1
|
Zhang X, Tong X, Tang X, Yang Y, Zhang L, Zhan X, Zhang X. Behavioral toxicity of TDCPP in marine zooplankton: Evidence from feeding and swimming responses, molecular dynamics and metabolomics of rotifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170864. [PMID: 38401740 DOI: 10.1016/j.scitotenv.2024.170864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
As new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 μM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xin Tong
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yixin Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Luyuchen Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Zhan
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
2
|
Chen T, Xu XP, Li JC, Tao KY, Zhao CS. Adequate nutrient intake mitigate the toxic effects of bromate on the rotifer Brachionus calyciflorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11727-11734. [PMID: 38224435 DOI: 10.1007/s11356-024-31871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Bromate is receiving increased attention as a typical disinfection by-product in aquatic environments, but bromate toxicity tests on invertebrate such as Brachionus calyciflorus rotifer are inadequate. In the present study, the long-term toxicity tests on B. calyciflorus were performed during 21 days under the exposure of different bromate concentrations and two algal density conditions. Furthermore, we evaluated the feeding behaviors of the rotifers under the impact of bromate. The maximum population density of rotifers was significantly reduced at 100 and 200 mg/L bromate exposure at the two algal density conditions. However, we observed that the maximum population density and population growth rate of rotifers were higher at 3.0 × 106 cells/mL algal density than those at 1.0 × 106 cells/mL under the same conditions of bromate exposure. These results suggest that higher food density may have alleviated the negative effects of bromate on rotifers. Meanwhile, the ingestion rate at an algal density of 3.0 × 106 cells/mL was higher than that at 1.0 × 106 cells/mL. The present study provides a basic reference to comprehensively evaluate the toxic effects of bromate on aquatic organisms.
Collapse
Affiliation(s)
- Tao Chen
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiao-Ping Xu
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China.
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded, Anhui Province and Ministry of Education, Wuhu, 241000, China.
| | - Jin-Cheng Li
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Kai-Yan Tao
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Chang-Shuang Zhao
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
3
|
Lima do Rêgo E, Santos da Silva JD, Costa Nakamura T, Diniz PHGD, Oliveira UR, Souza JRD. Distribution of organochlorine, organophosphates, carbamate, thiocarbamate, pyrethroids, and strobilurins in surface sediments of the Rio de Ondas watershed by GC-MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:357-369. [PMID: 34011245 DOI: 10.1080/03601234.2021.1885263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The determination of some pesticides in surface sediments can provide important information about their distribution in the water column. This work aimed to determine the distribution of the classes of pesticides along the Ondas River's hydrographic basin (ORHB), in eighteen different points, during the dry and rainy periods. The pesticides were extracted from the sediment samples by solid-liquid extraction and then analyzed using a gas chromatograph coupled to mass spectrometry. After the development and validation of the method, nineteen pesticides from the group of organochlorine, organophosphates, carbamate and thiocarbamate, pyrethroids, and strobilurins were quantified in at least one point in the two collection periods, with accuracy varying between 86 and 126%. The average concentrations were 0.020 ng g-1 (carbofuran) to 249.123 ng g-1 (dimethoate) and 0.029 ng g-1 (carbofuran and sulfotep) to 533.522 ng g-1 in the dry and rainy periods, respectively. The results showed a wide distribution of pesticide residues in the ORHB, with higher levels for dimethoate, phenitrothion, and malathion, which may be related to their agricultural use in the region. In Brazil, it does not have specific legislation for maximum permitted values of pesticides in sediment, allowing for inappropriate or prohibited use and, consequently, affecting water quality.
Collapse
Affiliation(s)
- Enoc Lima do Rêgo
- Institute of Chemical, Graduate Program in Chemistry, University of Brasília, Brasília, DF, Brazil
- Center for Exact Sciences and Technologies, Graduate Program in Chemistry Pure and Applied, Federal University of Western Bahia, Barreiras, BA, Brazil
- Department of Human Sciences, State University of Bahia, Barreiras, BA, Brazil
| | - José Domingos Santos da Silva
- Center for Exact Sciences and Technologies, Graduate Program in Chemistry Pure and Applied, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Thamilin Costa Nakamura
- Center for Exact Sciences and Technologies, Graduate Program in Chemistry Pure and Applied, Federal University of Western Bahia, Barreiras, BA, Brazil
- Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador, BA, Brazil
| | - Paulo Henrique Gonçalves Dias Diniz
- Center for Exact Sciences and Technologies, Graduate Program in Chemistry Pure and Applied, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Uldérico Rios Oliveira
- Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
4
|
Liang Y, Lu X, Min Y, Liu L, Yang J. Interactive effects of microcystin and ammonia on the reproductive performance and phenotypic traits of the rotifer Brachionus calyciflorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:413-422. [PMID: 28888125 DOI: 10.1016/j.ecoenv.2017.08.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Elevated microcystin-LR (MC-LR) and ammonia (NH3-N) concentrations co-occur during the degradation of Microcystis blooms, and are toxic to aquatic organisms. The freshwater rotifer, Brachionus calyciflorus, was exposed to mixtures of MC-LR (0, 10, 30, and 100µgL-1) and NH3-N (0, 270, and 540µgL-1) to assess the combined effects of the two toxicants on reproductive performance and phenotype traits. Single solutions of MC-LR (100µgL-1) and NH3-N (540µgL-1) had negative effects on rotifer reproductive timing and fecundity. Pre- and post-reproductive periods fluctuated with MC-LR and NH3-N concentrations, while reproductive period and total offspring per female were reduced in mixtures of MC-LR and NH3-N (p < 0.05). Grazing rate of rotifers decreased with grazing time and concentrations of the two toxicants (p < 0.001). MC-LR in combination with NH3-N had negative effects on swimming speed and body length but positively stimulated posterolateral spine development (p < 0.001). MC-LR and NH3-N had synergetic interactive effects on pre-reproductive period, reproductive period, total offspring per female, grazing rate, swimming speed, and body length (p < 0.05). In contrast, these effects were antagonistic on post-reproductive period and posterolateral spine length (p > 0.05). These results indicate that MC-LR and NH3-N act synergistically and antagonistically in causing toxicity to B. calyciflorus regarding reproductive performance and the formation of defensive phenotypes.
Collapse
Affiliation(s)
- Ye Liang
- Jiangsu Province Key Laboratory for Biodiversity & Biotechnology and Jiangsu Province Key Laboratory for Fisheries Live Food, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 PR China
| | - Xuxin Lu
- Jiangsu Province Key Laboratory for Biodiversity & Biotechnology and Jiangsu Province Key Laboratory for Fisheries Live Food, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 PR China
| | - Yuanqi Min
- Jiangsu Province Key Laboratory for Biodiversity & Biotechnology and Jiangsu Province Key Laboratory for Fisheries Live Food, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 PR China
| | - Lulu Liu
- Jiangsu Province Key Laboratory for Biodiversity & Biotechnology and Jiangsu Province Key Laboratory for Fisheries Live Food, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 PR China
| | - Jiaxin Yang
- Jiangsu Province Key Laboratory for Biodiversity & Biotechnology and Jiangsu Province Key Laboratory for Fisheries Live Food, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 PR China.
| |
Collapse
|
5
|
Yan Z, Yan K, He X, Liu Y, Zhang J, Lopez Torres O, Guo R, Chen J. The impact assessment of anticancer drug imatinib on the feeding behavior of rotifers with an integrated perspective: Exposure, post-exposure and re-exposure. CHEMOSPHERE 2017; 185:423-430. [PMID: 28710991 DOI: 10.1016/j.chemosphere.2017.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The anticancer drugs are getting increasing attention as an emerging contaminant in the aquatic environments. In the present study, feeding behavior of the rotifer Brachionus calyciflorus under the impact of anticancer drug imatinib was evaluated. Traditional toxicological studies usually focus on dose-effect relationship at a given exposure time, while ignore the possible impact after the exposure. Thus, how the impact varied in the post-exposure and re-exposure was also considered in the present study. The feeding depression of the rotifers was attributed to the increased concentration of imatinib. Although the filtration and ingestion rate of the rotifers recovered to a certain extent after the exposure, the significant feeding inhibition still persisted even if the exposure was ended. In the re-exposure period, the feeding behavior was less depressed than those of the exposure period, which implied that rotifers might develop a tolerance to the same toxics. The activities of acetylcholine esterase (AchE) and the levels of reactive oxygen species (ROS) in rotifers were also detected. Imatinib inhibited the activities of AchE in the exposure and re-exposure while ROS levels increased significantly in the re-exposure period. Our present study provided an integrated assessment the potential environmental risks of imatinib at a new perspective.
Collapse
Affiliation(s)
- Zhengyu Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Kun Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Xingliang He
- Nanjing Police Dog Research Institute of the Ministry of Public Security, Nanjing 210012, China
| | - Yanhua Liu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Jie Zhang
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Oscar Lopez Torres
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| |
Collapse
|
6
|
Kim RO, Kim BM, Jeong CB, Lee JS, Rhee JS. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1449-1457. [PMID: 26496856 DOI: 10.1002/etc.3288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Chlorpyrifos is a widely used organophosphorus insecticide for controlling diverse insect pests of crops. In the monogonont rotifer Brachionus koreanus, population growth retardation with the inhibition of lifespan, fecundity, and individual body size of ovigerous females was shown over 10 d in response to chlorpyrifos exposure. At the molecular and biochemical levels, the rotifer B. koreanus defensome, composed of cytochrome P450 complements, heat shock protein 70, and antioxidant enzymatic systems (i.e., glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase), was significantly induced in response to different concentrations of chlorpyrifos. Thus, chlorpyrifos strongly induced a defensome system to mitigate the deleterious effects of chlorpyrifos at in vivo and in vitro levels as a trade-off in fitness costs. Environ Toxicol Chem 2016;35:1449-1457. © 2015 SETAC.
Collapse
Affiliation(s)
- Ryeo-Ok Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| |
Collapse
|
7
|
Chen J, Zheng F, Guo R. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine. PLoS One 2015; 10:e0133273. [PMID: 26177093 PMCID: PMC4503666 DOI: 10.1371/journal.pone.0133273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/25/2015] [Indexed: 01/06/2023] Open
Abstract
Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.
Collapse
Affiliation(s)
- Jianqiu Chen
- Department of Environmental Science, China Pharmaceutical University, 210009, Nanjing, China
| | - Fengzhu Zheng
- Department of Environmental Science, China Pharmaceutical University, 210009, Nanjing, China
| | - Ruixin Guo
- Department of Environmental Science, China Pharmaceutical University, 210009, Nanjing, China
- * E-mail:
| |
Collapse
|