected hepatocytes treated with liver stage active compounds. Some compounds, including MMV1088447 and MMV1346624, exhibited profiles similar to cells treated with nuclear hormone receptor (NHR) agonist/antagonists. siRNAs targeting human NHRs, or their signaling partners identified eight genes that were critical for Plasmodium berghei infection. Knockdown of NR1D2, a host NHR, significantly impaired parasite growth by downregulation of host lipid metabolism. Importantly, treatment with MMV1088447 and MMV1346624 but not other antimalarials, phenocopied the lipid metabolism defect of NR1D2 knockdown. Our data underlines the use of high-content imaging for host-cellular pathway deconvolution, highlights host lipid metabolism as a drug-able human pathway and provides new chemical biology tools for studying host-parasite interactions.
Collapse
Affiliation(s)
- Nimisha Mittal
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chadwick Davis
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Peter McLean
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Jaeson Calla
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alison Gardner
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - David Healey
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Pamela Orjuela-Sanchez
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yolanda Chong
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | | | - Elizabeth A Winzeler
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
10
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
11
|
Vijayan K, Arang N, Wei L, Morrison R, Geiger R, Parks KR, Lewis AJ, Mast FD, Douglass AN, Kain HS, Aitchison JD, Johnson JS, Aderem A, Kaushansky A. A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection. Cell Chem Biol 2022; 29:1419-1433.e5. [PMID: 35738280 PMCID: PMC9481707 DOI: 10.1016/j.chembiol.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Prior to initiating symptomatic malaria, a single Plasmodium sporozoite infects a hepatocyte and develops into thousands of merozoites, in part by scavenging host resources, likely delivered by vesicles. Here, we demonstrate that host microtubules (MTs) dynamically reorganize around the developing liver stage (LS) parasite to facilitate vesicular transport to the parasite. Using a genome-wide CRISPR-Cas9 screen, we identified host regulators of cytoskeleton organization, vesicle trafficking, and ER/Golgi stress that regulate LS development. Foci of γ-tubulin localized to the parasite periphery; depletion of centromere protein J (CENPJ), a novel regulator identified in the screen, exacerbated this re-localization and increased infection. We demonstrate that the Golgi acts as a non-centrosomal MT organizing center (ncMTOC) by positioning γ-tubulin and stimulating MT nucleation at parasite periphery. Together, these data support a model where the Plasmodium LS recruits host Golgi to form MT-mediated conduits along which host organelles are recruited to PVM and support parasite development.
Collapse
Affiliation(s)
- Kamalakannan Vijayan
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Nadia Arang
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Morrison
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Rechel Geiger
- MSTP Program, University of Washington, Seattle, WA, USA
| | - K Rachael Parks
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Adam J Lewis
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Fred D Mast
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Alyse N Douglass
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Heather S Kain
- Center for Infectious Disease Research, Seattle, WA, USA
| | - John D Aitchison
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
12
|
Chirgwin ME, Schroeder EA, Derbyshire ER. Cut it out! A CRISPR-Cas9 screen identifies host regulators of the Plasmodium liver stage. Cell Chem Biol 2022; 29:1365-1367. [PMID: 36113404 DOI: 10.1016/j.chembiol.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this issue of Cell Chemical Biology, Vijayan and colleagues identify host factors integral for Plasmodium liver-stage infection using a whole-genome CRISPR-Cas9 knockout screen. Their efforts reveal that liver-stage parasites redistribute host microtubules to the parasite membrane in a process dependent on the host Golgi.
Collapse
Affiliation(s)
| | - Erin A Schroeder
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Schroeder EA, Chirgwin ME, Derbyshire ER. Plasmodium's fight for survival: escaping elimination while acquiring nutrients. Trends Parasitol 2022; 38:544-557. [PMID: 35534377 PMCID: PMC9187605 DOI: 10.1016/j.pt.2022.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 01/08/2023]
Abstract
Plasmodium parasites extensively alter their host hepatocyte to evade host detection and support an unprecedented replication rate. Host cell manipulation includes association with the host early and late endomembrane systems, where Plasmodium accesses nutrients while suppressing cellular immune processes. Early endomembrane organelles provide an opportunity to sequester an abundance of lipids and proteins, but the association with late endomembrane organelles also risks autophagy-mediated elimination. While not all parasites survive, those that do benefit from a plethora of nutrients provided through this pathway. In this review, we discuss recent advances in our understanding of how Plasmodium parasites balance the need for host nutrients while avoiding elimination during the liver stage.
Collapse
Affiliation(s)
- Erin A Schroeder
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
15
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
16
|
Glennon EKK, Tongogara T, Primavera VI, Reeder SM, Wei L, Kaushansky A. Elucidating Spatially-Resolved Changes in Host Signaling During Plasmodium Liver-Stage Infection. Front Cell Infect Microbiol 2022; 11:804186. [PMID: 35111697 PMCID: PMC8801743 DOI: 10.3389/fcimb.2021.804186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
Upon transmission to the human host, Plasmodium sporozoites exit the skin, are taken up by the blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte. Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging, particularly in vivo, and existing studies have been largely unable to consider how protein and phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using digital spatial profiling, we characterized changes in host signaling during Plasmodium yoelii infection in vivo without disrupting the liver tissue. Moreover, we measured alterations in protein expression around infected hepatocytes and identified a subset of CD163+ Kupffer cells that migrate towards infected cells during infection. These data offer the first insight into the heterogeneous microenvironment that surrounds the infected hepatocyte and provide insights into how the parasite may alter its milieu to influence its survival and modulate immunity.
Collapse
Affiliation(s)
- Elizabeth K. K. Glennon
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Tinotenda Tongogara
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Grinnell College, Grinnell, IA, United States
| | - Veronica I. Primavera
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Sophia M. Reeder
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Ling Wei
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Alexis Kaushansky
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
- *Correspondence: Alexis Kaushansky,
| |
Collapse
|
17
|
Abstract
Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Collapse
|
18
|
Lu KY, Mansfield CR, Fitzgerald MC, Derbyshire ER. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. Chembiochem 2021; 22:2591-2599. [PMID: 33999499 PMCID: PMC8373781 DOI: 10.1002/cbic.202100155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Indexed: 12/16/2022]
Abstract
Emerging Plasmodium parasite drug resistance is threatening progress towards malaria control and elimination. While recent efforts in cell-based, high-throughput drug screening have produced first-in-class drugs with promising activities against different Plasmodium life cycle stages, most of these antimalarial agents have elusive mechanisms of action. Though challenging to address, target identification can provide valuable information to facilitate lead optimization and preclinical drug prioritization. Recently, proteome-wide methods for direct assessment of drug-protein interactions have emerged as powerful tools in a number of systems, including Plasmodium. In this review, we will discuss current chemoproteomic strategies that have been adapted to antimalarial drug target discovery, including affinity- and activity-based protein profiling and the energetics-based techniques thermal proteome profiling and stability of proteins from rates of oxidation. The successful application of chemoproteomics to the Plasmodium blood stage highlights the potential of these methods to link inhibitors to their molecular targets in more elusive Plasmodium life stages and intracellular pathogens in the future.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
19
|
Sharma PK, Kalia I, Kaushik V, Brünnert D, Quadiri A, Kashif M, Chahar KR, Agrawal A, Singh AP, Goyal P. STK35L1 regulates host cell cycle-related genes and is essential for Plasmodium infection during the liver stage of malaria. Exp Cell Res 2021; 406:112764. [PMID: 34358525 DOI: 10.1016/j.yexcr.2021.112764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/28/2022]
Abstract
Protein kinases of both the parasite and the host are crucial in parasite invasion and survival and might act as drug targets against drug-resistant malaria. STK35L1 was among the top five hits in kinome-wide screening, suggesting its role in malaria's liver stage. However, the role of host STK35L1 in malaria remains elusive. In this study, we found that STK35L1 was highly upregulated during the infection of Plasmodium berghei (P. berghei) in HepG2 cells and mice liver, and knockdown of STK35L1 remarkably suppressed the sporozoites' infection in HepG2 cells. We showed that STAT3 is upregulated and phosphorylated during P. berghei sporozoites' infection, and STAT3 activation is required for both the upregulation of STK35L1 and STAT3. Furthermore, we found that ten cell cycle genes were upregulated in the sporozoite-infected hepatocytes. Knockdown of STK35L1 inhibited the basal expression of these genes except CDKN3 and GTSE1 in HepG2 cells. Thus, we identified STK35L1 as a host kinase that plays an obligatory role in malaria's liver stage and propose that it may serve as a potential drug target against drug-resistant malaria.
Collapse
Affiliation(s)
- Phulwanti Kumari Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Rajasthan, 305 817, India
| | - Inderjeet Kalia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibha Kaushik
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Rajasthan, 305 817, India
| | - Daniela Brünnert
- Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University of Würzburg Medical School, Würzburg, Germany
| | - Afshana Quadiri
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammad Kashif
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kirti Raj Chahar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Rajasthan, 305 817, India
| | - Akhil Agrawal
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Rajasthan, 305 817, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Rajasthan, 305 817, India.
| |
Collapse
|
20
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Sylvester K, Maher SP, Posfai D, Tran MK, Crawford MC, Vantaux A, Witkowski B, Kyle DE, Derbyshire ER. Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. Front Cell Infect Microbiol 2021; 11:687019. [PMID: 34195101 PMCID: PMC8236947 DOI: 10.3389/fcimb.2021.687019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.
Collapse
Affiliation(s)
- Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Dora Posfai
- Chemistry Department, Duke University, Durham, NC, United States
| | - Michael K Tran
- Chemistry Department, Duke University, Durham, NC, United States
| | | | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States.,Chemistry Department, Duke University, Durham, NC, United States
| |
Collapse
|
22
|
Feng Y, Lei X, Zhang L, Wan H, Pan H, Wu J, Zou M, Zhu L, Mi Y. COPB2: a transport protein with multifaceted roles in cancer development and progression. Clin Transl Oncol 2021; 23:2195-2205. [PMID: 34101128 PMCID: PMC8455385 DOI: 10.1007/s12094-021-02630-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The Coatomer protein complex subunit beta 2 (COPB2) is involved in the formation of the COPI coatomer protein complex and is responsible for the transport of vesicles between the Golgi apparatus and the endoplasmic reticulum. It plays an important role in maintaining the integrity of these cellular organelles, as well as in maintaining cell homeostasis. More importantly, COPB2 plays key roles in embryonic development and tumor progression. COPB2 is regarded as a vital oncogene in several cancer types and has been implicated in tumor cell proliferation, survival, invasion, and metastasis. Here, we summarize the current knowledge on the roles of COPB2 in cancer development and progression in the context of the hallmarks of cancer.
Collapse
Affiliation(s)
- Y Feng
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - X Lei
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - L Zhang
- Department of Urology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu Province, China
| | - H Wan
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - H Pan
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - J Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - M Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, 214122, Jiangsu Province, China
| | - L Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Y Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
23
|
De Niz M, Caldelari R, Kaiser G, Zuber B, Heo WD, Heussler VT, Agop-Nersesian C. Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites. J Cell Sci 2021; 134:jcs252213. [PMID: 34013963 PMCID: PMC8186485 DOI: 10.1242/jcs.252213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Benoit Zuber
- Institute for Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Won Do Heo
- Dept. of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
24
|
Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M, Rajasekaran P, Yang ASP, Erickson S, Ioannidis L, Arandjelovic P, Mackiewicz L, Allison C, Silke J, Pellegrini M, Boddey JA. Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Rep 2021; 30:4343-4354.e4. [PMID: 32234472 DOI: 10.1016/j.celrep.2020.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Collapse
Affiliation(s)
- Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ryan W J Steel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sara Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arandjelovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
25
|
Bang S, Donnelly CR, Luo X, Toro-Moreno M, Tao X, Wang Z, Chandra S, Bortsov AV, Derbyshire ER, Ji RR. Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nat Commun 2021; 12:1704. [PMID: 33731716 PMCID: PMC7969930 DOI: 10.1038/s41467-021-21940-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
GPR37 was discovered more than two decades ago, but its biological functions remain poorly understood. Here we report a protective role of GPR37 in multiple models of infection and sepsis. Mice lacking Gpr37 exhibited increased death and/or hypothermia following challenge by lipopolysaccharide (LPS), Listeria bacteria, and the mouse malaria parasite Plasmodium berghei. Sepsis induced by LPS and Listeria in wild-type mice is protected by artesunate (ARU) and neuroprotectin D1 (NPD1), but the protective actions of these agents are lost in Gpr37−/− mice. Notably, we found that ARU binds to GPR37 in macrophages and promotes phagocytosis and clearance of pathogens. Moreover, ablation of macrophages potentiated infection, sepsis, and their sequelae, whereas adoptive transfer of NPD1- or ARU-primed macrophages reduced infection, sepsis, and pain-like behaviors. Our findings reveal physiological actions of ARU in host cells by activating macrophages and suggest that GPR37 agonists may help to treat sepsis, bacterial infections, and malaria. GPR37 is expressed in macrophages, and has been implicated in resolution of inflammatory pain. Here the authors show that GPR37 can modulate sepsis in several animal models.
Collapse
Affiliation(s)
- Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sharat Chandra
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA. .,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
26
|
Voorberg-van der Wel A, Kocken CHM, Zeeman AM. Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Front Cell Infect Microbiol 2021; 10:606033. [PMID: 33585277 PMCID: PMC7878928 DOI: 10.3389/fcimb.2020.606033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies of liver stage malaria parasite-host interactions have provided exciting new insights on the cross-talk between parasite and its mammalian (predominantly rodent) host. We review the latest state of the art and and zoom in on new technologies that will provide the tools necessary to investigate host-parasite interactions of relapsing parasites. Interactions between hypnozoites and hepatocytes are particularly interesting because the parasite can remain in a quiescent state for prolonged periods of time and triggers for reactivation have not been irrefutably identified. If we learn more about the cross-talk between hypnozoite and host we may be able to identify factors that encourage waking up these dormant parasite reservoirs and help to achieve the total eradication of malaria.
Collapse
Affiliation(s)
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
27
|
Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med 2019; 11:63. [PMID: 31640748 PMCID: PMC6805675 DOI: 10.1186/s13073-019-0673-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
A major advance in antimalarial drug discovery has been the shift towards cell-based phenotypic screening, with notable progress in the screening of compounds against the asexual blood stage, liver stage, and gametocytes. A primary method for drug target deconvolution in Plasmodium falciparum is in vitro evolution of compound-resistant parasites followed by whole-genome scans. Several of the most promising antimalarial drug targets, such as translation elongation factor 2 (eEF2) and phenylalanine tRNA synthetase (PheRS), have been identified or confirmed using this method. One drawback of this method is that if a mutated gene is uncharacterized, a substantial effort may be required to determine whether it is a drug target, a drug resistance gene, or if the mutation is merely a background mutation. Thus, the availability of high-throughput, functional genomic datasets can greatly assist with target deconvolution. Studies mapping genome-wide essentiality in P. falciparum or performing transcriptional profiling of the host and parasite during liver-stage infection with P. berghei have identified potentially druggable pathways. Advances in mapping the epigenomic regulation of the malaria parasite genome have also enabled the identification of key processes involved in parasite development. In addition, the examination of the host genome during infection has identified novel gene candidates associated with susceptibility to severe malaria. Here, we review recent studies that have used omics-based methods to identify novel targets for interventions against protozoan parasites, focusing on malaria, and we highlight the advantages and limitations of the approaches used. These approaches have also been extended to other protozoan pathogens, including Toxoplasma, Trypanosoma, and Leishmania spp., and these studies highlight how drug discovery efforts against these pathogens benefit from the utilization of diverse omics-based methods to identify promising drug targets.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|