1
|
Xian ZN, Gong H, Xu Y, Zhu N. Recent advances in occurrence, biotreatment, and integrated insights into bacterial degradation of phthalic acid esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138248. [PMID: 40239513 DOI: 10.1016/j.jhazmat.2025.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Phthalic acid esters (PAEs) are prevalent as emerging contaminants owing to their widespread use as plasticizers in industry. Despite their environmental and health risks, a limited understanding of PAE contamination in aquatic environments hinders the practical implementation of biotreatment strategies for their removal. This paper reviews the advances in occurrence, biotreatment, and relevant integrative analysis of bacterial PAE degradation over the past decade. In various aquatic environments, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the predominant PAE pollutants across different regions, with alarming levels reported in Eastern China. PAEs in water usually inhibit the growth and metabolism of surrounding organisms. Meanwhile, various biotreatment techniques have proven effective in removing PAEs from leachate and wastewater. The treatment efficiency can be further enhanced by incorporating suitable physicochemical processes and optimizing key factors, such as the initial pollutant concentration, PAE type, and reaction time. Additionally, a K-means machine learning algorithm and 16S rRNA gene-based evolutionary analysis were employed to reveal that soil is a preferred source for isolating strains, with Gordonia and Pseudomonas being the dominant genera of PAE-degrading bacteria exhibiting high degradation efficiency. Moreover, most PAE hydrolase genes were discovered in these two genera. Different gene clusters facilitated the subsequent degradation pathways under aerobic or anaerobic conditions. This paper presents the latest updates on PAE biotreatment and offers an integrated analysis of the bacterial degradation involved. Future research should apply these insights to enhance the overall effectiveness of PAE removal in water.
Collapse
Affiliation(s)
- Zhuo-Ning Xian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 20040, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Dhiman S, Khanna K, Kour J, Singh AD, Bhardwaj T, Devi K, Sharma N, Kumar V, Bhardwaj R. Landfill bacteriology: Role in waste bioprocessing elevated landfill gaseselimination and heat management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120364. [PMID: 38387351 DOI: 10.1016/j.jenvman.2024.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This study delves into the critical role of microbial ecosystems in landfills, which are pivotal for handling municipal solid waste (MSW). Within these landfills, a complex interplay of several microorganisms (aerobic/anaerobic bacteria, archaea or methanotrophs), drives the conversion of complex substrates into simplified compounds and complete mineralization into the water, inorganic salts, and gases, including biofuel methane gas. These landfills have dominant biotic and abiotic environments where various bacterial, archaeal, and fungal groups evolve and interact to decompose substrate by enabling hydrolytic, fermentative, and methanogenic processes. Each landfill consists of diverse bio-geochemical environments with complex microbial populations, ranging from deeply underground anaerobic methanogenic systems to near-surface aerobic systems. These kinds of landfill generate leachates which in turn emerged as a significant risk to the surrounding because generated leachates are rich in toxic organic/inorganic components, heavy metals, minerals, ammonia and xenobiotics. In addition to this, microbial communities in a landfill ecosystem could not be accurately identified using lab microbial-culturing methods alone because most of the landfill's microorganisms cannot grow on a culture medium. Due to these reasons, research on landfills microbiome has flourished which has been characterized by a change from a culture-dependent approach to a more sophisticated use of molecular techniques like Sanger Sequencing and Next-Generation Sequencing (NGS). These sequencing techniques have completely revolutionized the identification and analysis of these diverse microbial communities. This review underscores the significance of microbial functions in waste decomposition, gas management, and heat control in landfills. It further explores how modern sequencing technologies have transformed our approach to studying these complex ecosystems, offering deeper insights into their taxonomic composition and functionality.
Collapse
Affiliation(s)
- Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India; Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Vinod Kumar
- Department of Botany, Government College for Women, Gandhi Nagar, Jammu 180004, Jammu & Kashmir, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| |
Collapse
|
3
|
He XS, Pan Q, Xi BD, Zheng J, Liu QY, Sun Y. Volatile and semi-volatile organic compounds in landfill leachate: Concurrence, removal and the influencing factors. WATER RESEARCH 2023; 245:120566. [PMID: 37683521 DOI: 10.1016/j.watres.2023.120566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Volatile and semi-volatile organic compounds (VOCs and SVOCs) carried by landfilled wastes may enter leachate, and require appropriate treatment before discharge. However, the driving factors of the entry of VOCs and SOVCs into leachate, their removal characteristics during leachate treatment and the dominant factors remain unclear. A global survey of the VOCs and SOVCs in leachate from 103 landfill sites combined with 27 articles on leachate treatment was conducted to clarify the abovementioned question. The results showed that SVOCs such as polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters (PAEs) and phenols were the most frequently detected in leachate on a global scale. However, four kinds of VOCs, i.e., toluene, ethylbenzene, xylenes and benzene, were frequently detected at high concentrations in landfill leachate as well. The concentrations of VOCs and SVOCs in leachate ranged from 1 × 10° to 1 × 108 ng/L. Solubility was a key factor driving the entry of VOCs and SOVCs into leachate, and higher solubility enables higher detectable concentrations in leachate (P<0.05). It was easiest to remove monocyclic aromatic hydrocarbons (MAHs) from leachate, followed by phenols and PAHs, and it was most difficult to remove PAEs. In terms of removing MAHs, the anoxic/oxic (A/O) process and the sequential batch reactor (SBR) process were comparable to the advanced oxidization process and far superior to the ultrafiltration and nanofiltration processes, and the removal rate increased with an increase in the Henry's constant and/or the hydrophilicity of the contaminants during the A/O and SBR processes (P<0.05). There were no significant differences among biological, advanced oxidation and reverse osmosis processes in the removal of phenolic. In terms of removing PAHs, the A/O process was comparable to the advanced oxidization process and more efficient than the other treatment processes. As to removing PAEs, the membrane bioreactor process was almost the same efficient as the advanced oxidization process and far more efficient than the other biological treatment processes. Future research should focus on the pollution of atmospheric VOCs and SVOCs near aeration units in leachate treatment plants, as well as the health risk assessment of VOCs and SVOCs in the treated leachate effluent. To the best of our knowledge, this is the first review regarding the occurrence and removal of VOCs and SVOCs from landfill leachates worldwide.
Collapse
Affiliation(s)
- Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qi Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Nasrollahi N, Vatanpour V, Khataee A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156010. [PMID: 35595150 DOI: 10.1016/j.scitotenv.2022.156010] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and related pharmaceuticals are applied to enhance public health and life quality. A major environmental concern is wastewaters from pharmaceutical industries, which contain significant amounts of antibiotics. Pharmaceutical industries apply conventional processes (biological, filtration, coagulation, flocculation, and sedimentation) for wastewater treatment, but these approaches cannot remove antibiotics completely. Moreover, unmetabolized antibiotics released by humans and animals are dangerous for municipal and effluent wastewater. Besides, antibiotic resistance is another challenge in treatment of wastewater for superbugs. This comprehensive study summarizes different techniques for antibiotic removal with an emphasis on membrane technology in individual and hybrid systems such as chemical, physical, biological, and conditional-based strategies. A combination of membrane processes with advanced oxidation processes (AOPs), adsorption, and biological treatments can be the right solution for perfect removal. Furthermore, this review briefly compares different procedures for antibiotic removal, which can be helpful for further studies with their advantages and drawbacks.
Collapse
Affiliation(s)
- Nazanin Nasrollahi
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
5
|
Ma C, Ma P, He Z, Mi X. A Combined Catalytic Ozonation-MBR Approach to Remove Contaminants from the Mature Landfill Leachate in the Yellow River Basin. TOXICS 2022; 10:505. [PMID: 36136471 PMCID: PMC9505368 DOI: 10.3390/toxics10090505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The mature landfill leachate (MLL) is characterized by a large number of fulvic acids and humic acids, which is refractory organic matter and can be cleaned by ozone oxidation. However, the poor property of mass transfer prohibits the widespread use of ozone oxidation in actual leachate treatment. Meanwhile, some combined processes are adopted to treat the mature landfill leachate, which places catalytic ozonation before the membrane bioreactor (MBR) process to enhance the biodegradability of MLL. Thus, this research is conducted to investigate the practicability of applying nano-Fe3O4 loaded cow-dung ash (Fe3O4@CDA) and biological post-treatment with MBR for the effective removal of pollutants from MLL and puts forward the variation of organics in leachate between catalytic ozonation and MBR. The addition of catalytic ozonation not only improved the removal of hazardous organics but also enhanced the biodegradability of the leachate and favored the subsequent MBR process. Chemical oxygen demand (COD) removal in the catalytic ozonation step was optimized, and 53% removal was obtained at pH = 7, catalyst dosage = 1.0 g/L, and O3 dosage = 3.0 g/L. After the MBR process, COD in effluent stabilized in the range of 57.85-65.38 mg/L, and the variation range of the ammonia nitrogen (NH3-N) concentration was 5.98-10.24 mg/L. The catalytic ozonation-MBR integrated process showed strong feasibility in dealing with the biologically pre-treated leachate.
Collapse
Affiliation(s)
- Cui Ma
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Panfeng Ma
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Mi
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
6
|
Ilmasari D, Kamyab H, Yuzir A, Riyadi FA, Khademi T, Al-Qaim FF, Kirpichnikova I, Krishnan S. A Review of the Biological Treatment of Leachate: Available Technologies and Future Requirements for the Circular Economy Implementation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. CHEMOSPHERE 2022; 299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, ecofriendly, low-cost, and sustainable alternatives techniques have been focused on the effective removal of hazardous pollutants from the water streams. In this context, enzyme immobilization seems to be of specific interest to several researchers to develop novel, effective, greener, and hybrid strategies for the removal of toxic contaminants. Immobilization is a biotechnological tool, anchoring the enzymes on support material to enhance the stability and retain the structural conformation of enzymes for catalysis. Recyclability and reusability are the main merits of immobilized enzymes over free enzymes. Studies showed that immobilized enzyme laccase can be used up to 7 cycles with 66% efficiency, peroxidase can be recycled to 2 cycles with 50% efficiency, and also cellulase to 3 cycles with 91% efficiency. In this review, basic concepts of immobilization, different immobilization techniques, and carriers used for immobilization are summarized. In addition to that, the potential of immobilized enzymes as the bioremediation agents for the effective degradation of pollutants from the contaminated zone and the impact of different operating parameters are summarized in-depth. Further, this review provides future trends and challenges that have to be solved shortly for enhancing the potential of immobilized systems for large-scale industrial wastewater treatment.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
8
|
Tuan Tran H, Lin C, Bui XT, Ky Nguyen M, Dan Thanh Cao N, Mukhtar H, Giang Hoang H, Varjani S, Hao Ngo H, Nghiem LD. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. BIORESOURCE TECHNOLOGY 2022; 344:126249. [PMID: 34732372 DOI: 10.1016/j.biortech.2021.126249] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are well-known emerging contaminants that harm human health and the environment. Therefore, this review aims to discuss about the occurrence, fate, and phthalates concentration in the various environmental matrices (e.g., aquatic, sediment, soil, and sewage sludge). Hence, it is necessary to treat sources containing phthalates before discharging them to aqueous environment. Various advanced wastewater treatments including adsorption process (e.g., biochar, activated carbon), advanced oxidation processes (e.g., photo-fenton, ozonation, photocatalysis), and biological treatment (membrane bioreactor) have been successfully to address this issue with high removal efficiencies (70-95%). Also, the degradation mechanism was discussed to provide a comprehensive understanding of the phthalate removal for the reader. Additionally, key factors that influenced the phthalates removal efficiency of these technologies were identified and summarized with a view towards pilot-scale and industrial applications.
Collapse
Affiliation(s)
- Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Minh Ky Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ngoc Dan Thanh Cao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hong Giang Hoang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| |
Collapse
|
9
|
Zhang K, Wu X, Luo H, Wang W, Yang S, Chen J, Chen W, Chen J, Mo Y, Li L. Biochemical pathways and enhanced degradation of dioctyl phthalate (DEHP) by sodium alginate immobilization in MBR system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:664-677. [PMID: 33600370 DOI: 10.2166/wst.2020.605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the most representative endocrine disrupting compounds, dioctyl phthalate (DEHP) is difficult to remove due to its bio-refractory characteristic. In this study, an immobilization technology was applied in an MBR system to improve the degradation of DEHP. The degradation efficiency of DEHP was significantly improved and the number of degradation genes increased by 1/3. A bacterial strain that could effectively degrade DEHP was isolated from activated sludge and identified as Bacillus sp. The degradation pathway of DEHP was analyzed by GC-MS. DEHP was decomposed into phthalates (DBP) and Diuretic sylycol (DEP), then further to Phthalic acid (PA). PA was oxidized, dehydrogenated, and decarboxylated into protocatechins, further entered the TCA cycle through orthotopic ring opening. The DEHP degrading strain was immobilized by sodium alginate and calcium chloride under the optimized immobilization conditions, and added to MBR systems. The removal rate of DEHP (5 mg/L) (91.9%) and the number of 3, 4-dioxygenase gene copies was significantly improved by adding immobilized bacteria. Micromonospora, Rhodococcus, Bacteroides and Pseudomonas were the dominant genuses, and the results of bacterial community structure analysis show that immobilization technology is beneficial to system stability. The results showed the potential applications of the immobilized technique in DEHP wastewater treatment in MBR.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail: ; † Ke Zhang and Xiangling Wu contributed equally to this work
| | - Xiangling Wu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail: ; † Ke Zhang and Xiangling Wu contributed equally to this work
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Siqiao Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| | - Jian Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| | - You Mo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| | - Lin Li
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China E-mail:
| |
Collapse
|
10
|
Moghiseh Z, Rezaee A, Dehghani S. Minimization of hazardous sludge production using a bioelectrochemical system supplied by an alternating current electric field. Bioelectrochemistry 2020; 132:107446. [DOI: 10.1016/j.bioelechem.2019.107446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/06/2023]
|
11
|
Boonnorat J, Techkarnjanaruk S, Honda R, Angthong S, Boonapatcharoen N, Muenmee S, Prachanurak P. Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater. CHEMOSPHERE 2018; 202:208-217. [PMID: 29571141 DOI: 10.1016/j.chemosphere.2018.03.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
This research investigates the toxic organic compounds biodegradation efficiency of two-stage activated sludge systems with (bioaugmented) and without aged sludge bioaugmentation (non-bioaugmented). The influent was a mixture of leachate and agriculture wastewater (1:1, v/v), used as the representative high strength wastewater. The bioaugmented and non-bioaugmented systems were operated in parallel, with three levels (low, moderate, and high) of concentrations of organics, nitrogen, and toxic organic compounds in the influent (conditions 1, 2, and 3). The results showed that both systems could efficiently degrade the organic compounds. Nevertheless, the toxic organic compounds biodegradation efficiency of the bioaugmented system was higher than that of the non-bioaugmented one. The bioaugmentation enhanced the overall removal efficiency under conditions 1 and 2. However, the bioaugmented system became less effective under condition 3. Further analysis indicated that the bacterial groups essential to the toxic organic compounds biodegradation were abundant in the aged sludge, including heterotrophic bacteria, heterotrophic nitrifying bacteria, and nitrifying bacteria. The abundance of the effective bacteria improved the biodegradation and wastewater treatment performance of the bioaugmented system. In essence, the aged sludge bioaugmentation is a viable and eco-friendly solution to improving the treatment efficiency of the biological activated sludge system, despite limited biodegradation efficiency in an elevated compounds-concentration environment.
Collapse
Affiliation(s)
- Jarungwit Boonnorat
- Environmental Engineering Program, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand; Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| | - Somkiet Techkarnjanaruk
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Ryo Honda
- Faculty of Environmental Design, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sivakorn Angthong
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Sutharat Muenmee
- Faculty of Science, Energy and Environment (SciEE), King Mongkut's University of Technology North Bangkok (Rayong Campus), Rayong 21120, Thailand
| | - Pradthana Prachanurak
- Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| |
Collapse
|
12
|
Gkotsis P, Tsilogeorgis J, Zouboulis A. Hydraulic performance and fouling characteristics of a membrane sequencing batch reactor (MSBR) for landfill leachate treatment under various operating conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12274-12283. [PMID: 28905297 DOI: 10.1007/s11356-017-0142-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the hydraulic performance and the fouling characteristics of a bench-scale membrane sequencing batch reactor (MSBR), treating mature landfill leachate under various time-based operating conditions. The MSBR system operated initially under a high-flux condition (Period 1) which resulted in a rapid trans-membrane pressure (TMP) rise due to intense fouling. Following the characterization of Period 1 as super-critical, the system was subsequently operated under a near-critical condition (Period 2). The overall filtration resistance analysis showed that cake layer formation was the dominant fouling mechanism during Period 1, contributing to 85.5% of the total resistance. However, regarding the MSBR operation during Period 2, adsorption was found to also be a dominant fouling mechanism (Days 1 to 47), contributing to 29.1% of the total resistance. Additionally, the irregular total resistance variation, which was observed during the subsequent operation (Days 48 to 75), and the respective filtration resistance analysis suggested also the formation of an initial sludge cake layer on the membrane surface, contributing to the 47.7% of the total resistance.
Collapse
Affiliation(s)
- Petros Gkotsis
- School of Chemistry, Chemical and Environmental Technology Section, Aristotle University of Thessaloniki, Box 116, 54124, Thessaloniki, Greece
| | - Jason Tsilogeorgis
- School of Chemistry, Chemical and Environmental Technology Section, Aristotle University of Thessaloniki, Box 116, 54124, Thessaloniki, Greece
| | - Anastasios Zouboulis
- School of Chemistry, Chemical and Environmental Technology Section, Aristotle University of Thessaloniki, Box 116, 54124, Thessaloniki, Greece.
| |
Collapse
|
13
|
Wen Q, Yang L, Zhao Y, Huang L, Chen Z. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor. CHEMOSPHERE 2018; 197:420-429. [PMID: 29366956 DOI: 10.1016/j.chemosphere.2018.01.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
A lab-scale anoxic/oxic-membrane bioreactor was designed to treat antibiotics containing wastewater at different antibiotics concentrations (0.5 mg/L, 1 mg/L and 3 mg/L of each antibiotic). Overall COD and NH4+N removal (more than 90%) were not affected during the exposure to antibiotics and good TN removal was also achieved, while TP removal was significantly affected. The maximum removal efficiency of penicillin and chlorotetracycline reached 97.15% and 96.10% respectively due to strong hydrolysis, and sulfamethoxazole reached 90.07% by biodegradation. However, 63.87% of norfloxacin maximum removal efficiency was achieved mainly by sorption. The system had good ability to reduce ARGs, peaking to more than 4 orders of magnitude, which mainly depended on the biomass retaining of the membrane module. Antibiotics concentration influenced the evolution of ARGs and bacterial communities in the reactor. This research provides great implication to reduce ARGs and antibiotics in antibiotics containing wastewater using A/O-MBR.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Lian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Yaqi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Long Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|
14
|
Boonnorat J, Boonapatcharoen N, Prachanurak P, Honda R, Phanwilai S. Toxic compounds biodegradation and toxicity of high strength wastewater treated under elevated nitrogen concentration in the activated sludge and membrane bioreactor systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:252-261. [PMID: 28319712 DOI: 10.1016/j.scitotenv.2017.03.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
This research has assessed the removal efficiencies of toxic compounds in the high strength wastewater (the leachate and agriculture wastewater mixture) using the activated sludge (AS) and membrane bioreactor (MBR) technologies under two carbon to nitrogen (C/N) ratios (C/N 14 and 6) and two toxic compounds concentrations (8-396μg/L and 1000μg/L). In addition, the toxicity evaluations of the AS and MBR effluents to the aquatic environment were undertaken at five effluent dilution ratios (10, 20, 30, 50 and 70% v/v). The findings indicate that the AS treatment performance could be enhanced by the elevation of the nitrogen concentration. Specifically, the C/N 6 environment helps promote the bacterial growth, particularly heterotrophic nitrifying bacteria (HNB) and nitrifying bacteria (NB), which produce the enzymes crucial to the toxic compounds degradation. The improved biodegradation makes the effluents less toxic to the aquatic environment, as evidenced by the lower mortality rates of both experimental fish species raised in the nitrogen-elevated diluted AS effluents. On the other hand, the elevated nitrogen concentration minimally enhances the MBR treatment performance, given the fact that the MBR technology is in itself a biological treatment scheme with very high compounds removal capability. Despite its lower toxic compounds removal efficiency, the AS technology is simple, inexpensive and operationally-friendly, rendering the system more applicable to the treatment operation constrained by the financial, manpower and technological considerations.
Collapse
Affiliation(s)
- Jarungwit Boonnorat
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Pradthana Prachanurak
- Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Ryo Honda
- Research Center for Sustainable Energy and Technology (RSET), Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Supaporn Phanwilai
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
15
|
Hou C, Lu G, Zhao L, Yin P, Zhu L. Estrogenicity assessment of membrane concentrates from landfill leachate treated by the UV-Fenton process using a human breast carcinoma cell line. CHEMOSPHERE 2017; 180:192-200. [PMID: 28407549 DOI: 10.1016/j.chemosphere.2017.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Membrane concentrates (MCs) are generated when membranes are used to concentrate landfill leachate. It contains high concentrations of inorganic and organic environmental pollutants, which are highly toxic and carcinogenic. In this paper, the proliferation effect (PE) from MC before and after treatment with the UV-Fenton process was assessed using the human breast carcinoma cell line MCF-7. The highest value of 116% was found at 5% (v/v) concentration after a 10 min reaction. Phthalic acid esters (PAEs) play an important role in the MC estrogenicity. Estrogen simulation solutions (ESS) of PAEs were prepared to simulate the changes in estrogenic active substances during the UV-Fenton process. The ESS degradation conformed to the first-order kinetics model. The estrogenicity decreased after an initial increase until it acted in a non-estrogenic manner. Convincingly, the intermediates were determined by GC/MS, and the estrogenicity was assessed during the degradation process. The estrogenicity was highly related to the generation of intermediates and the PAE concentration. The results provide guidance for UV-Fenton application in MC estrogenicity reduction.
Collapse
Affiliation(s)
- Changcheng Hou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Ling Zhao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Pinghe Yin
- Research Center of Analysis and Test, Jinan University, Guangzhou 510632, China
| | - Lingfei Zhu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Boonyaroj V, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Enhanced biodegradation of phenolic compounds in landfill leachate by enriched nitrifying membrane bioreactor sludge. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:311-318. [PMID: 27432617 DOI: 10.1016/j.jhazmat.2016.06.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/13/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The role of autotrophic nitrification on the biodegradation of toxic organic micro-pollutants presented in landfill leachate was assessed. A two-stage MBR system consisting of an inclined tube incorporated anoxic reactor followed by aerobic submerged membrane reactor was operated under long sludge age condition in which nitrifying bacteria could be enriched. During the reactor operation, organic removal efficiencies were more than 90% whereas phenolic compounds including bisphenol A (BPA) and 4-methyl-2,6-di-tert-butylphenol (BHT) were removed by 65 and 70% mainly through biodegradation in the aerobic reactor even at high feed concentrations of 1000μg/L for both compounds. Batch experiments revealed that enriched nitrifying sludge with nitrifying activities could biodegraded 88 and 75% of BPA and BHT, largely improved from non-nitrifying sludge and enriched nitrifying sludge with the presence of inhibitor. The first-order kinetic rates of BHT and BPA removal were 0.0108 and 0.096h-1, also enhanced by 44% from the non-nitrifying sludge.
Collapse
Affiliation(s)
- Varinthorn Boonyaroj
- Department of Environmental Science and Natural Resources, Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon, Bangkok 10800, Thailand.
| | - Chart Chiemchaisri
- Department of Environmental Engineering & Center for Advanced Studies in Industrial Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| | - Wilai Chiemchaisri
- Department of Environmental Engineering & Center for Advanced Studies in Industrial Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| | - Kazuo Yamamoto
- Environmental Science Center, University of Tokyo, Tokyo 113, Japan.
| |
Collapse
|
17
|
Zhang T, Huang Z, Chen X, Huang M, Ruan J. Degradation behavior of dimethyl phthalate in an anaerobic/anoxic/oxic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:281-288. [PMID: 27729177 DOI: 10.1016/j.jenvman.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Dimethyl phthalate (DMP) as one of the most important and extensively used Phthalic acid esters (PAEs) is known to likely cause dysfunctions of the endocrine systems, liver, and nervous systems of animals. In this paper, the degradation and behavior of DMP were investigated in a laboratory scale anaerobic/anoxic/oxic (AAO) treatment system. In addition, a degradation model including biodegradation and sorption was formulated so as to evaluate the fate of DMP in the treatment system, and a mass balance model was designed to determine kinetic parameters of the removal model. The study indicated that the optimal operation condition of HRT and SRT for DMP and nutrients removal were 18 h and 15 d respectively, and the degradation rates of anaerobic, anoxic and aerobic zones for DMP were 13.4%, 13.0% and 67.7%, respectively. Under the optimal conditions, the degraded DMP was 73.8%, the released DMP in the effluent was 5.8%, the accumulated DMP was 19.3%, and the remained DMP in the waste sludge was 1.1%. Moreover, the degradation process of DMP by acclimated activated sludge was in accordance with the first-order kinetics equation. The model can be used for accurately modeling the degradation and behavior of DMP in the AAO system.
Collapse
Affiliation(s)
- Tao Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zehua Huang
- Fujian Quanzhou Foreign Language Middle School, Quanzhou 362002, PR China
| | - Xiaohong Chen
- Department of Water Resources and Environment, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mingzhi Huang
- Department of Water Resources and Environment, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Jujun Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
18
|
Boonnorat J, Techkarnjanaruk S, Honda R, Prachanurak P. Effects of hydraulic retention time and carbon to nitrogen ratio on micro-pollutant biodegradation in membrane bioreactor for leachate treatment. BIORESOURCE TECHNOLOGY 2016; 219:53-63. [PMID: 27475331 DOI: 10.1016/j.biortech.2016.07.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 05/22/2023]
Abstract
This research investigated the biodegradation of the micro-pollutants in leachate by the membrane bioreactor (MBR) system under six treatment conditions, comprising two C/N ratios (6, 10) and three hydraulic retention time (HRT) durations (6, 12, 24h). The experimental results indicated that the C/N 6 environment was more advantageous to the bacterial growth. The bacterial communities residing in the sludge were those of heterotrophic bacteria (HB), heterotrophic nitrifying bacteria (HNB) and ammonia oxidizing bacteria (AOB). It was found that HB and HNB produced phenol hydroxylase (PH), esterase (EST), phthalate dioxygenase (PDO) and laccase (LAC) and also enhanced the biodegradation rate constants (k) in the system. At the same time, AOB promoted the production of HB and HNB. The findings also revealed that the 12h HRT was the optimal condition with regard to the highest growth of the bacteria responsible for the biodegradation of phenols and phthalates. Meanwhile, the longer HRT duration (i.e. 24h) was required to effectively bio-degrade carbamazepine (CBZ), N,N-diethyl-m-toluamide (DEET) and diclofenac (DCF).
Collapse
Affiliation(s)
- Jarungwit Boonnorat
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| | - Somkiet Techkarnjanaruk
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok 10150, Thailand
| | - Ryo Honda
- Research Center for Sustainable Energy and Technology (RSET), Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pradthana Prachanurak
- Department of Civil Engineering, Faculty of Engineering, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| |
Collapse
|