1
|
Duan C, Zhao Y, Xiao Y, Hou Y, Gong W, Zhang H, Wang Y, Nie X. Lithium with environmentally relevant concentrations interferes with mitochondrial function, antioxidant response, and autophagy processes in Daphnia magna, leading to changes in life-history traits and behavior. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137420. [PMID: 39893979 DOI: 10.1016/j.jhazmat.2025.137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
With the increasing production and use of lithium-based products, concerns over lithium pollution in aquatic ecosystems are increasing, whereas research on its toxicity mechanisms in aquatic organisms remains limited. The main objective of the present study was to explore the effects of environmentally relevant concentrations of lithium exposure on the life-history strategy, behavior, antioxidant system, and autophagy process of Daphnia magna. Acute (24-96 h) and chronic (21 days) exposure experiments under three lithium treatments (low: 8.34 μg/L, medium: 83.44 μg/L, and high: 834.41 μg/L) were conducted. The results indicated that exposure to medium and high lithium concentrations led to eye and tail deformities in D. magna. Furthermore, developmental and reproductive parameters such as body length, total neonates per female, and average neonates per time were negatively influenced. Lithium also interfered with energy metabolism to cause the decreasing swimming speed and the reduction in the swimming range. In addition, lithium exposure affected the expression of gsk-3β, further disrupting the dynamic balance of mitochondrial fission, fusion, and regeneration, which caused ROS accumulation and induced oxidative stress. D. magna attenuated the stress by activating the FoxO/SESN and Nrf2/Keap1 pathways, synergistically enhancing downstream antioxidant enzymes expression. Concurrently, D. magna also mitigated oxidative stress and mitochondrial damage by promoting autophagy and inhibiting apoptosis. In summary, lithium harmed the physiological and biochemical functions of D. magna through multiple mechanisms, suggesting that environmental lithium pollution may pose a potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Salvatore MM, Pappalardo C, Suarez EGP, Salvatore F, Andolfi A, Gesuele R, Galdiero E, Libralato G, Guida M, Siciliano A. Ecotoxicological and metabolomic investigation of chronic exposure of Daphnia magna (Straus, 1820) to yttrium environmental concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107117. [PMID: 39388779 DOI: 10.1016/j.aquatox.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
In order to estimate the effects on aquatic organisms of long-term exposure to low doses of yttrium (Y) as a potential emerging contaminant, ecotoxicological and metabolomic data were collected on the model organism Daphnia magna, a keystone species in freshwater ecosystems. Following an initial acute toxicity assessment, a 21-day chronic exposure experiment was conducted using a sublethal concentration of 27 μg L⁻¹ of Y, corresponding to the effective concentrations inducing 10 % effect (EC10) value for mortality endpoint and simulating the environmental Y level in aquatic systems. Results from the 21-day two-factor experiment combining microcrustacean survival, growth and reproduction bioassays and targeted gas chromatography-mass spectrometry (GC-MS) metabolomics indicated significant adverse effects of chronic exposure to Y on D. magna. Daphnids exposed to Y exhibited a significantly lower survival at day 21, delayed the maturity stage, including their first breeding, and decreased clutch size. On the side of metabolomics, a clear and general increase over time of both the number and the level of detected metabolites in the hydroalcoholic extracts of the whole organisms was observed. However, emerging from this broad temporal pattern, several bioactive metabolites were identified (e.g., 2,4-di‑tert‑butylphenol, itaconic acid, 3-hydroxybutyric acid, and trehalose) whose levels in extracts are linked to the presence of Y. These results emphasize the necessity of considering low-dose, long-term exposure scenarios in environmental risk assessments of rare earth elements (REEs), which have often been overlooked in favour of higher concentration studies.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Chiara Pappalardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Francesco Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici (NA), Italy
| | - Renato Gesuele
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | |
Collapse
|
3
|
Wang YY, Wan H, Xiao Y, Qin L, He X, Sun H. Lithium isotopic records of anthropogenic activity in the Xiaoqing River basin, eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175023. [PMID: 39067599 DOI: 10.1016/j.scitotenv.2024.175023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The environmental impact of the discharge of lithium (Li) by anthropogenic activity has been overlooked. By analyzing Li concentrations and isotope compositions (δ7Li) of water and sediment samples, this study evaluates the influence of anthropogenic Li discharge on the Xiaoqing River and Laizhou Bay, which are heavily polluted areas in China. High Li concentrations of the river water (up to 7.8 μmol/L) should be linked to anthropogenic Li discharge. However, no profound δ7Li anomalies were observed, preventing identification of the exact discharge sources. In the river sediments, Li concentrations (19.0-45.0 μg/g) were weakly correlated with Zn, Cu, and Cr concentrations, whereas δ7Li values ranged from 0.6 ‰ to 13.9 ‰ with high values being accompanied by high contents of total organic carbon and heavy Cr isotope compositions (δ53Cr). All these point to significant influence of anthropogenic activity on the Li budget of river sediments. A simple mass balance calculation indicates that smelters, Li-bearing therapeutic drugs, and secondary Li-ion batteries are the main anthropogenic Li sources. In contrast to river sediments, marine sediments in the Laizhou Bay were broadly homogeneous at both spatial and temporal scales, indicating no significant influence of anthropogenic Li discharge. Overall, our data indicate that Li isotope systematics in river sediments, especially sediments near intense anthropogenic activity, are effective at tracing potential Li pollution and can help obtain accurate results for environmental inspection.
Collapse
Affiliation(s)
- Yang-Yang Wang
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hongqiong Wan
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yilin Xiao
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| | - Liping Qin
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Xiaoqing He
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; School of Carbon Neutrality Science and Engineering, Anhui University of Science and Technology, Hefei 231131, China
| | - He Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Razali NSM, Ikhwanuddin M, Maulidiani M, Gooderham NJ, Alam M, Kadir NHA. Ecotoxicological impact of heavy metals on wild mud crabs (Scylla olivacea) in Malaysia: An integrative approach of omics, molecular docking and human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174210. [PMID: 38914323 DOI: 10.1016/j.scitotenv.2024.174210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Mud crab, one of the aquatic organisms found in estuary areas, has become a significant economic source of seafood for communities due to its delectable taste. However, they face the threat of heavy metal contamination, which may adversely affect their biological traits. This study explored the comparison of the mud crabs collected from Setiu Wetland as a reference site, while Kuala Sepetang is an area that contains a higher concentration of heavy metals than Setiu Wetlands. Heavy metal levels were quantified using inductively coupled plasma mass spectrometry (ICP-MS), while proteomes were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 1H nuclear magnetic resonance (NMR)-based metabolomics, respectively. Heavy metal contamination affects the proteome, metabolome, and putative molecular targets in mud crabs (Scylla olivacea), leading to oxidative stress. Mud crabs collected from the metal-polluted area of Kuala Sepetang in Perak had considerably elevated concentrations of nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), and cadmium (Cd) in comparison to the reference site of Setiu Wetlands in Terengganu. The proteome analysis revealed an upregulation of the stress-response protein Hsp70, which triggered superoxide dismutase (SOD) and increased arginine kinase expression (5.47 fold) in the muscle tissue, results in the alteration of metabolite regulation in the mud crab from Kuala Sepetang. Additionally, in the muscle tissues of mud crabs obtained from Kuala Sepetang, uncharacterized myosin-tail 1 domain proteins and sarcoplasmic calcium-binding proteins were downregulated. The metabolomic investigation identified changes in metabolites associated with energy metabolism and osmoregulation. Exploration of docking analysis suggests potential connections between methylarsonic acid and essential proteins in mud crabs. These findings suggest that the presence of heavy metals disrupts physiological processes and highlights potential molecular targets that warrant further investigation.
Collapse
Affiliation(s)
- Nur Syafinaz Mohd Razali
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - M Maulidiani
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Nigel J Gooderham
- Department of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongbuk 780714, Republic of Korea.
| | - Nurul Huda Abd Kadir
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia; RIG BIOSES, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
5
|
Peignot Q, Winkler G, Roy E, Giusti N, Forget-Leray J. First evidence of lithium toxicity in the cryptic species complex of the estuarine copepod Eurytemora affinis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116813. [PMID: 39094456 DOI: 10.1016/j.ecoenv.2024.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The development of renewable and low-carbon energy sources means that strategic elements such as lithium (Li) are increasingly being used. The data available on the effects of Li on aquatic organisms are relatively scarce. The copepod Eurytemora affinis, widely distributed in the brackish estuarine waters of the northern hemisphere, is a species of choice in ecotoxicology but in fact constitutes a cryptic species complex, composed of at least six cryptic species. Cryptic diversity can lead to misinterpretation and alter the reproducibility of routine ecotoxicological tests. In the present study, two cryptic species of the E. affinis complex from the Seine (European clade) and the St. Lawrence (North-Atlantic clade) estuaries were used to assess Li toxicity and to compare their differential sensitivity. Larvae were exposed to different concentrations of Li (0.4, 4.39, 35.36 and 80.83 mg L-1) under semi-static conditions for 96 h. Larval development stages were determined and log-logistic functions were fitted to evaluate mortality (LC50) and growth (EC50) parameters. After 96 h of exposure, the results showed that the European and North-Atlantic clades had LC50 values of 55.33 and 67.81 mg L-1 and EC50 values of 28.94 and 41.45 mg L-1, respectively. A moderate difference in sensitivity to Li between the European and North-Atlantic clades of the E. affinis complex was observed. Thus, the cryptic species diversity should be considered using E. affinis to avoid bias in the interpretation of the data. Despite environmental concentrations of Li are expected to increase over the next years, EC50 and LC50 found for E. affinis cryptic species are largely higher than Li environmental concentrations to provoke extreme effects.
Collapse
Affiliation(s)
- Quentin Peignot
- Normandie Univ, ULHN, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), FR CNRS 3730 SCALE, Le Havre F-76600, France; Institut des Sciences de la Mer de Rimouski, Québec-Océan, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada.
| | - Gesche Winkler
- Institut des Sciences de la Mer de Rimouski, Québec-Océan, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada.
| | - Ellia Roy
- Institut des Sciences de la Mer de Rimouski, Québec-Océan, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada.
| | - Nathalie Giusti
- Normandie Univ, ULHN, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), FR CNRS 3730 SCALE, Le Havre F-76600, France.
| | - Joëlle Forget-Leray
- Normandie Univ, ULHN, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), FR CNRS 3730 SCALE, Le Havre F-76600, France.
| |
Collapse
|
6
|
Young T, Gale SL, Ragg NLC, Sander SG, Burritt DJ, Benedict B, Le DV, Villas-Bôas SG, Alfaro AC. Metabolic Regulation of Copper Toxicity during Marine Mussel Embryogenesis. Metabolites 2023; 13:838. [PMID: 37512545 PMCID: PMC10385052 DOI: 10.3390/metabo13070838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The development of new tools for assessing the health of cultured shellfish larvae is crucial for aquaculture industries to develop and refine hatchery methodologies. We established a large-volume ecotoxicology/health stressor trial, exposing mussel (Perna canaliculus) embryos to copper in the presence of ethylenediaminetetraacetic acid (EDTA). GC/MS-based metabolomics was applied to identify potential biomarkers for monitoring embryonic/larval health and to characterise mechanisms of metal toxicity. Cellular viability, developmental abnormalities, larval behaviour, mortality, and a targeted analysis of proteins involved in the regulation of reactive oxygen species were simultaneously evaluated to provide a complementary framework for interpretative purposes and authenticate the metabolomics data. Trace metal analysis and speciation modelling verified EDTA as an effective copper chelator. Toxicity thresholds for P. canaliculus were low, with 10% developmental abnormalities in D-stage larvae being recorded upon exposure to 1.10 μg·L-1 bioavailable copper for 66 h. Sublethal levels of bioavailable copper (0.04 and 1.10 μg·L-1) caused coordinated fluctuations in metabolite profiles, which were dependent on development stage, treatment level, and exposure duration. Larvae appeared to successfully employ various mechanisms involving the biosynthesis of antioxidants and a restructuring of energy-related metabolism to alleviate the toxic effects of copper on cells and developing tissues. These results suggest that regulation of trace metal-induced toxicity is tightly linked with metabolism during the early ontogenic development of marine mussels. Lethal-level bioavailable copper (50.3 μg·L-1) caused severe metabolic dysregulation after 3 h of exposure, which worsened with time, substantially delayed embryonic development, induced critical oxidative damage, initiated the apoptotic pathway, and resulted in cell/organism death shortly after 18 h of exposure. Metabolite profiling is a useful approach to (1) assess the health status of marine invertebrate embryos and larvae, (2) detect early warning biomarkers for trace metal contamination, and (3) identify novel regulatory mechanisms of copper-induced toxicity.
Collapse
Affiliation(s)
- Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | | | | | - Sylvia G. Sander
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
- Marine Mineral Resources Group, Research Division 4: Dynamics of the Ocean Floor, Magmatic and Hydrothermal Systems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - David J. Burritt
- Department of Botany, University of Otago, 464 Great King St, Dunedin 9016, New Zealand
| | - Billy Benedict
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
| | - Dung V. Le
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi 000084, Vietnam
| | - Silas G. Villas-Bôas
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
7
|
D’eon JC, Lankadurai BP, Simpson AJ, Reiner EJ, Poirier DG, Vanlerberghe GC, Simpson MJ. Cross-Platform Comparison of Amino Acid Metabolic Profiling in Three Model Organisms Used in Environmental Metabolomics. Metabolites 2023; 13:metabo13030402. [PMID: 36984842 PMCID: PMC10058405 DOI: 10.3390/metabo13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Environmental metabolomics is a promising approach to study pollutant impacts to target organisms in both terrestrial and aquatic environments. To this end, both nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based methods are used to profile amino acids in different environmental metabolomic studies. However, these two methods have not been compared directly which is an important consideration for broader comparisons in the environmental metabolomics field. We compared the quantification of 18 amino acids in the tissue extracts of Daphnia magna, a common model organism used in both ecotoxicology and ecology, using both 1H NMR spectroscopy and liquid chromatography with tandem MS (LC-MS/MS). 1H NMR quantification of amino acids agreed with the LC-MS/MS quantification for 17 of 18 amino acids measured. We also tested both quantitative methods in a D. magna sub-lethal exposure study to copper and lithium. Again, both NMR and LC-MS/MS measurements showed agreement. We extended our analyses with extracts from the earthworm Eisenia fetida and the plant model Nicotiana tabacum. The concentrations of amino acids by both 1H NMR and LC-MS/MS, agreed and demonstrated the robustness of both techniques for quantitative metabolomics. These findings demonstrate the compatibility of these two analytical platforms for amino acid profiling in environmentally relevant model organisms and emphasizes that data from either method is robust for comparisons across studies to further build the knowledge base related to pollutant exposure impacts and toxic responses of diverse environmental organisms.
Collapse
Affiliation(s)
- Jessica C. D’eon
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Brian P. Lankadurai
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J. Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Eric J. Reiner
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON M9P 3V6, Canada
| | - David G. Poirier
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON M9P 3V6, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J. Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Correspondence: ; Tel.: +1-416-287-7234
| |
Collapse
|
8
|
Martins A, da Silva DD, Silva R, Carvalho F, Guilhermino L. Warmer water, high light intensity, lithium and microplastics: Dangerous environmental combinations to zooplankton and Global Health? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158649. [PMID: 36089038 DOI: 10.1016/j.scitotenv.2022.158649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Nowadays there is a high concern about the combined effects of global warming and emerging environmental contaminants with significant increasing trends of use, such as lithium (Li) and microplastics (MPs), both on wildlife and human health. Therefore, the effects of high light intensity (26,000 lx) or warmer water temperature (25 °C) on the long-term toxicity of Li and mixtures of Li and MPs (Li-MPs mixtures) were investigated using model populations of the freshwater zooplankton species Daphnia magna. Three 21-day bioassays were done in the laboratory at the following water temperatures and light intensities: (i) 20 °C/10830 lx; (ii) 20 °C/26000 lx (high light intensity); (iii) 25 °C/10830 lx (warmer temperature). Based on the 21-day EC50s on reproduction, high light intensity increased the reproductive toxicity of Li and Li-MPs mixtures by ~1.3 fold; warmer temperature increased the toxicity of Li by ~1.2 fold, and the toxicity of Li-MPs mixtures by ~1.4 fold based on the concentration of Li, and by ~2 fold based on the concentrations of MPs. At high light intensity, Li (0.04 mg/L) and Li-MPs mixtures (0.04 Li + 0.09 MPs mg/L) reduced the population fitness by 32 % and 41 %, respectively. Warmer temperature, Li (0.05 mg/L) and Li-MPs mixtures (0.05 Li + 0.09 MPs mg/L) reduced it by 63 % and 71 %, respectively. At warmer temperature or high light intensity, higher concentrations of Li and Li-MPs mixtures lead to population extinction. Based on the population growth rate and using data of bioassays with MPs alone done simultaneously, Li and MPs interactions were antagonistic or synergistic depending on the scenario. High light intensity and chemical stress generally acted synergistically. Warmer temperature and chemical stress always acted synergistically. These findings highlight the threats of long-term exposure to Li and Li-MPs mixtures to freshwater zooplankton and Global Health in a warmer world.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
9
|
He J, Wang ZZ, Li CH, Xu HL, Pan HZ, Zhao YX. Metabolic alteration of Tetrahymena thermophila exposed to CdSe/ZnS quantum dots to respond to oxidative stress and lipid damage. Biochim Biophys Acta Gen Subj 2023; 1867:130251. [PMID: 36244576 DOI: 10.1016/j.bbagen.2022.130251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T. thermophila), a model organism of the aquatic environment, and performed metabolomics experiments. Before the omics experiment was conducted, QDs were found to induce inhibition of cell proliferation, and reactive oxygen species (ROS) production along with Propidium iodide labeled cell membrane damage indicated oxidative stress stimulation. In addition, mitochondrial ultrastructure alteration of T. thermophila was also confirmed by Transmission Electron Microscope results after 48 h of exposure to QDs. Further results of metabolomics detection showed that 0.1 μg/mL QDs could disturb cell physiological and metabolic metabolism characterized by 18 significant metabolite changes, of which twelve metabolites improved and three decreased significantly compared to the control. Kyoto Encyclopedia of Genes and Genomes analysis showed that these metabolites were involved in the ATP-binding cassette transporter and purine metabolism pathways, both of which respond to ROS-induced cell membrane damage. In addition, purine metabolism weakness might also reflect mitochondrial dysfunction associated with energy metabolism and transport abnormalities. This research provides deep insight into the potential risks of quantum dots in aquatic ecosystems.
Collapse
Affiliation(s)
- Jie He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Zheng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chen-Hong Li
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hai-Long Xu
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hong-Zhi Pan
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Yu-Xia Zhao
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
10
|
Ni FJ, Arhonditsis GB. Examination of the effects of toxicity and nutrition on a two prey-predator system with a metabolomics-inspired model. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Michalaki A, McGivern AR, Poschet G, Büttner M, Altenburger R, Grintzalis K. The Effects of Single and Combined Stressors on Daphnids-Enzyme Markers of Physiology and Metabolomics Validate the Impact of Pollution. TOXICS 2022; 10:toxics10100604. [PMID: 36287884 PMCID: PMC9609890 DOI: 10.3390/toxics10100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
The continuous global increase in population and consumption of resources due to human activities has had a significant impact on the environment. Therefore, assessment of environmental exposure to toxic chemicals as well as their impact on biological systems is of significant importance. Freshwater systems are currently under threat and monitored; however, current methods for pollution assessment can neither provide mechanistic insight nor predict adverse effects from complex pollution. Using daphnids as a bioindicator, we assessed the impact in acute exposures of eight individual chemicals and specifically two metals, four pharmaceuticals, a pesticide and a stimulant, and their composite mixture combining phenotypic, biochemical and metabolic markers of physiology. Toxicity levels were in the same order of magnitude and significantly enhanced in the composite mixture. Results from individual chemicals showed distinct biochemical responses for key enzyme activities such as phosphatases, lipase, peptidase, β-galactosidase and glutathione-S-transferase. Following this, a more realistic mixture scenario was assessed with the aforementioned enzyme markers and a metabolomic approach. A clear dose-dependent effect for the composite mixture was validated with enzyme markers of physiology, and the metabolomic analysis verified the effects observed, thus providing a sensitive metrics in metabolite perturbations. Our study highlights that sensitive enzyme markers can be used in advance on the design of metabolic and holistic assays to guide the selection of chemicals and the trajectory of the study, while providing mechanistic insight. In the future this could prove to become a useful tool for understanding and predicting freshwater pollution.
Collapse
Affiliation(s)
- Anna Michalaki
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | | | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Büttner
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | | |
Collapse
|
12
|
Martins A, da Silva DD, Silva R, Carvalho F, Guilhermino L. Long-term effects of lithium and lithium-microplastic mixtures on the model species Daphnia magna: Toxicological interactions and implications to 'One Health'. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155934. [PMID: 35577095 DOI: 10.1016/j.scitotenv.2022.155934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination with lithium (Li) and microplastics (MP) has been steadily increasing and this trend is expected to continue in the future. Many freshwater ecosystems, which are crucial to reach the United Nations Sustainable Development Goals, are particularly vulnerable to Li and MP contamination, and other pressures. The long-term effects of Li, either alone or combined with MP (Li-MP mixtures), were investigated using the freshwater zooplankton micro-crustacean Daphnia magna as model species. In the laboratory, D. magna females were exposed for 21 days to water concentrations of Li (0.02, 0.04, 0.08 mg/L) or Li-MP mixtures (0.02 Li + 0.04 MP, 0.04 Li + 0.09 MP mg/L, 0.08 Li + 0.19 MP mg/L). In the range of concentrations tested, Li and Li-MP mixtures caused parental mortality, and decreased the somatic growth (up to 20% and 40% reduction, respectively) and the reproductive success (up to 93% and 90% reduction, respectively). The 21-day EC50s of Li and Li-MP mixtures on D. magna reproduction were 0.039 mg/L and 0.039 Li + 0.086 MP mg/L, respectively. Under exposure to the highest concentration of Li (0.08 mg/L) and Li-MP mixtures (0.08 Li + 0.19 MP mg/L), the mean of D. magna population growth rate was reduced by 67% and 58%, respectively. Based on the population growth rate and using data from a bioassay testing the same concentrations of MP alone and carried simultaneously, the toxicological interaction between Li and MP was antagonism under exposure to the lowest and the highest concentrations of Li-MP mixtures, and synergism under exposure to the medium concentration of Li-MP mixtures. These findings highlight the need of further investigating the combined effects of contaminants, and the threat of long-term environmental contamination with Li and MP to freshwater zooplankton, biodiversity, ecosystem services and 'One Health'.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal.
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
13
|
Bastawrous M, Gruschke O, Soong R, Jenne A, Gross D, Busse F, Nashman B, Lacerda A, Simpson AJ. Comparing the Potential of Helmholtz and Planar NMR Microcoils for Analysis of Intact Biological Samples. Anal Chem 2022; 94:8523-8532. [DOI: 10.1021/acs.analchem.2c01560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monica Bastawrous
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Oliver Gruschke
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dieter Gross
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8, Canada
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8, Canada
| | - Andre J. Simpson
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
14
|
Moxley-Paquette V, Wu B, Lane D, Bastawrous M, Ning P, Soong R, De Castro P, Kovacevic I, Frei T, Stuessi J, Al Adwan-Stojilkovic D, Graf S, Vincent F, Schmidig D, Kuehn T, Kuemmerle R, Beck A, Fey M, Bermel W, Busse F, Gundy M, Boenisch H, Heumann H, Nashman B, Dutta Majumdar R, Lacerda A, Simpson AJ. Evaluation of double-tuned single-sided planar microcoils for the analysis of small 13 C enriched biological samples using 1 H- 13 C 2D heteronuclear correlation NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:386-397. [PMID: 34647646 DOI: 10.1002/mrc.5227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences. Unfortunately, 1 H NMR alone is not very informative for intact biological samples due to line broadening caused by magnetic susceptibility distortions, and 1 H-13 C 2D NMR correlations are required to provide the additional spectral dispersion for metabolic assignments in vivo or in situ. To our knowledge, double-tuned single-sided microcoils have not been applied for the 2D 1 H-13 C analysis of intact 13 C enriched biological samples. Questions include the following: Can 1 H-13 C 2D NMR be performed on single-sided planar microcoils? If so, do they still hold sensitivity advantages over conventional 5 mm NMR technology for mass limited samples? Here, 2D 1 H-13 C HSQC, HMQC, and HETCOR variants were compared and then applied to 13 C enriched broccoli seeds and Daphnia magna (water fleas). Compared to 5 mm NMR probes, the microcoils showed a sixfold improvement in mass sensitivity (albeit only for a small localized region) and allowed for the identification of metabolites in a single intact D. magna for the first time. Single-sided planar microcoils show practical benefit for 1 H-13 C NMR of intact biological samples, if localized information within ~0.7 mm of the 1 mm I.D. planar microcoil surface is of specific interest.
Collapse
Affiliation(s)
| | - Bing Wu
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Paris Ning
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Peter De Castro
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Ivan Kovacevic
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Thomas Frei
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Juerg Stuessi
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | | | - Stephan Graf
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Franck Vincent
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Daniel Schmidig
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Till Kuehn
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Rainer Kuemmerle
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Armin Beck
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Michael Fey
- Magnetic Resonance Spectroscopy Division, Bruker Corporation, Billerica, MA, USA
| | - Wolfgang Bermel
- Magnetic Resonance Spectroscopy Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Falko Busse
- Magnetic Resonance Spectroscopy Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Marcel Gundy
- Research and Development, Silantes GmbH, Munich, Germany
| | | | | | - Ben Nashman
- Research and Development, Synex Medical, Toronto, Ontario, Canada
| | | | - Andressa Lacerda
- Research and Development, Synex Medical, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Yanagihara M, Nakajima F, Tobino T. Development and application of a metabolomic tool to assess exposure of an estuarine amphipod to pollutants in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141988. [PMID: 33207530 DOI: 10.1016/j.scitotenv.2020.141988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Identifying major adverse effects on aquatic organisms in environmental samples is still challenging, and metabolomic approaches have been utilized as non-target screening techniques in the context of ecotoxicology. While existing methods have focused on statistical tests or univariate analysis, there is the need to further explore a multivariate analytical method that captures synergetic effects and associations among metabolites and toxicants. Here we show a new tool for screening sediment toxicity in the environment. First, we constructed predictive models using the metabolomic profiles and the result of exposure tests, to discriminate the toxic effects of target substances. The developed models were then applied to sediment samples collected from an actual urban area that contain chromium, nickel, copper, zinc, cadmium, fluoranthene, nicotine, and osmotic stress, incorporated with exposure tests of the benthic amphipod Grandidierella japonica. As a result, the fitted models showed high predictive power (Q2 > 0.71) and could detect toxicants from mixed chemical samples across a wide range of concentrations in test datasets. The application of the constructed models to river sediment and road dust samples indicated that almost all target substances were less toxic compared with the effects at LC50 levels. Only zinc showed slight increasing trends among samples, suggesting that the proposed method can be used for prioritization of toxicants. The present work made a direct connection between chemical exposures and metabolomic responses, and draws attention to the need for further studies on interactive mechanisms of metabolites in toxicological assessments.
Collapse
Affiliation(s)
- Miina Yanagihara
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Moxley-Paquette V, Lane D, Soong R, Ning P, Bastawrous M, Wu B, Pedram MZ, Haque Talukder MA, Ghafar-Zadeh E, Zverev D, Martin R, Macpherson B, Vargas M, Schmidig D, Graf S, Frei T, Al Adwan-Stojilkovic D, De Castro P, Busse F, Bermel W, Kuehn T, Kuemmerle R, Fey M, Decker F, Stronks H, Sullan RMA, Utz M, Simpson AJ. 5-Axis CNC Micromilling for Rapid, Cheap, and Background-Free NMR Microcoils. Anal Chem 2020; 92:15454-15462. [PMID: 33170641 DOI: 10.1021/acs.analchem.0c03126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The superior mass sensitivity of microcoil technology in nuclear magnetic resonance (NMR) spectroscopy provides potential for the analysis of extremely small-mass-limited samples such as eggs, cells, and tiny organisms. For optimal performance and efficiency, the size of the microcoil should be tailored to the size of the mass-limited sample of interest, which can be costly as mass-limited samples come in many shapes and sizes. Therefore, rapid and economic microcoil production methods are needed. One method with great potential is 5-axis computer numerical control (CNC) micromilling, commonly used in the jewelry industry. Most CNC milling machines are designed to process larger objects and commonly have a precision of >25 μm (making the machining of common spiral microcoils, for example, impossible). Here, a 5-axis MiRA6 CNC milling machine, specifically designed for the jewelry industry, with a 0.3 μm precision was used to produce working planar microcoils, microstrips, and novel microsensor designs, with some tested on the NMR in less than 24 h after the start of the design process. Sample wells could be built into the microsensor and could be machined at the same time as the sensors themselves, in some cases leaving a sheet of Teflon as thin as 10 μm between the sample and the sensor. This provides the freedom to produce a wide array of designs and demonstrates 5-axis CNC micromilling as a versatile tool for the rapid prototyping of NMR microsensors. This approach allowed the experimental optimization of a prototype microstrip for the analysis of two intact adult Daphnia magna organisms. In addition, a 3D volume slotted-tube resonator was produced that allowed for 2D 1H-13C NMR of D. magna neonates and exhibited 1H sensitivity (nLODω600 = 1.49 nmol s1/2) close to that of double strip lines, which themselves offer the best compromise between concentration and mass sensitivity published to date.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Paris Ning
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Bing Wu
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Maysam Zamani Pedram
- Lassonde School of Engineering, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada.,Faculty of Medicine, Department of Radiology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Md Aminul Haque Talukder
- Lassonde School of Engineering, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Lassonde School of Engineering, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada
| | - Dimitri Zverev
- NSCNC Manufacturing Ltd., 1515 Broadway Street Unit 607, Port Coquitlam, British Columbia, V3C 6M2, Canada
| | - Richard Martin
- IMicrosolder, 57 Marshall Street West, Meaford, Ontario, N4L 1E4, Canada
| | - Bob Macpherson
- Apogee Steel Fabrication Inc., 3600 Erindale Station Road, Mississauga, Ontario, L5C 2T1, Canada
| | - Mike Vargas
- Apogee Steel Fabrication Inc., 3600 Erindale Station Road, Mississauga, Ontario, L5C 2T1, Canada
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Wolfgang Bermel
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Michael Fey
- Bruker Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821-3991, United States
| | - Frank Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Henry Stronks
- Bruker Canada Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - André J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
17
|
MCR-ALS analysis of 1H NMR spectra by segments to study the zebrafish exposure to acrylamide. Anal Bioanal Chem 2020; 412:5695-5706. [PMID: 32617759 DOI: 10.1007/s00216-020-02789-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Metabolomics is currently an important field within bioanalytical science and NMR has become a key technique for drawing the full metabolic picture. However, the analysis of 1H NMR spectra of metabolomics samples is often very challenging, as resonances usually overlap in crowded regions, hindering the steps of metabolite profiling and resonance integration. In this context, a pre-processing method for the analysis of 1D 1H NMR data from metabolomics samples is proposed, consisting of the blind resolution and integration of all resonances of the spectral dataset by multivariate curve resolution-alternating least squares (MCR-ALS). The resulting concentration estimates can then be examined with traditional chemometric methods such as principal component analysis (PCA), ANOVA-simultaneous component analysis (ASCA), and partial least squares-discriminant analysis (PLS-DA). Since MCR-ALS does not require the use of spectral templates, the concentration estimates for all resonances are obtained even before being assigned. Consequently, the metabolomics study can be performed without neglecting any relevant resonance. In this work, the proposed pipeline performance was validated with 1D 1H NMR spectra from a metabolomics study of zebrafish upon acrylamide (ACR) exposure. Remarkably, this method represents a framework for the high-throughput analysis of NMR metabolomics data that opens the way for truly untargeted NMR metabolomics analyses. Graphical abstract.
Collapse
|
18
|
Anaraki MT, Lysak DH, Soong R, Simpson MJ, Spraul M, Bermel W, Heumann H, Gundy M, Boenisch H, Simpson AJ. NMR assignment of the in vivo daphnia magna metabolome. Analyst 2020; 145:5787-5800. [DOI: 10.1039/d0an01280g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Daphnia (freshwater fleas) are among the most widely used organisms in regulatory aquatic toxicology/ecology, while their recent listing as an NIH model organism is stimulating research for understanding human diseases and processes.
Collapse
Affiliation(s)
| | | | - Ronald Soong
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| | - Myrna J. Simpson
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| | | | | | | | | | | | - André J. Simpson
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| |
Collapse
|
19
|
Fong JC, De Guzman BE, Lamborg CH, Sison-Mangus MP. The Mercury-Tolerant Microbiota of the Zooplankton Daphnia Aids in Host Survival and Maintains Fecundity under Mercury Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14688-14699. [PMID: 31747751 DOI: 10.1021/acs.est.9b05305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many aquatic organisms can thrive in polluted environments by having the genetic capability to withstand suboptimal conditions. However, the contributions of microbiomes under these stressful environments are poorly understood. We investigated whether a mercury-tolerant microbiota can extend its phenotype to its host by ameliorating host survival and fecundity under mercury-stress. We isolated microbiota members from various clones of Daphnia magna, screened for the mercury-biotransforming merA gene, and determined their mercury tolerance levels. We then introduced the mercury-tolerant microbiota, Pseudomonas-10, to axenic D. magna and quantified its merA gene expression, mercury reduction capability, and measured its impact on host survival and fecundity. The expression of the merA gene was up-regulated in Pseudomonas-10, both in isolation and in host-association with mercury exposure. Pseudomonas-10 is also capable of significantly reducing mercury concentration in the medium. Notably, mercury-exposed daphnids containing only Pseudomonas-10 exhibited higher survival and fecundity than mercury-exposed daphnids supplemented with parental microbiome. Our study showed that zooplankton, such as Daphnia, naturally harbor microbiome members that are eco-responsive and tolerant to mercury exposure and can aid in host survival and maintain host fecundity in a mercury-contaminated environment. This study further demonstrates that under stressful environmental conditions, the fitness of the host can depend on the genotype and the phenotype of its microbiome.
Collapse
Affiliation(s)
- Jiunn C Fong
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Brandon E De Guzman
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Carl H Lamborg
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Marilou P Sison-Mangus
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| |
Collapse
|
20
|
The impact of anthropogenic inputs on lithium content in river and tap water. Nat Commun 2019; 10:5371. [PMID: 31796732 PMCID: PMC6890772 DOI: 10.1038/s41467-019-13376-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The use of lithium (Li) has dramatically increased during the last two decades due to the proliferation of mobile electronic devices and the diversification of electric-powered vehicles. Lithium is also prescribed as a medication against bipolar disorder. While Li can exert a toxic effect on living organisms, few studies have investigated the impact of anthropogenic inputs on Li levels in the environment. Here we report Li concentrations and Li isotope compositions of river, waste and tap water, and industrial products from the metropolitan city of Seoul. Results show that the large increase in population density in Seoul is accompanied by a large enrichment in aqueous Li. Lithium isotopes evidence a major release from Li-rich materials. Water treatment protocols are also shown to be inefficient for Li. Our study therefore highlights the need for a global Li survey and adequate solutions for minimizing their impact on ecosystems and city dwellers.
Collapse
|
21
|
Lane D, Liaghati Mobarhan Y, Soong R, Ning P, Bermel W, Tabatabaei Anaraki M, Wu B, Heumann H, Gundy M, Boenisch H, Jeong TY, Kovacevic V, Simpson MJ, Simpson AJ. Understanding the Fate of Environmental Chemicals Inside Living Organisms: NMR-Based 13C Isotopic Suppression Selects Only the Molecule of Interest within 13C-Enriched Organisms. Anal Chem 2019; 91:15000-15008. [DOI: 10.1021/acs.analchem.9b03596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Lane
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Yalda Liaghati Mobarhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Paris Ning
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Maryam Tabatabaei Anaraki
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Bing Wu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | - Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Vera Kovacevic
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Myrna J. Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - André J. Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
22
|
Lane D, Soong R, Bermel W, Ning P, Dutta Majumdar R, Tabatabaei-Anaraki M, Heumann H, Gundy M, Bönisch H, Liaghati Mobarhan Y, Simpson MJ, Simpson AJ. Selective Amino Acid-Only in Vivo NMR: A Powerful Tool To Follow Stress Processes. ACS OMEGA 2019; 4:9017-9028. [PMID: 31459990 PMCID: PMC6648361 DOI: 10.1021/acsomega.9b00931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
In vivo NMR of small 13C-enriched aquatic organisms is developing as a powerful tool to detect and explain toxic stress at the biochemical level. Amino acids are a very important category of metabolites for stress detection as they are involved in the vast majority of stress response pathways. As such, they are a useful proxy for stress detection in general, which could then be a trigger for more in-depth analysis of the metabolome. 1H-13C heteronuclear single quantum coherence (HSQC) is commonly used to provide additional spectral dispersion in vivo and permit metabolite assignment. While some amino acids can be assigned from HSQC, spectral overlap makes monitoring them in vivo challenging. Here, an experiment typically used to study protein structures is adapted for the selective detection of amino acids inside living Daphnia magna (water fleas). All 20 common amino acids can be selectively detected in both extracts and in vivo. By monitoring bisphenol-A exposure, the in vivo amino acid-only approach identified larger fluxes in a greater number of amino acids when compared to published works using extracts from whole organism homogenates. This suggests that amino acid-only NMR of living organisms may be a very sensitive tool in the detection of stress in vivo and is highly complementary to more traditional metabolomics-based methods. The ability of selective NMR experiments to help researchers to "look inside" living organisms and only detect specific molecules of interest is quite profound and paves the way for the future development of additional targeted experiments for in vivo research and monitoring.
Collapse
Affiliation(s)
- Daniel Lane
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Wolfgang Bermel
- Bruker
BioSpin GmbH, Silberstreifen 4, Rheinstetten, Germany
| | - Paris Ning
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Rudraksha Dutta Majumdar
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Bruker
Canada Ltd, 2800 High
Point Drive, Milton, Ontario, Canada L9T 6P4
| | - Maryam Tabatabaei-Anaraki
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | - Yalda Liaghati Mobarhan
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J. Simpson
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J. Simpson
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| |
Collapse
|
23
|
Huang N, Mao J, Hu M, Wang X, Huo M. Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. J Basic Microbiol 2019; 59:446-457. [PMID: 30900763 DOI: 10.1002/jobm.201800693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 11/12/2022]
Abstract
Microbial metal-resistance mechanisms are the basis for the application of microorganisms in metal bioremediation. Despite the available studies of bacterial molecular mechanisms to resistance metals ions (particularly copper), the understanding of bacterial metal resistance is very limited from the transcriptome perspective. Here, responses of the transcriptome (RNA-Seq) was investigated in Cupriavidus gilardii CR3 exposed to 0.5 mM copper, because strain CR3 had a bioremoval capacity of 38.5% for 0.5 mM copper. More than 24 million clean reads were obtained from six libraries and were aligned against the C. gilardii CR3 genome. A total of 310 genes in strain CR3 were significantly differentially expressed under copper stress. Apart from the routine copper resistance operons cus and cop known in previous studies, Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed genes indicated that the adenosine triphosphate-binding cassette transporter, amino acid metabolism, and negative chemotaxis collectively contribute to the copper-resistant process. More interestingly, we found that the genes associated with the type III secretion system were induced under copper stress. No such results were reordered in bacteria to date. Overall, this comprehensive network of copper responses is useful for further studies of the molecular mechanisms underlying responses to copper stress in bacteria.
Collapse
Affiliation(s)
- Ning Huang
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun, People's Republic of China.,Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Juan Mao
- Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Mingzhong Hu
- Department of Environmental Engineering, School of Chemical Engineering, Changchun University of Technology, Changchun, People's Republic of China
| | - Xiaoyu Wang
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun, People's Republic of China.,Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun, People's Republic of China
| |
Collapse
|
24
|
Asselman J, Semmouri I, Jackson CE, Keith N, Van Nieuwerburgh F, Deforce D, Shaw JR, De Schamphelaere KAC. Genome-Wide Stress Responses to Copper and Arsenic in a Field Population of Daphnia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3850-3859. [PMID: 30817885 DOI: 10.1021/acs.est.8b06720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, significant advances have been made to unravel molecular mechanisms of stress response in different ecotoxicological model species. Within this study, we focus on population level transcriptomic responses of a natural population of Daphnia magna Straus, (1820), to heavy metals. We aim to characterize the population level transcriptomic responses, which include standing genetic variation, and improve our understanding on how populations respond to environmental stress at a molecular level. We studied population level responses to two heavy metals, copper and arsenic, and their binary mixture across time. Transcriptomic patterns identified significantly regulated gene families and genes at the population level including cuticle proteins and resilins. Furthermore, some of these differentially regulated gene families, such as cuticle proteins, were also significantly enriched for genetic variations including SNPs and MNPs. In general, genetic variation was observed in specific gene families, many of which are known to be involved in stress response. Overall, our results indicate that molecular stress responses can be identified within natural populations and that linking molecular mechanisms with genetic variation at the population level could contribute significantly to adverse outcome frameworks.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab , Ghent University , Campus Coupure, Coupure Links 653, Building F, Second Floor , 9000 Gent , Belgium
| | - Ilias Semmouri
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab , Ghent University , Campus Coupure, Coupure Links 653, Building F, Second Floor , 9000 Gent , Belgium
| | - Craig E Jackson
- School of Public and Environmental Affairs , Indiana University , 1315 E 10th Sreett , Bloomington , Indiana 47405 , United States
| | - Nathan Keith
- School of Public and Environmental Affairs , Indiana University , 1315 E 10th Sreett , Bloomington , Indiana 47405 , United States
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences , Ghent University , Campus UZ, Ottergemse Steenweg 460 , 9000 Ghent , Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences , Ghent University , Campus UZ, Ottergemse Steenweg 460 , 9000 Ghent , Belgium
| | - Joseph R Shaw
- School of Public and Environmental Affairs , Indiana University , 1315 E 10th Sreett , Bloomington , Indiana 47405 , United States
- School of Biosciences , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab , Ghent University , Campus Coupure, Coupure Links 653, Building F, Second Floor , 9000 Gent , Belgium
| |
Collapse
|
25
|
Comprehensive analysis of the metabolomic characteristics on the health lesions induced by chronic arsenic exposure: A metabolomics study. Int J Hyg Environ Health 2019; 222:434-445. [DOI: 10.1016/j.ijheh.2018.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/18/2018] [Accepted: 12/20/2018] [Indexed: 02/03/2023]
|
26
|
Chan W, Zhao Y, Zhang J. Evaluating the performance of sample preparation methods for ultra-performance liquid chromatography/mass spectrometry based serum metabonomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:561-568. [PMID: 30614103 DOI: 10.1002/rcm.8381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Metabonomics investigating perturbation to endogenous metabolism in response to external stimuli is emerging as a powerful tool for clinical diagnosis as well as in many other areas. The ability to retrieve reliable and reproducible information from complex biological fluids such as serum is crucial for its further applications. METHODS In this study, the performance of the commonly used sample preparation methods for ultra-performance liquid chromatography/mass spectrometry (UPLC/MS)-based metabonomics was investigated. Specifically, we compared the extraction efficiencies, the method reproducibility, and the ability to identify potential biomarkers using solvent-based protein precipitation and solid-phase extraction (SPE) for serum metabonomic studies. Differences between extraction methods were explored using principal component analysis (PCA) and orthogonal partial least squares-discrimination analysis (OPLS-DA). RESULTS Among the sample preparation methods tested, solvent-based protein precipitation using methanol has demonstrated the best analytical precision and extraction efficiency. Furthermore, this study revealed, for the first time, gender-specific differences in levels of two lysophosphatidylcholines (lysoPC 18:0 and lysoPC 18:1) in rat serum samples. CONCLUSIONS The performance of sample preparation methods for UPLC/MS-based serum metabonomics was evaluated systematically. Results showed sample preparation by solvent precipitation using methanol provided the best analytical precision and extraction efficiency for UPLC/MS-based serum metabonomics.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yao Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
27
|
Lane D, Skinner TE, Gershenzon NI, Bermel W, Soong R, Dutta Majumdar R, Liaghati Mobarhan Y, Schmidt S, Heumann H, Monette M, Simpson MJ, Simpson AJ. Assessing the potential of quantitative 2D HSQC NMR in 13C enriched living organisms. JOURNAL OF BIOMOLECULAR NMR 2019; 73:31-42. [PMID: 30600417 DOI: 10.1007/s10858-018-0221-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/17/2018] [Indexed: 05/22/2023]
Abstract
In vivo Nuclear Magnetic Resonance (NMR) spectroscopy has great potential to interpret the biochemical response of organisms to their environment, thus making it an essential tool in understanding toxic mechanisms. However, magnetic susceptibility distortions lead to 1D NMR spectra of living organisms with lines that are too broad to identify and quantify metabolites, necessitating the use of 2D 1H-13C Heteronuclear Single Quantum Coherence (HSQC) as a primary tool. While quantitative 2D HSQC is well established, to our knowledge it has yet to be applied in vivo. This study represents a simple pilot study that compares two of the most popular quantitative 2D HSQC approaches to determine if quantitative results can be directly obtained in vivo in isotopically enriched Daphnia magna (water flea). The results show the perfect-HSQC experiment performs very well in vivo, but the decoupling scheme used is critical for accurate quantitation. An improved decoupling approach derived using optimal control theory is presented here that improves the accuracy of metabolite concentrations that can be extracted in vivo down to micromolar concentrations. When combined with 2D Electronic Reference To access In vivo Concentrations (ERETIC) protocols, the protocol allows for the direct extraction of in vivo metabolite concentrations without the use of internal standards that can be detrimental to living organisms. Extracting absolute metabolic concentrations in vivo is an important first step and should, for example, be important for the parameterization as well as the validation of metabolic flux models in the future.
Collapse
Affiliation(s)
- Daniel Lane
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Thomas E Skinner
- Department of Physics, Wright State University, Dayton, OH, 45735, USA
| | - Naum I Gershenzon
- Department of Physics, Wright State University, Dayton, OH, 45735, USA
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, Rheinstetten, Germany
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Rudraksha Dutta Majumdar
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Bruker Ltd., 2800 Highpoint Drive, Milton, ON, L9T 6P4, Canada
| | - Yalda Liaghati Mobarhan
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | | | | | - Martine Monette
- Bruker Ltd., 2800 Highpoint Drive, Milton, ON, L9T 6P4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
28
|
Wang P, Zhang B, Zhang H, He Y, Ong CN, Yang J. Metabolites change of Scenedesmus obliquus exerted by AgNPs. J Environ Sci (China) 2019; 76:310-318. [PMID: 30528022 DOI: 10.1016/j.jes.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/09/2023]
Abstract
With increasing emission of silver nanoparticles (AgNPs) into the environment, it is important to understand the effects of ambient concentration of AgNPs. The biological effects of AgNPs on Scenedesmus obliquus, a ubiquitous freshwater microalgae, was evaluated. AgNPs exerted a minor inhibitory effect at low doses. Non-targeted metabolomic studies were conducted to understand and analyze the effect of AgNPs on algal cells from a molecular perspective. During the 48 hr of exposure to AgNPs, 30 metabolites were identified, of which nine had significant changes compared to the control group. These include d-galactose, sucrose, and d-fructose. These carbohydrates are involved in the synthesis and repair of cell walls. Glycine, an important constituent amino acid of glutathione, increased with AgNP exposure concentration increasing, likely to counteract an increased intracellular oxidative stress. These results provide a new understanding of the toxicity effects and mechanism of AgNPs. These metabolites could be useful biomarkers for future research, employed in the early detection of environmental risk from AgNPs.
Collapse
Affiliation(s)
- Pu Wang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China; School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Jun Yang
- School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
29
|
Hassan Q, Dutta Majumdar R, Wu B, Lane D, Tabatabaei-Anraki M, Soong R, Simpson MJ, Simpson AJ. Improvements in lipid suppression for 1 H NMR-based metabolomics: Applications to solution-state and HR-MAS NMR in natural and in vivo samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 57:69-81. [PMID: 30520113 DOI: 10.1002/mrc.4814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Proton nuclear magnetic resonance (NMR) spectra of intact biological samples often show strong contributions from lipids, which overlap with signals of interest from small metabolites. Pioneering work by Diserens et al. demonstrated that the relative differences in diffusivity and relaxation of lipids versus small metabolites could be exploited to suppress lipid signals, in high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. In solution-state NMR, suspended samples can exhibit very broad water signals, which are challenging to suppress. Here, improved water suppression is incorporated into the sequence, and the Carr-Purcell-Meiboom-Gill sequence (CPMG) train is replaced with a low-power adiabatic spinlock that reduces heating and spectral artefacts seen with longer CPMG filters. The result is a robust sequence that works well in both HR-MAS as well as static solution-state samples. Applications are also extended to include in vivo organisms. For solution-state NMR, samples containing significant amount of fats such as milk and hemp hearts seeds are used to demonstrate the technique. For HR-MAS, living earthworms (Eisenia fetida) and freshwater shrimp (Hyalella azteca) are used for in vivo applications. Lipid suppression techniques are essential for non-invasive NMR-based analysis of biological samples with a high-lipid content and adds to the suite of experiments advantageous for in vivo environmental metabolomics.
Collapse
Affiliation(s)
- Qusai Hassan
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Bing Wu
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Tabatabaei-Anraki
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andre J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Yanagihara M, Nakajima F, Tobino T. Metabolomic responses of an estuarine benthic amphipod to heavy metals at urban-runoff concentrations. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2349-2354. [PMID: 30699086 DOI: 10.2166/wst.2018.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heavy metals released from urban areas have toxic effects on aquatic organisms. Heavy metals in aquatic environments exist in various forms and methods designed to assess their effects need to consider their bioavailability. This study aimed to explore biomarkers in an estuarine amphipod, Grandidierella japonica, for exposure to heavy metals using metabolomics. We exposed G. japonica to different heavy metals and analyzed their metabolomes using high-resolution mass spectrometry. Partial least squares discriminant analysis (PLS-DA) was used to extract biomarkers of exposure for each heavy metal. As a result, three models were built to predict discrimination based on metabolomic profiles, and 70, 106, and 168 metabolites were extracted as biomarkers for exposure to Cu, Zn, and Cd, respectively. Our results suggest that PLS-DA was effective in extracting biomarkers, and this study demonstrated the usefulness of metabolomics as biomarkers.
Collapse
Affiliation(s)
- M Yanagihara
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan E-mail:
| | - F Nakajima
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan E-mail:
| | - T Tobino
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan E-mail:
| |
Collapse
|
31
|
Melvin SD, Lanctôt CM, Doriean NJC, Carroll AR, Bennett WW. Untargeted NMR-based metabolomics for field-scale monitoring: Temporal reproducibility and biomarker discovery in mosquitofish (Gambusia holbrooki) from a metal(loid)-contaminated wetland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1096-1105. [PMID: 30253300 DOI: 10.1016/j.envpol.2018.09.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/29/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
There is considerable interest in applying omics techniques, which have proven extremely valuable for laboratory-based toxicology studies, towards field-scale ecotoxicology and environmental monitoring. Concerns that confounding factors in natural ecosystems may exacerbate variability in omics datasets must be addressed to validate the transition from laboratory to field. This study explores how temporal variability related to seasonal and climatic trends influence qualitative and quantitative metabolomics outcomes, in fish from reference and metal(loid)-polluted wetlands in Australia. Female mosquitofish (Gambusia holbrooki) were sampled on two separate occasions, from a rehabilitated tailings wetland at the site of historic antimony (Sb) processing and a reference wetland with comparable water quality. The first sampling coincided with greater monthly rainfall and colder water temperature, whereas the second sampling was drier and water was warmer. Despite temporal changes and associated differences in metal(loid) concentrations, site differences in metabolite profiles were qualitatively very similar between sampling events. However, quantitative differences were observed, with a greater number of significantly altered metabolites identified during the second sampling event, which coincided with greater metal(loid) concentrations in both water and fish. The majority of identified metabolites were elevated in fish from the contaminated wetland, but with notable decreases in several metabolites that are known to play a role in various aspects of metal(loid) binding, detoxification and excretion. Specifically, decreased aspartate, histidine, myo-inositol, taurine and choline were observed in fish from the contaminated wetland, and may therefore represent a metabolite suite that is broadly indicative of metal toxicity. Quantitative differences between sampling events are suggestive of a dose-response relationship observable at the cellular level which, if harnessed, may be useful for assigning levels of concern based on the degree of change in a multi-parameter set of metabolite biomarkers.
Collapse
Affiliation(s)
- Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, QLD, 4215, Australia.
| | - Chantal M Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD, 4215, Australia
| | - Nicholas J C Doriean
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia; Griffith Research Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - William W Bennett
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
32
|
Martínez R, Esteve-Codina A, Herrero-Nogareda L, Ortiz-Villanueva E, Barata C, Tauler R, Raldúa D, Piña B, Navarro-Martín L. Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:988-997. [PMID: 30248606 DOI: 10.1016/j.envpol.2018.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Despite the abundant literature on the adverse effects of Bisphenol A (BPA) as endocrine disruptor, its toxicity mechanisms are still poorly understood. We present here a study of its effects on the zebrafish eleutheroembryo transcriptome at concentrations ranging from 0.1 to 4 mg L-1, this latter representing the lowest observed effect concentration (LOEC) found in our study at three different macroscopical endpoints (survival, hatching and swim bladder inflation). Multivariate data analysis methods identified both monotonic and bi-phasic patterns of dose-dependent responses. Functional analyses of genes affected by BPA exposure suggest an interaction of BPA with different signaling pathways, being the estrogenic and retinoid receptors two likely targets. In addition, we identified an apparently unrelated inhibitory effect on, among others, visual function genes. We interpret our data as the result of a sum of underlying, independent molecular mechanisms occurring simultaneously at the exposed animals, well below the macroscopic LOEC, but related to at least some of the observed morphological alterations, particularly in eye size and yolk sac resorption. Our data supports the idea that the physiological effects of BPA cannot be only explained by its rather weak interaction with the estrogen receptor, and that multivariate analyses are required to analyze the effects of toxicants like BPA, which interact with different cellular targets producing complex phenotypes.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya, 08007, Spain.
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalunya, 08003, Spain.
| | - Laia Herrero-Nogareda
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Elena Ortiz-Villanueva
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
33
|
Russo R, Haange SB, Rolle-Kampczyk U, von Bergen M, Becker JM, Liess M. Identification of pesticide exposure-induced metabolic changes in mosquito larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1533-1541. [PMID: 30189569 DOI: 10.1016/j.scitotenv.2018.06.282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
The European regulatory framework for pesticides generally applies an assessment factor of up to 100 below the acute median lethal concentration (LC50) in laboratory tests to predict the regulatory acceptable concentrations (RACs). However, long-term detrimental effects of pesticides in the environment occur far below the RACs. Here, we explored the metabolic changes induced by exposure to the neonicotinoid insecticide clothianidin in larvae of the mosquito Culex pipiens. We exposed the test organisms to the insecticide for 24 h and then measured the levels of 184 metabolites immediately and 48 h after the pulse contamination. We established a link between the exposure to clothianidin and changes in the level of three specific classes of metabolites involved in energy metabolism, namely, glycerophospholipids, acylcarnitines and biogenic amines. Remarkably, exposure to concentrations considered to be safe according to the regulatory framework (2-4 orders of magnitude lower than the acute LC50), induced longer-term effects than exposure to the highest concentration. These results suggest that a specific detoxification mechanism was only triggered by the highest concentration. We conclude that even very low insecticide concentrations increase the energy demands of exposed organisms, which potentially translates into a decline in sensitive species in the field.
Collapse
Affiliation(s)
- Renato Russo
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Sven-Bastiaan Haange
- UFZ, Helmholtz Centre for Environmental Research, Department of Molecular System Biology, Permoserstraße 15, 04318 Leipzig, Germany; University of Leipzig, Institute of Biochemistry, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- UFZ, Helmholtz Centre for Environmental Research, Department of Molecular System Biology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- UFZ, Helmholtz Centre for Environmental Research, Department of Molecular System Biology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
34
|
Wang P, Ng QX, Zhang H, Zhang B, Ong CN, He Y. Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:266-273. [PMID: 30056340 DOI: 10.1016/j.ecoenv.2018.07.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
With increasing presence of silver nanoparticles (AgNPs) into the environment, the chronic and low-dose effects of AgNPs are of vital concern. This study evaluated chronic physiological effects of AgNPs on Daphnia similis, which were exposed to two ambient encountered concentrations (0.02 and 1 ppb) of AgNPs for 21 days. It was observed that the low-dose AgNPs stimulated a significant increase in average length/dry mass, but inhibited reproduction compared to control specimens. Non-targeted metabolomics based on liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOFMS-MS) and gas chromatograph-quadrupole time of flight mass spectrometry (GC-QTOF-MS) were utilized to elucidate the underlying molecular mechanisms of these responses. Forty one metabolites were identified, including 18 significantly-changed metabolites, suggesting up regulation in protein digestion and absorption (amino acids, such as isoleucine, tryptophan, lysine, leucine, valine, aspartic acid, threonine, tyrosine) and down regulation of lipid related metabolism (fatty acids, such as arachidonic acid, stearidonic acid, linoelaidic acid and eicosapentaenoic acid) were key events in these responses. The increase in these amino acid contents explains the accelerated growth of D. similis from the metabolic pathway of aminoacyl-tRNA biosynthesis. Down regulation of fatty acid contents corresponds to the observed drop in the reproduction rate considering the fatty acid biological enzymatic reaction pathways. Significant changes in metabolites provided a renewed mechanistic understanding of low concentration chronic toxicity of AgNP toxicity on D. similis.
Collapse
Affiliation(s)
- Pu Wang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, 88 Anning Road, Lanzhou 730070, China
| | - Qin Xiang Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, 117597, Singapore
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, 117597, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
35
|
Tabatabaei Anaraki M, Simpson MJ, Simpson AJ. Reducing impacts of organism variability in metabolomics via time trajectory in vivo NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1117-1123. [PMID: 29906816 DOI: 10.1002/mrc.4759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Maria VL, Licha D, Ranninger C, Scott-Fordsmand JJ, Huber CG, Amorim MJB. The Enchytraeus crypticus stress metabolome – CuO NM case study. Nanotoxicology 2018; 12:766-780. [DOI: 10.1080/17435390.2018.1481237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vera L. Maria
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - David Licha
- Biosciences, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria
| | - Christina Ranninger
- Biosciences, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria
| | | | - Christian G. Huber
- Biosciences, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
37
|
Bastawrous M, Jenne A, Tabatabaei Anaraki M, Simpson AJ. In-Vivo NMR Spectroscopy: A Powerful and Complimentary Tool for Understanding Environmental Toxicity. Metabolites 2018; 8:E35. [PMID: 29795000 PMCID: PMC6027203 DOI: 10.3390/metabo8020035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Part review, part perspective, this article examines the applications and potential of in-vivo Nuclear Magnetic Resonance (NMR) for understanding environmental toxicity. In-vivo NMR can be applied in high field NMR spectrometers using either magic angle spinning based approaches, or flow systems. Solution-state NMR in combination with a flow system provides a low stress approach to monitor dissolved metabolites, while magic angle spinning NMR allows the detection of all components (solutions, gels and solids), albeit with additional stress caused by the rapid sample spinning. With in-vivo NMR it is possible to use the same organisms for control and exposure studies (controls are the same organisms prior to exposure inside the NMR). As such individual variability can be reduced while continual data collection over time provides the temporal resolution required to discern complex interconnected response pathways. When multidimensional NMR is combined with isotopic labelling, a wide range of metabolites can be identified in-vivo providing a unique window into the living metabolome that is highly complementary to more traditional metabolomics studies employing extracts, tissues, or biofluids.
Collapse
Affiliation(s)
- Monica Bastawrous
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Amy Jenne
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Maryam Tabatabaei Anaraki
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
38
|
Falanga A, Mercurio FA, Siciliano A, Lombardi L, Galdiero S, Guida M, Libralato G, Leone M, Galdiero E. Metabolomic and oxidative effects of quantum dots-indolicidin on three generations of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:158-164. [PMID: 29547731 DOI: 10.1016/j.aquatox.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the effect of QDs functionalized with the antimicrobial peptide indolicidin on oxidative stress and metabolomics profiles of Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to sub-lethal concentrations of the complex QDs-indolicidin, a normal survival of daphnids was observed from F0 to F2, but a delay of first brood, fewer broods per female, a decrease of length of about 50% compared to control. In addition, QDs-indolicidin induced a significantly higher production of reactive oxygen species (ROS) gradually in each generation and an impairment of enzymes response to oxidative stress such as superoxide dismutase (SOD), catalase (CAT) and glutathione transferase (GST). Effects were confirmed by metabolomics profiles that pointed out a gradual decrease of metabolomics content over the three generations and a toxic effect of QDs-indolicidin likely related to the higher accumulation of ROS and decreased antioxidant capacity in F1 and F2 generations. Results highlighted the capability of metabolomics to reveal an early metabolic response to stress induced by environmental QDs-indolicidin complex.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia A Mercurio
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples 'Federico II', Via Mezzocannone 16, 80134, Naples, Italy; Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Lucia Lombardi
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
39
|
Kikuchi J, Ito K, Date Y. Environmental metabolomics with data science for investigating ecosystem homeostasis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:56-88. [PMID: 29405981 DOI: 10.1016/j.pnmrs.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 05/08/2023]
Abstract
A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches.
Collapse
Affiliation(s)
- Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan.
| | - Kengo Ito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
40
|
Garreta-Lara E, Campos B, Barata C, Lacorte S, Tauler R. Combined effects of salinity, temperature and hypoxia on Daphnia magna metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:602-612. [PMID: 28822928 DOI: 10.1016/j.scitotenv.2017.05.190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Metabolic changes of Daphnia magna pools due different abiotic factors linked to global climate change (salinity, temperature and hypoxia) were investigated using untargeted GC-MS and advanced chemometric strategies using a three factors two-level full factorial experimental design (DoE). Effects of these three factors and identity of the metabolites whose concentrations changed because of them were investigated. The simultaneous analysis of GC-MS data sets using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) allowed the resolution of the elution and mass spectra profiles of a large number of D. magna metabolites. Changes in peak areas of these metabolites were then analyzed by Principal Component Analysis (PCA), by ANOVA-Simultaneous Component Analysis (ASCA) and by Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), and the combined effects of the three investigated stressors were assessed. Results confirmed the strong influence of increasing environmental salinity levels on the D. magna metabolome. This impact was specially highlighted by changes on the cellular content of carbohydrates, fatty acids, organic acids and amino acid molecules. In contrast, these effects were less significant for the other two factors (temperature and hypoxia) at the moderate stressing experimental conditions investigated in this work when they were not combined with salinity.
Collapse
Affiliation(s)
- Elba Garreta-Lara
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Bruno Campos
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain.
| |
Collapse
|
41
|
Rodríguez-Moro G, García-Barrera T, Trombini C, Blasco J, Gómez-Ariza JL. Combination of HPLC with organic and inorganic mass spectrometry to study the metabolic response of the clam Scrobicularia plana to arsenic exposure. Electrophoresis 2017; 39:635-644. [PMID: 29125650 DOI: 10.1002/elps.201700318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
Abstract
Arsenic is a toxic element extensively studied in the marine environment due to differential toxicological effects of inorganic and organic species. In the present work, the bivalve Scrobicularia plana was exposed to AsV (10 and 100 μg/L) for 14 days to evaluate the metabolic perturbations caused by this element. Arsenic speciation and metabolomic analysis were performed in the digestive gland of the bivalve using two complementary analytical platforms based on inorganic and organic mass spectrometry. It has been observed the greater presence of the innocuous specie arsenobetaine produced in this organism as defense mechanism against arsenic toxicity, although significant concentrations of methylated and inorganic arsenic were also present, depending on the level of arsenic in aqueous media. Complementarily, a metabolomic study based on mass spectrometry and statistical discriminant analysis allows a good classification of samples associated to low and high As(V) exposure in relation to controls. About 15 metabolites suffer significant changes of expression by the presence of As(V): amino acids, nucleotides, energy-related metabolites, free fatty acids, phospholipids and triacylglycerides, which can be related to membrane structural and functional damage. In addition, perturbation of the methylation cycle, associated with the increase of homocysteine and methionine was observed, which enhance the methylation of toxic inorganic arsenic to less toxic dimethylarsenic.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry. Faculty of Experimental Sciences. University of Huelva, Huelva, Spain.,International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA). University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry. Faculty of Experimental Sciences. University of Huelva, Huelva, Spain.,International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA). University of Huelva, Huelva, Spain
| | - Chiara Trombini
- Institute for Marine Sciences of Andalucía (ICMAN), Ciudad Real, Spain
| | - Julián Blasco
- Institute for Marine Sciences of Andalucía (ICMAN), Ciudad Real, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry. Faculty of Experimental Sciences. University of Huelva, Huelva, Spain.,International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA). University of Huelva, Huelva, Spain
| |
Collapse
|
42
|
Kokushi E, Shintoyo A, Koyama J, Uno S. Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27678-27686. [PMID: 27053050 DOI: 10.1007/s11356-016-6425-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
In this study, the metabolic effects of waterborne exposure of medaka (Oryzias latipes) to nominal concentrations of 20 (L group) and 2000 μg/L (H group) 2,4-dichlorophenol (DCP) were examined using a gas chromatography/mass spectroscopy (GC/MS) metabolomics approach. A principal component analysis (PCA) separated the L, H, and control groups along PC1 to explain the toxic effects of DCP at 24 h of exposure. Furthermore, the L and H groups were separated along PC1 at 96 h on the PCA score plots. These results suggest that the effects of DCP depended on exposure concentration and time. Changes in tricarboxylic cycle metabolites suggested that fish exposed to 2,4-DCP require more energy to metabolize and eliminate DCP, particularly at 96 h of exposure. A time-dependent response in the fish exposed to DCP was observed in the GC/MS data, suggesting that the higher DCP concentration had greater effects at 24 h than those observed in response to the lower concentration. In addition, several essential amino acids (arginine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, threonine, tryptophan, and valine) decreased after DCP exposure in the H group, and starvation condition and high concentration exposure of DCP could consume excess energy from amino acids.
Collapse
Affiliation(s)
- Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| | - Aoi Shintoyo
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| |
Collapse
|
43
|
Ni FJ, Kelly NE, Arhonditsis GB. Towards the development of an ecophysiological Daphnia model to examine effects of toxicity and nutrition. ECOL INFORM 2017. [DOI: 10.1016/j.ecoinf.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR. Anal Bioanal Chem 2017. [DOI: 10.1007/s00216-017-0450-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Zhang B, Zhang H, Du C, Ng QX, Hu C, He Y, Ong CN. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. WATER RESEARCH 2017; 114:135-143. [PMID: 28237781 DOI: 10.1016/j.watres.2017.02.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 05/04/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials. Their fast-growing utilization has increased the occurrence of AgNPs in the environment, posing potential health and ecological risks. In this study, we conducted chronic toxicity tests and investigated the metabolic changes of the growing Daphna similis with exposure to 0, 0.02, and 1 ppb AgNPs, using non-targeted mass spectrometry-based metabolomics. To the best of our knowledge, this study is the first to report the baseline metabolite change of a common aquatic organism Daphnia crustacean through its life-cycle. The results show a dynamic kinetic pattern of the growing Daphnia's metabolome underwent a cycle from day 0 to day 21, with the level of metabolites gradually increasing from day 0 to day 13, before falling back to the baseline level of day 0 on day 21. As for the samples exposed to environmental concentrations of AgNPs, although without morphological or structural changes, numerous metabolite changes occurred abruptly during the first 10 days, and these changes reached steady state by day 13. The significant changes in certain metabolites, such as amino acids (serine, threonine and tyrosine), sugars (d-allose) and fatty acids (arachidonic acid) revealed new insights into how these metabolites in Daphnia respond to chronic AgNPs stress. These findings highlight the capability of metabolomics to discover early metabolic responses to environmental silver nanoparticles.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Chunlei Du
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qin Xiang Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyang Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
46
|
Kariuki MN, Nagato EG, Lankadurai BP, Simpson AJ, Simpson MJ. Analysis of Sub-Lethal Toxicity of Perfluorooctane Sulfonate (PFOS) to Daphnia magna Using ¹H Nuclear Magnetic Resonance-Based Metabolomics. Metabolites 2017; 7:metabo7020015. [PMID: 28420092 PMCID: PMC5487986 DOI: 10.3390/metabo7020015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/29/2023] Open
Abstract
1H nuclear magnetic resonance (NMR)-based metabolomics was used to characterize the response of Daphnia magna after sub-lethal exposure to perfluorooctane sulfonate (PFOS), a commonly found environmental pollutant in freshwater ecosystems. Principal component analysis (PCA) scores plots showed significant separation in the exposed samples relative to the controls. Partial least squares (PLS) regression analysis revealed a strong linear correlation between the overall metabolic response and PFOS exposure concentration. More detailed analysis showed that the toxic mode of action is metabolite-specific with some metabolites exhibiting a non-monotonic response with higher PFOS exposure concentrations. Our study indicates that PFOS exposure disrupts various energy metabolism pathways and also enhances protein degradation. Overall, we identified several metabolites that are sensitive to PFOS exposure and may be used as bioindicators of D. magna health. In addition, this study also highlights the important utility of environmental metabolomic methods when attempting to elucidate acute and sub-lethal pollutant stressors on keystone organisms such as D. magna.
Collapse
Affiliation(s)
- Martha N Kariuki
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Edward G Nagato
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Brian P Lankadurai
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
47
|
Tunicamycin enhances human colon cancer cells to TRAIL-induced apoptosis by JNK-CHOP-mediated DR5 upregulation and the inhibition of the EGFR pathway. Anticancer Drugs 2017; 28:66-74. [DOI: 10.1097/cad.0000000000000431] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017; 9:1326-1351. [DOI: 10.1039/c7mt00203c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal ions are critical to a wide range of biological processes.
Collapse
Affiliation(s)
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory
- School of Earth & Environmental Sciences
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
49
|
García-Seoane E, Coelho JP, Mieiro C, Dolbeth M, Ereira T, Rebelo JE, Pereira E. Effect of historical contamination in the fish community structure of a recovering temperate coastal lagoon. MARINE POLLUTION BULLETIN 2016; 111:221-230. [PMID: 27423444 DOI: 10.1016/j.marpolbul.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/29/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to assess the impact of trace element concentrations in fish assemblages of a recovering coastal lagoon. Fish, water and sediment were sampled in winter and summer in the Ria de Aveiro (Portugal). Multivariate analyses were used to examine the relationship between fish assemblages and environmental variables (physical-chemical parameters, contaminants and sediment grain size). In winter, fish density and biomass were mainly affected by the water turbidity, while Li concentration in the water column was found to be significant for fish biomass. During summer, a significant relationship was found between fish density and temperature, Hg, Li and Zn concentration in the sediment. These contaminants were mainly associated with the historically contaminated area, were Liza spp. and Dicentrarchus labrax appeared as dominant species. Environmental variables were not significant for fish biomass. The historical contamination in the Ria de Aveiro still seems to exert some influence on fish community structure.
Collapse
Affiliation(s)
- Eva García-Seoane
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - João Pedro Coelho
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua das Bragas, 289, 4050-123 Porto, Portugal
| | - Cláudia Mieiro
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Marina Dolbeth
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Tiago Ereira
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - José Eduardo Rebelo
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
50
|
Perhar G, Kelly NE, Ni FJ, Simpson MJ, Simpson AJ, Arhonditsis GB. Using Daphnia physiology to drive food web dynamics: A theoretical revisit of Lotka-Volterra models. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|