1
|
Khalid S, Chaudhary MN, Nazir R, Ahmad SR, Hussain N, Ayub Y, Ibrar M. Biochar supported metallo-inorganic nanocomposite: A green approach for decontamination of heavy metals from water. PLoS One 2023; 18:e0289069. [PMID: 37708189 PMCID: PMC10501632 DOI: 10.1371/journal.pone.0289069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023] Open
Abstract
Heavy metal contamination of water has become a global environmental burden, which has stirred up agitation worldwide. Fabrication of adsorbents utilizing either low cost, environment friendly materials or waste products can be helpful in remediating environmental pollution. The current study evolved around the synthesis of nanocomposites derived from such raw precursors like spent tea waste biochar, hydroxyapatite, and clays. In this context, two nanocomposites, namely manganese ferrite doped hydroxyapatite/kaolinite/biochar (TK-NC) and manganese ferrite doped hydroxyapatite/vermiculite/biochar (TV-NC), were synthesized followed by their employment for decontamination of heavy metals from aqueous media. TK-NC and TV-NC exhibited the crystallite sizes in the range of 2.55-5.94 nm as obtained by Debye Scherrer Equation and Williamsons-Hall equation The fabricated nanocomposites were characterized using FT-IR, SEM-EDX, and powder XRD. Batch adsorption studies were performed, and influence of different adsorption parameters (contact time, reaction temperature, solution pH, adsorbent dose, and initial adsorbate concentration) on metal adsorption was examined. Thermodynamic studies revealed that the adsorption of Cr(VI), Ni(II) and Cu(II) on TK-NC and TV-NC was endothermic (+ΔH°) and indicates disorderness (+ΔS°) at the solid-liquid interface owing to the strong affinity of metal ions with adsorbent. The heavy metal uptake selectivity followed the following decreasing order; Cr(VI) > Cu(II) > Ni(II) by both nanocomposites, with adsorption capacities falling in the range of 204.68-343.05 mg g-1. Several adsorption kinetic and isotherm models were applied to experimentally calculated data, which suggest favorable adsorption of Cr(VI), Ni(II) and Cu(II) by TK-NC and TV-NC from the system while obeying general-order kinetics and R-P adsorption model, conferring the transition in adsorption kinetics order and involvement of multiple adsorption process.
Collapse
Affiliation(s)
- Sana Khalid
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Nawaz Chaudhary
- Department of Environmental Sciences & Policy, Lahore School of Economics (LSE), Lahore, Pakistan
| | - Rabia Nazir
- Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Naqi Hussain
- Department of Environmental Sciences & Policy, Lahore School of Economics (LSE), Lahore, Pakistan
| | - Yaseen Ayub
- Department of Chemistry, Forman Christian College, Lahore, Punjab, Pakistan
| | - Muhammad Ibrar
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| |
Collapse
|
2
|
Yang X, Wang L, Shao X, Tong J, Zhou J, Feng Y, Chen R, Yang Q, Han Y, Yang X, Ding F, Meng Q, Yu J, Zimmerman AR, Gao B. Characteristics and aqueous dye removal ability of novel biosorbents derived from acidic and alkaline one-step ball milling of hickory wood. CHEMOSPHERE 2022; 309:136610. [PMID: 36181850 DOI: 10.1016/j.chemosphere.2022.136610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
New classes of biosorbents are needed for various environment remediation applications. Thus, a facile and benign approach to synthesize porous biosorbents was developed using acidic or alkaline one-step ball milling of hickory wood biomass (AcBH and AlBH, respectively) without any external heat treatment, and their properties were compared. AcBH and AlBH were richer in O-containing functional groups, had enhanced porous structure and greater ability to remove crystal violet (CV, 476.4 mg g-1) and Congo red (CR, 221.8 mg g-1) dyes from aqueous solution, respectively, relative to hickory wood ball milled at neutral pH. Freundlich isotherm and pseudo second order kinetic models best fitted CR and CV adsorption onto biosorbents, indicating a mainly surface complexation adsorption mechanism. Further, both sorbents exhibited excellent stability and dye adsorption reusability. These results demonstrate that acidic and alkaline one-step ball milling is a facile and efficient approach for converting wood biomass into environmentally friendly biosorbents.
Collapse
Affiliation(s)
- Xiaodong Yang
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Lili Wang
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Xueqin Shao
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Jin Tong
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Jinfeng Zhou
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Ying Feng
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Rui Chen
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Qiang Yang
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Ye Han
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Xizhen Yang
- Key Laboratory of Materials Design and Quantum Simulation, School of Science, Changchun University, No.6543 Satellite Road, Changchun 130022, People's Republic of China
| | - Fangjun Ding
- Key Laboratory of Humic Acid Fertilizer of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University Fertilizer Technology Co. Ltd, Feicheng, Shandong, 271600, China
| | - Qingyu Meng
- Key Laboratory of Humic Acid Fertilizer of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University Fertilizer Technology Co. Ltd, Feicheng, Shandong, 271600, China
| | - Jian Yu
- Key Laboratory of Humic Acid Fertilizer of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University Fertilizer Technology Co. Ltd, Feicheng, Shandong, 271600, China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Asghari E, Saraji M. Evaluating cottonwood seeds as a low-cost biosorbent for crystal violet removal from aqueous matrics. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:137-145. [PMID: 35475769 DOI: 10.1080/15226514.2022.2064816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, cottonwood seeds (CWS) were introduced as a novel, green, and low-cost biosorbents for the removal of crystal violet (CV) dye from aqueous solutions. To illustrate the characteristics of CWS, surface morphology, Fourier-transform infrared spectroscopy, field emission scanning electron microscopes, and energy dispersive X-ray spectroscopy techniques were employed. Important adsorption variables (i.e., equilibrium time, solution pH, CWS amount, CV concentration, and temperature) were systematically studied. Maximum CV dye adsorption was observed at pH 10 using 20 mg of the adsorbent. Different adsorption isotherms were investigated, and the results were more accurately consistent with the Langmuir model (R2 = 0.992). The maximum capacity of adsorption was 153.85 mg g-1 at 60 min. The kinetic data were examined by different models and a pseudo-second-order model supplied the best correlation between experimental data. Investigated thermodynamic parameters at different temperatures illustrated that the CV adsorption procedure was spontaneous and endothermic with an increase in entropy. The percentage removal and the relative standard deviations for the real sample analysis were in the range of 89-98% and 4.9-9.5%, respectively. High adsorption capacity and low equilibrium time demonstrated that CWS is an impressive biosorbent for dye pollutants uptakes from aqueous solutions and real industrial wastewater samples.
Collapse
Affiliation(s)
- Effat Asghari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022; 13:8432-8477. [PMID: 35260028 PMCID: PMC9161908 DOI: 10.1080/21655979.2022.2050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern towards the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Lorena Cornejo-Ponce
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Rathika Rajendran
- Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam, Tamil Nadu - 611001, India
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vincent Femilaa Rajan
- Department of Sustainable Energy Management, Stella Maris College (Autonomous), Chennai - 600086, Tamil Nadu, India
| | - Fathi Awad
- Department of Allied Health Professionals, Faculty of Medical and Health Sciences, Liwa College of Technology, Abu Dhabi, UAE
| |
Collapse
|
5
|
Siemieniuk A, Burdach Z, Karcz W. A Comparison of the Effect of Lead (Pb) on the Slow Vacuolar (SV) and Fast Vacuolar (FV) Channels in Red Beet ( Beta vulgaris L.) Taproot Vacuoles. Int J Mol Sci 2021; 22:12621. [PMID: 34884427 PMCID: PMC8657509 DOI: 10.3390/ijms222312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.
Collapse
Affiliation(s)
| | | | - Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland; (A.S.); (Z.B.)
| |
Collapse
|
6
|
Liu C, Xiao R, Huang F, Yang X, Dai W, Xu M. Physiological responses and health risks of edible amaranth under simultaneous stresses of lead from soils and atmosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112543. [PMID: 34332251 DOI: 10.1016/j.ecoenv.2021.112543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is widely distributed in the environment that can impose potential risks to vegetables and humans. In this work, we conducted a pot experiment in Southern China to examine the physiological response and risk of edible amaranth (Amaranthus tricolor L.) under the simultaneous stresses of lead from soil and atmosphere. The results indicate that the lead content of amaranth substantially exceeded China's national standard when Pb concentration from soils and atmosphere was high, and comparing to teenagers and adults, children exposed a higher health risk after consuming the contaminated amaranth. Under the co-stress, the lead in roots of amaranth mainly came from the soil, but the Pb from atmospheric deposition can significantly affect the lead concentration in leaves. While lead from atmospheric deposition is found to promote the growth of amaranth, the stress of lead from the soils shows an inhibitory effect, as indicated by the increase in H2O2 content, the damage in cell membranes, and the limitation in chlorophyll synthesis. The antioxidant system in stems and leaves of amaranth can effectively alleviate the Pb toxicity. However, the stress of high lead concentration from soils can substantially suppress the antioxidant enzyme activity of roots. While it is found that heavy metals in soils can significantly affect the vegetables grown in a multi-source pollution environment, we also call for the attention on the potential health risk imposed by the lead from atmospheric deposition. This study provides an important reference for the prevention and control of crop contamination in multi-source pollution environments.
Collapse
Affiliation(s)
- Chufan Liu
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Shenzhen Academy of Environmental Science, Shenzhen 518001, PR China
| | - Rongbo Xiao
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Fei Huang
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Yang
- Department of Geography, Florida State University, Tallahassee, FL 32306, USA
| | - Weijie Dai
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meili Xu
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
7
|
Yuvaraj A, Thangaraj R, Karmegam N, Ravindran B, Chang SW, Awasthi MK, Kannan S. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. CHEMOSPHERE 2021; 278:130458. [PMID: 34126688 DOI: 10.1016/j.chemosphere.2021.130458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The industrial revolution and indiscriminate usage of a wide spectrum of agrochemicals account for the dumping of heavy metals in the environment. In-situ/ex-situ physical, chemical, and bioremediation strategies with pros and cons have been adopted for recovering metal contaminated soils and water. Therefore, there is an urgent requirement for a cost-effective and environment-friendly technique to combat metal pollution. Biochar combined with earthworms and vermifiltration is a suitable emerging technique for the remediation of metal-polluted soils and water. The chemical substances (e.g., sodium hydroxide, zinc chloride, potassium hydroxide, and phosphoric acid) have been used to activate biochar, which also faces several shortcomings. Studies reveal that extracellular enzymes have been used to activate biochar which is produced by earthworms and microbes that can alter the surface of the biochar. The present review focuses on the global scenario of metal pollution and its remediation through biochar activation using earthworms. The earthworms and biochar can produce "vermibiochar" which is capable of reducing the metal ions from contaminated water and soils. The vermifiltration can be a suitable technology for metal removal from wastewater/effluent. Thus, the biochar has a trick of producing entirely new options at a time when vermifiltration and other technologies are least expected. Further attention to the biochar-assisted vermifiltration of different sources of wastewater is required to be explored for the large-scale utilization of the process.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
8
|
Samaraweera H, Pittman CU, Thirumalai RVKG, Hassan EB, Perez F, Mlsna T. Characterization of graphene/pine wood biochar hybrids: Potential to remove aqueous Cu 2. ENVIRONMENTAL RESEARCH 2021; 192:110283. [PMID: 33022217 DOI: 10.1016/j.envres.2020.110283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/06/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Biochar-based hybrid composites containing added nano-sized phases are emerging adsorbents. Biochar, when functionalized with nanomaterials, can enhance pollutant removal when both the nanophase and the biochar surface act as adsorbents. Three different pine wood wastes (particle size < 0.5 mm, 10 g) were preblended with 1 wt% of three different graphenes in aqueous suspensions, designated as G1, G2, and G3. G1 (SBET, 8.1 m2/g) was prepared by sonicating graphite made from commercial synthetic graphite powder (particle size 7-11 μm). G2 (312.0 m2/g) and G3 (712.0 m2/g) were purchased commercial graphene nanoplatelets (100 mg in 100 mL deionized water). These three pine wood-graphene mixtures were pyrolyzed at 600 °C for 1 h to generate three graphene-biochar adsorbents, GPBC-1, GPBC-2, and GPBC-3 containing 4.4, 4.9, and 5.0 wt% of G1, G2, and G3 respectively. Aqueous Cu2+ adsorption capacities were 10.6 mg/g (GPBC-1), 4.7 mg/g (GPBC-2), and 5.5 mg/g (GPBC-3) versus 7.2 mg/g for raw pine wood biochar (PBC) (0.05 g adsorbent dose, Cu2+ 75 mg/L, 25 mL, pH 6, 24 h, 25 ± 0.5 °C). Increased graphene surface areas did not result in adsorption increases. GPBC-1, containing the lowest nanophase surface area with the highest Cu2+ capacity, was chosen to evaluate its Cu2+ adsorption characteristics further. Results from XPS showed that the surface concentration of oxygenated functional groups on the GPBC-1 is greater than that on the PBC, possibly contributing to its greater Cu2+ removal versus PBC. GPBC-1 and PBC uptake of Cu2+ followed the pseudo-second-order kinetic model. Langmuir maximum adsorption capacities and BET surface areas were 18.4 mg/g, 484.0 m2/g (GPBC-1) and 9.2 mg/g, 378.0 m2/g (PBC). This corresponds to 3.8 × 10-2 versus 2.4 × 10-2 mg/m2 of Cu2+ removed on GPBC-1 (58% more Cu2+ per m2) versus PBC. Cu2+ adsorption on both these adsorbents was spontaneous and endothermic.
Collapse
Affiliation(s)
- Hasara Samaraweera
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | | | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, MS, 39762, USA
| | - Felio Perez
- Material Science Lab, Integrated Microscopy Center, University of Memphis, Memphis, TN, 38152, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA.
| |
Collapse
|
9
|
Imran M, Islam A, Farooq MU, Ye J, Zhang P. Characterization and adsorption capacity of modified 3D porous aerogel from grapefruit peels for removal of oils and organic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43493-43504. [PMID: 32468363 DOI: 10.1007/s11356-020-09085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
With the rapid industrialization, especially offshore oil exploitation, frequent leakage incidents of oils/organic solvents have adversely affected ecological systems and environmental resources. Therefore, great interest has been shown in developing new materials to eliminate these organic pollutants, which have become worldwide problems. In this study, a cost-effective, environmentally friendly porous aerogel with three-dimensional (3D) structure was prepared from grapefruit peel by a facile hydrothermal method as the adsorbent of oils/organic solvents. The as-prepared modified grapefruit peel aerogel (M-GPA) showed mesoporous structure with high specific surface area of 36.42 m2/g and large pore volume of 0.0371 cm3/g. The excellent hydrophobicity of M-GPA with a water contact angle of 141.2° indicated a strong potential for adsorption of oils and organic solvents. The high adsorption capacity of M-GPA for a series of oils and organic solvents was 8 to 52 times as much as its own weight. Moreover, the M-GPA was easily regenerated and a high adsorption capacity recovery above 97% was maintained after five adsorption-regeneration cycles. Therefore, the M-GPA is a promising recyclable adsorbent for the removal of oils/organic solvents from polluted water.
Collapse
Affiliation(s)
- Muhammad Imran
- College of Environmental Sciences and Engineering, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China
| | - Ashraful Islam
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Muhammad Umair Farooq
- State Key Laboratory of Super Lattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing, 100083, China
| | - Junpei Ye
- College of Environmental Sciences and Engineering, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China
| | - Panyue Zhang
- College of Environmental Sciences and Engineering, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
10
|
Mujtaba Munir MA, Liu G, Yousaf B, Ali MU, Cheema AI, Rashid MS, Rehman A. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114816. [PMID: 32473507 DOI: 10.1016/j.envpol.2020.114816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, polymetal(iod)s-contaminated mining soil from the Huainan coalfield, Anhui, China, was used to investigate the synergistic effects of biochar (BC), raw coal (RC), and hydrothermally treated coal (HTC) on the immobilization, speciation, transformation, and accumulation of Cd, Cr, and Pb in a soil-plant system via geochemical speciation and advanced spectroscopic approaches. The results revealed that the BC-2% and BC-HTC amendments were more effective than the individual RC, and/or HTC amendments to reduce ethylene-diamine-tetraacetic acid (EDTA)-extractable Cd, Cr, and Pb concentrations by elevating soil pH and soil organic carbon content. Soil pH increased by 1.5 and 2.5 units after BC-2% and BC-HTC amendments, respectively, which reduced EDTA-extractable Cd, Cr, and Pb to more stabilized forms. Metal speciation and X-ray photoelectron spectroscopy analyses suggested that the BC-HTC amendment stimulated the transformation of reactive Cd, Cr, and Pb (exchangeable and carbonate-bound) states to less reachable (oxide and residual) states to decrease the toxicity of these heavy metals. Fourier transform infrared spectroscopy and X-ray diffraction analyses suggested that reduction and adsorption by soil colloids may be involved in the mechanism of Cd(II), Cr(VI), and Pb(II) immobilization via hydroxyl, carbonyl, carboxyl, and amide groups in the BC and HTC. Additionally, the BC-2% and BC-HTC amendments reduced Cd and Pb accumulation in maize shoots, which could mainly be ascribed to the reduction of EDTA-extractable heavy metals in the soil and more functional groups in the roots, thus inhibiting metal ion translocation by providing the electrons necessary for immobilization, compared to those in roots grown in the unamended soil. Therefore, the combined application of BC and HTC was more effective than the individual application of these amendments to minimize the leaching, availability, and exchangeable states of Cd, Cr, and Pb in polymetal(iod)s-contaminated mining soil and accumulation in maize.
Collapse
Affiliation(s)
- Mehr Ahmed Mujtaba Munir
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, And State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Ayesha Imtiyaz Cheema
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Saqib Rashid
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Abdul Rehman
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| |
Collapse
|
11
|
Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources. SUSTAINABILITY 2020. [DOI: 10.3390/su12052147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations in water resources were relatively low in most cases. However, the high tendency of water hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples (roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations in DNA profiles including the presence or absence of certain bands and even the appearance of new bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles and banding pattern of total protein, especially proteins isolated from roots. Several anatomical deteriorations were observed on PTEs-stressed plants including reductions in the thickness of epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of this investigation may provide some new insights regarding molecular, biochemical and anatomical responses of water hyacinth grown in drainage water resources.
Collapse
|
12
|
Alsamadany H, Al-Zahrani HS, Selim EMM, El-Sherbiny MM. Spatial distribution and potential ecological risk assessment of some trace elements in sediments and grey mangrove (Avicennia marina) along the Arabian Gulf coast, Saudi Arabia. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractTo assess trace element concentrations (Zn, Cu, Pb, Cr, Cd and Ni) in the mangrove swamps along the Saudi coast of the Arabian Gulf, thirteen samples of surface sediment and leaves of grey mangrove, Avicennia marina were collected and analyzed. The detected trace element contents (μg g-1) in surface sediments were in the following descending order according to their mean values; Cr (49.18) > Zn (48.48) > Cu (43.06) > Pb (26.61) > Ni (22.88) > Cd (3.21). The results showed that the average concentrations of Cd and Pb exceeded their world average concentration of shale. The geo-accumulation, potential ecological risk and toxicity response indices demonstrated that trace elements have posed a considerable ecological risk, especially Cd. The inter-relationships between physico-chemical characters and trace elements suggests that grained particles of mud represent a noteworthy character in the distribution of trace elements compared to organic materials. Moreover, the results revealed that Zn was clearly bioaccumulated in leaf tissues A. marina. Dredging, landfilling, sewage effluents and oil pollution can be the paramount sources of pollution in the area under investigation.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan S. Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - El-Metwally M. Selim
- Department of Soil Sciences, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohsen M. El-Sherbiny
- Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah21589, Saudi Arabia
- Marine Biology Department, Faculty of Science, Suez Canal University, Ismailia41552, Egypt
| |
Collapse
|
13
|
El-Banna MF, Mosa A, Gao B, Yin X, Wang H, Ahmad Z. Scavenging effect of oxidized biochar against the phytotoxicity of lead ions on hydroponically grown chicory: An anatomical and ultrastructural investigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:363-374. [PMID: 30550966 DOI: 10.1016/j.ecoenv.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 05/11/2023]
Abstract
To evaluate the scavenging effect of functionalized biochar against the phytotoxicity of Pb2+, original biochar (O-B) was chemically oxidized with either HNO3 or KMnO4 to serve as biofilters (O-BF, HNO3-BF and KMnO4-BF) to hydroponically grown chicory (Cichorium intybus L. var. intybus). Plants subjected to Pb-stress showed various deteriorations in cell organelles including visible alterations in chloroplasts, malformations in plant cells, abnormalities in the mitochondrial system, inward invagination of cell walls, distortions in the plasma membrane, oversized vacuoles and irregular increase in plastoglobuli formation. In addition, disorganization in xylem and phloem tissues and numerous variations in the stomatal number, density and dimensions as well as stomata movement were noticeable in the abaxial leaf surface. Pb-stressed plants showed increments in root diameter, vascular cylinder and metaxylem vessels as well as an obvious increase in the thickness of cortex, intercellular aerenchyma and endodermis layer. Furthermore, a noticeable disturbance in macro-and micronutrient concentrations was recorded in Pb-stressed plants due to the defect in their water status. O-BF showed a limited scavenging effect against the phytotoxicity of Pb2+. However, oxidized biochar filters (particularly KMnO4-BF) recorded a noticeable safeguard effect due to their high affinity to Pb2+ ions. The higher sorption capacity of KMnO4-BF reduced the concentration of Pb in leaf tissues compared to the unequipped filtration treatment (117 vs. 19 µg g-1). In conclusion, data of this hydroponic study provides baseline information regarding the detoxification mechanisms of functionalized biochar against the phytotoxicity of trace elements.
Collapse
Affiliation(s)
- Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States.
| | - Xianqiang Yin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongyu Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States; School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zahoor Ahmad
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States; Department of Soil Science, University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
14
|
Petrella A, Spasiano D, Rizzi V, Cosma P, Race M, De Vietro N. Thermodynamic and kinetic investigation of heavy metals sorption in packed bed columns by recycled lignocellulosic materials from olive oil production. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1574768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Petrella
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari, Bari, Italy
| | - Danilo Spasiano
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari, Bari, Italy
| | - Vito Rizzi
- Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Pinalysa Cosma
- Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Marco Race
- Dipartimento di Ingegneria Civile e Meccanica, Università di Cassino e del Lazio Meridionale, Cassino, Italy
| | - Nicoletta De Vietro
- Istituto di Nanotecnologia (Nanotec), Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
15
|
Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, Tang H, Wei X, Gao B. Biochar amendment improves crop production in problem soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:8-21. [PMID: 30466010 DOI: 10.1016/j.jenvman.2018.10.117] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 05/20/2023]
Abstract
Problem soils are referred to as those with poor physical, chemical, and biological properties that inhibit or prevent plant growth. These poor properties may be a result of soil formation processes but are largely due to inappropriate farming practices or anthropogenic pollution. The world has lost a third of its arable land due to erosion and pollution in the past 40 years. Thus, there is an urgent need for improving and remediating problem soils. As a novel multifunctional carbon material, biochar has been widely used as a soil amendment for improving soil quality. Previous reviews have summarized the characteristics of biochar, the interactions with various soil contaminants, and the effects on soil quality, soil productivity, and carbon sequestration. Relatively limited attention has been focused on the effects of biochar amendment on plant growth in problem soils. As a result, a comprehensive review of literature in the Web of Science was conducted with a focus on the effects of biochar amendment on plant growth in problems soils. The review is intended to present an overview about problem soils, biochars as functional materials for soil amendment, how amended biochars interact with soils, soil microbes, and plant roots in remediation of problem soil and improve plant growth. Additionally, existing knowledge gaps and future directions are discussed. Information gathered from this review suggests that biochar amendment is a viable way of improving the quality of problem soils and enhancing crop production. It is anticipated that further research on biochar amendment will increase our understanding on the interactions of biochar with components of problem soils, speed up our effort on soil remediation, and improve crop production in problem soils.
Collapse
Affiliation(s)
- Haowei Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Weixin Zou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jianjun Chen
- Mid-Florida Research & Education Center, University of Florida, Apopka, FL, 32703, USA
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, USA
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning, 530011, China; College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiangying Wei
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Shen Z, Zhang J, Hou D, Tsang DCW, Ok YS, Alessi DS. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. ENVIRONMENT INTERNATIONAL 2019; 122:357-362. [PMID: 30501914 DOI: 10.1016/j.envint.2018.11.045] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In this study, a magnesium oxide (MgO) coated corncob biochar (MCB) was synthesized by pyrolyzing MgCl2 pretreated corncob, for a better performance in lead immobilization in a contaminated soil compared with corncob biochar (CB). The properties and microstructures of CB and MCB were investigated. It was observed that MgO particles ranging from 1 to 2 μm were well coated on MCB, and the MgO content in MCB was calculated at 29.90% in w/w. The surface area of the biochar was significantly enhanced from 0.07 to 26.56 m2/g after the MgO coating. The MgO coating also significantly facilitated the lead removal percentage from 23% to 74% in aqueous solution by biochar. CB failed to immobilize lead in a soil washing residue and could not reduce its environmental risks in a laboratory incubation study. In contrast, MCB was applied to the soil and resulted in a significant reduction in TCLP leached lead from 10.63 to 5.24 mg/L (reduced by 50.71%). The comparison between MCB and other amendments suggests that the biochar component of MCB adsorbed lead onto its surface through cation-π interaction and increased surface adsorption due to higher surface area, and then the MgO coated on MCB's surface further enhanced the adsorption through precipitation. The synergistic roles of biochar-mineral composites make them a promising candidate for soil remediation.
Collapse
Affiliation(s)
- Zhengtao Shen
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Jingzhuo Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| |
Collapse
|
17
|
El-Banna MF, Mosa A, Gao B, Yin X, Ahmad Z, Wang H. Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. CHEMOSPHERE 2018; 208:887-898. [PMID: 30068032 DOI: 10.1016/j.chemosphere.2018.06.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 05/11/2023]
Abstract
This pilot study investigated the affinity of oxidized biochars to sorb lead ions (Pb2+) in aqueous solutions, and its potentiality to serve as bio-filters to detoxify Pb-induced oxidative stress on hydroponically grown chicory. Raw bagasse was slow-pyrolyzed at 600 °C to produce original biochar (O-B), which was further oxidized by HNO3 and KMnO4 to generate HNO3-B and KMnO4-B, respectively. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), digital selected-area electron diffraction (SAED) and Fourier transform infrared spectroscopy (FTIR) analyses were performed to study physicochemical properties of pre-and post-sorption samples. Kinetic and isothermal batch sorption experiments proved the high affinity of oxidized biochar to Pb2+ ions. Both physisorption and chemisorption mechanisms participated mutually in sorption process. Leaf histochemistry analysis showed various dysfunctions on plants grown under severe Pb-stress including (i) induction of oxidative stress, (ii) deactivation in antioxidant enzymatic and non-enzymatic defense pathways, (iii) defects in plant water status, (iv) disruption in photosynthetic pigments synthesis, and (v) disturbance in the membrane permeability to solute leakage. Biochar filters (particularly KMnO4-B) exhibited a scavenging effect against these adverse effects by reducing Pb-bioavailability. Furthermore, the chemical characteristics of biochar and its derivatives (biochar-derived humic acids) provided additional stimulating effect to plant scavenging mechanisms. This ameliorative effect of biochar filters minimized the dramatic reductions in vegetative measurements of plants grown under severe Pb-stress. Hence, this study provides insights regarding the potentiality to functionalize biochar and its derivatives for heavy metal detoxification.
Collapse
Affiliation(s)
- Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States.
| | - Xianqiang Yin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zahoor Ahmad
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States; Department of Agricultural Sciences, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Hongyu Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States; School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|