1
|
Ndour PMS, Bidar G, Staes L, Facon N, Laruelle F, Genies L, Tisserant B, Duclercq J, Fontaine J, Lounès-Hadj Sahraoui A. Effect of different composts on the dynamic of soil organic pollutants, microbial network interactions and multifunctionality in an urban garden made from a former brownfield. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124951. [PMID: 40101491 DOI: 10.1016/j.jenvman.2025.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Brownfield requalification in urban areas can enable their ecological reclamation by improving their ecosystem services. In this perspective, their transformation into urban farms is underexplored due to the potential risks associated with pollutants transfer into vegetables and their low soil functionality. The current study aims to improve soil quality based on the principles of circular economy and to assess the transfer of organic pollutants into vegetables produced in an urban farm built from a former brownfield. For this purpose, locally available composts made from manure, leaves and fragmented rameal wood (FRW) were applied to a plot of a brownfield being converted into an urban garden in Roubaix (France). Thereafter, mixed vegetables (carrot, onion, radish, zucchini, potato, and chard) were cultivated for six months. After harvest, soil microbial communities were studied using metabarcoding of 16S RNA gene and ITS region, along with the dynamic of organic pollutants (petroleum hydrocarbons, dioxins/furans) in the soils and the produced vegetables. Globally, our results showed that the concentrations of these pollutants in vegetables were similar to those of vegetables originating from non-contaminated soils. Compost applications shaped the composition of soil bacterial communities and improved soil total metabolic activity and richness. Furthermore, amendment with manure and FRW composts improved the proportion of positive interactions between fungal and bacterial communities, suggesting more bacteria-fungi facilitation for SOM decomposition and nutrient recycling. Consistently, the calculated ecosystem service metrics and the soil quality index (T_SQI) showed a higher efficiency for FRW compost, demonstrating a relationship between soil microbial network characteristics and functioning.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France.
| | - Géraldine Bidar
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Laura Staes
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Natacha Facon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Laure Genies
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Benoit Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Jérôme Duclercq
- Unité Écologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039, Amiens, France; Equipe Recherche et Evaluation de Solutions Innovantes pour la Transition agroEcologique (RESISTE, Equipe Mixte Laboratoire Entreprise UPJV-AgroStation), Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France.
| |
Collapse
|
2
|
Silva MJ, Zainol I, Tanoeiro JR, Sitowski A, Major I, Murphy EJ, Fehrenbach GW. Livestock Slurry and Sustainable Pasture Management: Microbial Roles, Environmental Impacts, and Regulatory Perspectives in Ireland and Europe. Microorganisms 2025; 13:788. [PMID: 40284625 PMCID: PMC12029279 DOI: 10.3390/microorganisms13040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Pastures serve as the primary source of grass and forage plants for grazing livestock, requiring adequate nutrient input to sustain growth and soil fertility. Slurry from the livestock industry is widely utilized as a sustainable and cost-effective alternative to chemical fertilizers. Microorganisms within the slurry-pasture system are essential for breaking down organic matter, facilitating nutrient cycling, and improving soil health. However, mismanagement or inefficient microbial decomposition can lead to significant issues, such as nutrient leaching into water bodies, causing eutrophication, antimicrobial resistance, and reduced nutrient availability in pastures, which, in turn, may negatively impact livestock productivity. Thus, this paper investigates the composition and benefits of livestock slurry in pasture management, highlights microbial roles in nutrient cycling, and evaluates regulatory frameworks in Ireland and Europe. Additionally, it examines the environmental risks associated with improper slurry application, providing insights to support sustainable management practices.
Collapse
Affiliation(s)
- Mariana Juca Silva
- Bioengineering Organ-on-Chip Research Group (BOC), Centre for Applied Bioscience Research, Limerick Campus, Technological University of the Shannon, V94 EC5T Limerick, Ireland; (M.J.S.); (E.J.M.)
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Ismin Zainol
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - João Rui Tanoeiro
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Aline Sitowski
- Post-Graduation Program in Biology of Fungi, Algae, and Plants, Department of Biology Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil;
| | - Ian Major
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Emma J. Murphy
- Bioengineering Organ-on-Chip Research Group (BOC), Centre for Applied Bioscience Research, Limerick Campus, Technological University of the Shannon, V94 EC5T Limerick, Ireland; (M.J.S.); (E.J.M.)
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Gustavo Waltzer Fehrenbach
- Bioengineering Organ-on-Chip Research Group (BOC), Centre for Applied Bioscience Research, Limerick Campus, Technological University of the Shannon, V94 EC5T Limerick, Ireland; (M.J.S.); (E.J.M.)
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| |
Collapse
|
3
|
Peczyk K, Siupka P, Magurno F, Malicka M, Piotrowska-Seget Z. Genome characterisation of three mycorrhizal helper bacterial strains isolated from a polycyclic aromatic hydrocarbon polluted site. Mol Genet Genomics 2025; 300:24. [PMID: 39985673 DOI: 10.1007/s00438-025-02232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
The study aimed to explore the genetic and functional potential of mycorrhizal helper bacteria (MHB) strains isolated from polluted soil, focusing on their ability to enhance plant growth and ameliorate the adverse effects of polycyclic aromatic hydrocarbons (PAHs). We sequenced the genomes of three MHB strains isolated from soil contaminated with PAHs and phenol. Moreover, experiments were carried out to check if these bacteria have ability to stimulate the growth of arbuscular mycorrhizal fungi (AMF) and promote plant development. Phylogenomic analysis identified the strains as belonging to the Streptomyces, Pantoea, and Bacillus genera, all exhibiting high tolerance to hydrocarbons. Genome mining revealed genes encoding enzymes for the degradation of aromatic compounds, alongside biosynthetic gene clusters for secondary metabolites such as siderophores and antibiotics. Laboratory experiments confirmed that the studied MHB strains enhance AMF development and spore production while exhibiting plant growth-promoting mechanisms such as siderophore and ammonia production, phosphate solubilization, and cellulolytic enzyme synthesis. These findings highlight the potential application of MHB in microbial-assisted remediation of hydrocarbon-contaminated soils through the tripartite plant-MHB-AMF system.
Collapse
Affiliation(s)
- Klaudia Peczyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Piotr Siupka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland.
| |
Collapse
|
4
|
Li X, Song C, Kang X, Chen F, Li A, Wang Y, Zou J, Yin J, Li Y, Sun Z, Ma X, Liu J. Assembly and functional profile of rhizosphere microbial community during the Salix viminalis-AMF remediation of polycyclic aromatic hydrocarbon polluted soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122503. [PMID: 39299104 DOI: 10.1016/j.jenvman.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are positive to the phytoremediation by improving plant biomass and soil properties. However, the role of AM plants to the remediation of polycyclic aromatic hydrocarbons (PAHs) is yet to be widely recognized, and the impact of AM plants to indigenous microbial communities during remediation remains unclear. In this work, a 90-day study was conducted to assess the effect of AMF-Salix viminalis on the removal of PAHs, and explore the impact to the microbial community composition, abundance, and function. Results showed that AMF-Salix viminalis effectively enhanced the removal of benzo[a]pyrene, and enriched more PAH-degrading bacteria, consisting of Actinobacteria, Chloroflexi, Sphingomonas, and Stenotrophobacter, as well as fungi including Basidiomycota, Pseudogymnoascus, and Tomentella. For gene function, AM willow enhanced the enrichment of genes involved in amino acid synthesis, aminoacyl-tRNA biosynthesis, and cysteine and methionine metabolism pathways. F. mosseae inoculation had a greater effect on alpha- and beta-diversity of microbial genes at 90 d. Additionally, AMF inoculation significantly increased the soil microbial biomass carbon and organic matter concentration. All together, the microbial community assembly and function shaped by AM willow promoted the dissipation of PAHs. Our results support the effectiveness of AM remediation and contribute to reveal the enhancing-remediation mechanism to PAHs using multi-omics data.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Chuansheng Song
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Horticulture, Jilin Agricultural University, Changchun, 130000, Jilin, China
| | - Yingying Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Ma
- Department of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Junxiang Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
5
|
Zhang X, Wang Z, Lu Y, Wei J, Qi S, Wu B, Cheng S. Sustainable Remediation of Soil and Water Utilizing Arbuscular Mycorrhizal Fungi: A Review. Microorganisms 2024; 12:1255. [PMID: 39065027 PMCID: PMC11279267 DOI: 10.3390/microorganisms12071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Phytoremediation is recognized as an environmentally friendly technique. However, the low biomass production, high time consumption, and exposure to combined toxic stress from contaminated media weaken the potential of phytoremediation. As a class of plant-beneficial microorganisms, arbuscular mycorrhizal fungi (AMF) can promote plant nutrient uptake, improve plant habitats, and regulate abiotic stresses, and the utilization of AMF to enhance phytoremediation is considered to be an effective way to enhance the remediation efficiency. In this paper, we searched 520 papers published during the period 2000-2023 on the topic of AMF-assisted phytoremediation from the Web of Science core collection database. We analyzed the author co-authorship, country, and keyword co-occurrence clustering by VOSviewer. We summarized the advances in research and proposed prospective studies on AMF-assisted phytoremediation. The bibliometric analyses showed that heavy metal, soil, stress tolerance, and growth promotion were the research hotspots. AMF-plant symbiosis has been used in water and soil in different scenarios for the remediation of heavy metal pollution and organic pollution, among others. The potential mechanisms of pollutant removal in which AMF are directly involved through hyphal exudate binding and stabilization, accumulation in their structures, and nutrient exchange with the host plant are highlighted. In addition, the tolerance strategies of AMF through influencing the subcellular distribution of contaminants as well as chemical form shifts, activation of plant defenses, and induction of differential gene expression in plants are presented. We proposed that future research should screen anaerobic-tolerant AMF strains, examine bacterial interactions with AMF, and utilize AMF for combined pollutant removal to accelerate practical applications.
Collapse
Affiliation(s)
- Xueqi Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
| | - Zongcheng Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
| | - Yebin Lu
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; (Y.L.); (J.W.); (S.Q.)
| | - Jun Wei
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; (Y.L.); (J.W.); (S.Q.)
| | - Shiying Qi
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; (Y.L.); (J.W.); (S.Q.)
| | - Boran Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
González Álvarez Á, Martinez I Quer A, Ellegaard-Jensen L, Sapkota R, Carvalho PN, Johansen A. Fungal removal of cyanotoxins in constructed wetlands: The forgotten degraders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172590. [PMID: 38642746 DOI: 10.1016/j.scitotenv.2024.172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.
Collapse
Affiliation(s)
- Ángela González Álvarez
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Yu L, Zhang Z, Liu P, Zhou L, Tan S, Kuang S. Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies. J Fungi (Basel) 2024; 10:340. [PMID: 38786696 PMCID: PMC11121806 DOI: 10.3390/jof10050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Arbuscular mycorrhizal fungi play a key role in mediating soil-plant relationships within karst ecosystems. Sophora japonica, a medicinal plant with anti-inflammatory and antitumor properties, is widely cultivated in karst areas of Guangxi, China. We considered limestone, dolomite, and sandstone at altitudes ranging from 100 to 800 m and employed Illumina sequencing to evaluate AMF diversity and identify the factors driving S. japonica rhizosphere AMF community changes. We showed that the increase in altitude increased S. japonica AMF colonization and the Shannon index. The colonization of limestone plots was higher than that of other lithology. In total, 3,096,236 sequences and 5767 OTUs were identified in S. japonica rhizosphere soil. Among these, 270 OTUs were defined at the genus level and divided into 7 genera and 35 species. Moreover, available nitrogen, soil organic matter, and available calcium content had a coupling effect and positive influence on AMF colonization and Shannon and Chao1 indices. Conversely, available phosphorus, available potassium, and available magnesium negatively affected AMF Shannon and Chao1 indices. Lithology, altitude, pH, and available phosphorus are important factors that affect the dynamics of AMF in the S. japonica rhizosphere.
Collapse
Affiliation(s)
- Limin Yu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Zhongfeng Zhang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
| | - Peiyuan Liu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
- School of Pharmacy, Guilin Medical University, Guilin 541006, China
| | - Longwu Zhou
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
| | - Shuhui Tan
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
| | - Shitou Kuang
- Agriculture and Rural Affairs Bureau of Quanzhou County, Guilin 541599, China;
| |
Collapse
|
8
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
9
|
Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N'I, Kurniawan SB. Integrating phytoremediation and mycoremediation with biosurfactant-producing fungi for hydrocarbon removal and the potential production of secondary resources. CHEMOSPHERE 2024; 349:140881. [PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
Collapse
Affiliation(s)
- Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, Třeboň, 379 81, Czech Republic.
| |
Collapse
|
10
|
Tian L, An M, Wu M, Liu F, Zhang Y. Habitat ecological characteristics and soil fungal community structure of Paphiopedilum subgenus Brachypetalum Hallier (Orchidaceae) plants in Southwest China. PLANT SIGNALING & BEHAVIOR 2023; 18:2227365. [PMID: 37377110 DOI: 10.1080/15592324.2023.2227365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
Species of the subgenus Brachypetalum are the most primitive, most ornamental and most threatened group in the Orchid. This study revealed the ecological characteristics, soil nutrient characteristics and soil fungal community structure of habitats of the subgenus Brachypetalum in Southwest China. Lays a foundation for research on the wild populations and conservation Brachypetalum. The results showed that species of the subgenus Brachypetalum preferred a cool and humid environment, grew in scattered or aggregated form in narrow negative terrain, mainly in humic soil. The soil physical and chemical properties and soil enzyme activity indexes of the habitats were significantly different among different species, and the soil properties of different distribution points of the same species also varied greatly. There were significant differences in the soil fungal community structure among the habitats of different species. Basidiomycetes and ascomycetes were the main fungi in habitats of subgenus Brachypetalum species, and their relative abundance varied among different species. The functional groups of soil fungi were mainly symbiotic fungi and saprophytic fungi. LEfSe analysis found that there were different numbers and species of biomarkers in the habitats of subgenus Brachypetalum species, indicating that the habitat preference characteristics of each species in subgenus Brachypetalum were reflected in the fungal community. It was found that environmental factors had an impact on the changes in soil fungal communities in the habitats of subgenus Brachypetalum species, with climatic factors having the highest explanation rate (20.96%). Soil properties were significantly positively or negatively correlated with a variety of dominant soil fungal groups. Conclusions: The results of this study lay the foundation for the study of the habitat characteristics of wild populations of subgenus Brachypetalum and provides data to support in situ and ex situ conservation in the future.
Collapse
Affiliation(s)
- Li Tian
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Mingtai An
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Moxu Wu
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Feng Liu
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Yang Zhang
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Wang Z, Peng D, Fu C, Luo X, Guo S, Li L, Yin H. Pan-metagenome reveals the abiotic stress resistome of cigar tobacco phyllosphere microbiome. FRONTIERS IN PLANT SCIENCE 2023; 14:1248476. [PMID: 38179476 PMCID: PMC10765411 DOI: 10.3389/fpls.2023.1248476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
The important role of microbial associations in mediating plant protection and responses to abiotic stresses has been widely recognized. However, there have been limited studies on the functional profile of the phyllosphere microbiota from tobacco (Nicotiana tabacum), hindering our understanding of the mechanisms underlying stress resilience in this representative and easy-to-cultivate model species from the solanaceous family. To address this knowledge gap, our study employed shotgun metagenomic sequencing for the first time to analyze the genetic catalog and identify putative plant growth promoting bacteria (PGPB) candidates that confer abiotic stress resilience throughout the growth period of cigar tobacco in the phyllosphere. We identified abundant genes from specific bacterial lineages, particularly Pseudomonas, within the cigar tobacco phyllospheric microbiome. These genes were found to confer resilience against a wide range of stressors, including osmotic and drought stress, heavy metal toxicity, temperature perturbation, organic pollutants, oxidative stress, and UV light damage. In addition, we conducted a virome mining analysis on the metagenome to explore the potential roles of viruses in driving microbial adaptation to environmental stresses. Our results identified a total of 3,320 scaffolds predicted to be viral from the cigar tobacco phyllosphere metagenome, with various phages infecting Pseudomonas, Burkholderia, Enterobacteria, Ralstonia, and related viruses. Within the virome, we also annotated genes associated with abiotic stress resilience, such as alkaline phosphatase D (phoD) for nutrient solubilization and glutamate-5-semialdehyde dehydrogenase (proA) for osmolyte synthesis. These findings shed light on the unexplored roles of viruses in facilitating and transferring abiotic stress resilience in the phyllospheric microbiome through beneficial interactions with their hosts. The findings from this study have important implications for agricultural practices, as they offer potential strategies for harnessing the capabilities of the phyllosphere microbiome to enhance stress tolerance in crop plants.
Collapse
Affiliation(s)
- Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Changwu Fu
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xianxue Luo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Shijie Guo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhou X, Wang T, Wang J, Chen S, Ling W. Research progress and prospect of glomalin-related soil protein in the remediation of slightly contaminated soil. CHEMOSPHERE 2023; 344:140394. [PMID: 37813247 DOI: 10.1016/j.chemosphere.2023.140394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Soil pollution caused by organic pollutants and potentially toxic elements poses a serious threat to sustainable agricultural development, global food security and human health. Therefore, strategies for reducing soil pollution are urgently required. Arbuscular mycorrhizal fungi (AMF)-assisted phytoremediation is widely recognized for its ability to remediate slightly-contaminated soil. Glomalin-related soil protein (GRSP) production by AMF is considered a vital mechanism of AMF-assisted phytoremediation. GRSP is widespread in soils and may contribute to the remediation of slightly contaminated soils. GRSP facilitates stabilization of pollutants in soils by interacting with pollutants owing to its abundant functional groups, recalcitrance, and long turnover time. It also enhances soil bioremediation and phytoremediation by stimulating soil microbial activity, improving soil structure, and providing nutrients for plants. However, research on GRSP is still in its early stages, and studies on contaminated soil remediation are limited. The effectiveness of GRSP in situ remediation remains to be proved. This review summarizes current knowledge regarding the GRSP distribution and its contribution to the remediation of slightly contaminated soils. Additionally, we present strategies to increase the GRSP content in contaminated soils, as well as prospects for future studies on the use of GRSP in contaminated soil remediation. This study focuses on recent developments that aim to improve awareness of the role of GRSP in soil remediation and relevant future directions.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuang Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Suárez JP, Herrera P, Kalinhoff C, Vivanco-Galván O, Thangaswamy S. Generalist arbuscular mycorrhizal fungi dominated heavy metal polluted soils at two artisanal and small - scale gold mining sites in southeastern Ecuador. BMC Microbiol 2023; 23:42. [PMID: 36792979 PMCID: PMC9930361 DOI: 10.1186/s12866-022-02748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/24/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Artisanal and small-scale gold mining activities are producing contamination with heavy metals and metalloids (HMM) into soils and water worldwide. The HMM are considered as one of the major abiotic stresses due to their long-term persistence in soil. In this context, arbuscular mycorrhizal fungi (AMF) confer resistance to a variety of abiotic plant stressors including HMM. However, little is known regarding the diversity and composition of AMF communities in heavy metal polluted sites in Ecuador. METHODS In order to investigate the AMF diversity, root samples and associated soil of six plant species were collected from two sites polluted by heavy metals, located in Zamora-Chinchipe province, Ecuador. The AMF 18S nrDNA genetic region was analyzed and sequenced, and fungal OTUs were defined based on 99% sequence similarity. Results were contrasted with AMF communities from a natural forest and from reforestation sites located in the same province and with available sequences in GenBank. RESULTS The main pollutants in soils were Pb, Zn, Hg, Cd and Cu with concentrations exceeding the soil reference value for agricultural use. Molecular phylogeny and OTU delimitation showed 19 OTUs, the family Glomeraceae was the most OTU-rich followed by Archaeosporaceae, Acaulosporaceae, Ambisporaceae and Paraglomeraceae. Most of the OTUs (11 of 19) have been found at other locations worldwide, 14 OTUs were proven from nearby non-contaminated sites in Zamora-Chinchipe. CONCLUSION Our study showed that there are no specialized OTUs at the studied HMM polluted sites, but rather generalists adapted to a wide variety of habitats. Their potential role in phytoremediation approaches remains to be investigated.
Collapse
Affiliation(s)
- Juan Pablo Suárez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador.
| | - Paulo Herrera
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador
| | - Carolina Kalinhoff
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador
| | - Oscar Vivanco-Galván
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador
| | - Selvaraj Thangaswamy
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador ,PROMETEO Project, Loja, Ecuador
| |
Collapse
|
15
|
Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1596-1613. [PMID: 36786203 DOI: 10.1080/15226514.2023.2176466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Endophytic fungi exist widely in plants and play an important role in the growth and adaptation of plants. They could be used in phytoremediation techniques against heavy metal contaminated soil since beneficial microbial symbionts can endow plants with resistance to external heavy metal stresses. This review summarized the regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Potential endophytic fungi in enhancing plant's adaption to heavy metal stresses include arbuscular mycorrhizal fungi, dark septate endophytic fungi, plant growth promoting endophytic fungi. The mechanisms involve coevolution strategy, immune regulation and detoxification transport to improve the ability of plants to adapt to heavy metal stress. They can increase the synthesis of host hormones and maintaining the balance of endogenous hormones, strengthen osmotic regulation, regulate carbon and nitrogen metabolism, and increase immune activity, antioxidant enzyme and glutathione activity. They also help to improve the detoxification transport and heavy metal emission capacity of the host by significantly producing iron carrier, metallothionein and 1-aminocyclopropane-1-carboxylic acid deaminase. The combination of endophytic fungi and hyperaccumulation plants provides a promising technology for the ecological restoration of heavy metal contaminated soil. Endophytic fungi reserves further development on enhancing host plant's adaptability to heavy metal stresses.
Collapse
Affiliation(s)
- Jiadong Zheng
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xingguang Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Chunyan Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hongxia Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaru Yu
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baokang Huang
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Li JH, Muhammad Aslam M, Gao YY, Dai L, Hao GF, Wei Z, Chen MX, Dini-Andreote F. Microbiome-mediated signal transduction within the plant holobiont. Trends Microbiol 2023; 31:616-628. [PMID: 36702670 DOI: 10.1016/j.tim.2022.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Microorganisms colonizing the plant rhizosphere and phyllosphere play crucial roles in plant growth and health. Recent studies provide new insights into long-distance communication from plant roots to shoots in association with their commensal microbiome. In brief, these recent advances suggest that specific plant-associated microbial taxa can contribute to systemic plant responses associated with the enhancement of plant health and performance in face of a variety of biotic and abiotic stresses. However, most of the mechanisms associated with microbiome-mediated signal transduction in plants remain poorly understood. In this review, we provide an overview of long-distance signaling mechanisms within plants mediated by the commensal plant-associated microbiomes. We advocate the view of plants and microbes as a holobiont and explore key molecules and mechanisms associated with plant-microbe interactions and changes in plant physiology activated by signal transduction.
Collapse
Affiliation(s)
- Jian-Hong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mehtab Muhammad Aslam
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Li X, Kang X, Zou J, Yin J, Wang Y, Li A, Ma X. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.-mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114461. [PMID: 38321680 DOI: 10.1016/j.ecoenv.2022.114461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 02/08/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well known persistent organic pollutants that have carcinogenic, teratogenic, and mutagenic effects on humans and animals. Arbuscular mycorrhizal fungi (AMF) that can infest plant hosts and form symbioses may help plants to enhance potential rhizosphere effects, thus contributing to the rhizodegradation of PAH-contaminated soils. The present study aimed to assess the effectiveness of AMF on enhancing Salix viminalis-mediated phytoremediation of PAH-polluted soil and clarify the plant enzymatic and organic acid mechanisms induced by AMF. Natural attenuation (NA), phytoremediation (P, Salix viminalis), S. viminalis-AMF combined remediation using willow inoculated with Funneliformis mosseae (PM), Laroideoglomus etunicatum (PE), and Rhizophagus intraradices (PI) were used as strategies for the remediation of PAH-polluted soils. The results showed that AMF inoculation contributed to the dissipation of the high-molecular-weight PAH benzo (α) pyrene that had concentrations in PM, PE, and PI treatments of 40.1 %, 24.49 %, and 36.28 % of the level in the NA treatment, and 62.32 %, 38.05 %, and 56.38 % of the level in the P treatment after 90 days. The mycorrhizal treatment also improved the removal efficiency of phenanthrene and pyrene, as their concentrations were sharply decreased after 30 days compared to the NA and P treatments. The research further clarified the changes in rhizosphere substances induced by AMF. Organic acids including arachidonic acid, octadecanedioic acid, α-linolenic acid, 10,12,14-octadecarachidonic acid and 5-methoxysalicylic acid that can act as co-metabolic substrates for certain microbial species to metabolize PAHs were significantly increased in AMF-inoculated treatments. AMF inoculation also elevated the levels of polyphenol oxidase, laccase, and dehydrogenase, that played crucial roles in PAHs biodegradation. These findings provide an effective strategy for using AMF-assisted S. viminalis to remediate PAH-polluted soils, and the results have confirmed the key roles of organic acids and soil enzymes in plant-AMF combined remediation of PAHs.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, Shandong, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; College of Horticulture, Jilin Agricultural University, Changchun 130000, Jilin, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaodong Ma
- Institute of Grassland, Flowers and Landscape Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
| |
Collapse
|
18
|
Li L, Peng S, Wang Z, Zhang T, Li H, Xiao Y, Li J, Liu Y, Yin H. Genome mining reveals abiotic stress resistance genes in plant genomes acquired from microbes via HGT. FRONTIERS IN PLANT SCIENCE 2022; 13:1025122. [PMID: 36407614 PMCID: PMC9667741 DOI: 10.3389/fpls.2022.1025122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Colonization by beneficial microbes can enhance plant tolerance to abiotic stresses. However, there are still many unknown fields regarding the beneficial plant-microbe interactions. In this study, we have assessed the amount or impact of horizontal gene transfer (HGT)-derived genes in plants that have potentials to confer abiotic stress resistance. We have identified a total of 235 gene entries in fourteen high-quality plant genomes belonging to phyla Chlorophyta and Streptophyta that confer resistance against a wide range of abiotic pressures acquired from microbes through independent HGTs. These genes encode proteins contributed to toxic metal resistance (e.g., ChrA, CopA, CorA), osmotic and drought stress resistance (e.g., Na+/proline symporter, potassium/proton antiporter), acid resistance (e.g., PcxA, ArcA, YhdG), heat and cold stress resistance (e.g., DnaJ, Hsp20, CspA), oxidative stress resistance (e.g., GST, PoxA, glutaredoxin), DNA damage resistance (e.g., Rad25, Rad51, UvrD), and organic pollutant resistance (e.g., CytP450, laccase, CbbY). Phylogenetic analyses have supported the HGT inferences as the plant lineages are all clustering closely with distant microbial lineages. Deep-learning-based protein structure prediction and analyses, in combination with expression assessment based on codon adaption index (CAI) further corroborated the functionality and expressivity of the HGT genes in plant genomes. A case-study applying fold comparison and molecular dynamics (MD) of the HGT-driven CytP450 gave a more detailed illustration on the resemblance and evolutionary linkage between the plant recipient and microbial donor sequences. Together, the microbe-originated HGT genes identified in plant genomes and their participation in abiotic pressures resistance indicate a more profound impact of HGT on the adaptive evolution of plants.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | | | - Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
- Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, China
| | - Hongguang Li
- Hunan Tobacco Science Institute, Changsha, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Jingjun Li
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
19
|
Shi Y, Wang S, Guo J, Xu Z, Wang S, Sang Y. Effects of arbuscular mycorrhizal inoculation on the phytoremediation of PAH-contaminated soil: A meta-analysis. CHEMOSPHERE 2022; 307:136033. [PMID: 35981621 DOI: 10.1016/j.chemosphere.2022.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Inoculation with arbuscular mycorrhizal (AM) fungi can accelerate the phytoremediation process by increasing plant biomass and improving soil physicochemical and biological characteristics. However, a quantitative, data-based conclusion is yet to be derived on the roles of AM fungi in remediating soils polluted by polycyclic aromatic hydrocarbons (PAHs), and the impact factors are unclear. To address these issues, we performed a meta-analysis of 45 articles to estimate the effects of AM inoculation on the phytoremediation of soils polluted by PAHs and to examine the influence of experimental conditions on these effects. Our results showed that AM inoculation significantly decreased the residual soil PAHs concentration at all PAHs levels, and the largest effect of AM treatment was 48.5% compared to the non-mycorrhizal treatment. This should be attributed to increased plant growth and PAHs uptake, and soil biological activity in the rhizosphere induced by AM symbionts. Compared to the non-mycorrhizal treatment, the largest AM effects on the total plant biomass, root PAHs concentration, shoot PAHs concentration, soil bacterial biomass, soil catalase activity, and soil polyphenol oxidase activity were 51.7%, 565%, 53.1%, 141%, 100% and 51.9%, respectively. Although these effects on the above mentioned parameters varied with AM fungi (genus, species, and inoculation mode), soil PAHs (source, concentration, and type), plant type (dicots and monocots), and experimental conditions (experimental duration, soil sterilization and additional factors), few negative AM effects were observed. This study confirmed the feasibility of using AM fungi to enhance the phytoremediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Yifan Shi
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Simeng Wang
- Shenyang Research Institute of Chemical Industry, Shenyang, 110021, China
| | - Jianing Guo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
20
|
Rostami S, Jaskulak M, Rostami M, Baghapour MA, Azhdarpoor A. Efficient Biodegradation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere Using Plant Growth Regulators and Biological Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Saeid Rostami
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Jaskulak
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, Lille, France
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Poland
| | - Majid Rostami
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Potential tradeoffs between effects of arbuscular mycorrhizal fungi inoculation, soil organic matter content and fertilizer application in raspberry production. PLoS One 2022; 17:e0269751. [PMID: 35849573 PMCID: PMC9292081 DOI: 10.1371/journal.pone.0269751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Ecological intensification has been proposed as an alternative paradigm for intensive agriculture to boost yield sustainably through utilizing ecosystem services. A prerequisite to achieving this is to understand the relations between multiple ecosystem services and production, while taking growth conditions such as nutrient availability into consideration. Here, we conducted a pot-field experiment to study the interactive effects of soil organic matter (SOM) content and arbuscular mycorrhizal fungi (AMF) inoculation on the production of raspberry (Rubus idaeus L.) under four levels of fertilizer application. Raspberry flower number, fruit number and yield only significantly increased with fertilizer inputs but were not impacted by SOM content or AMF inoculation. Fruit set and single berry weight were influenced by both SOM content and AMF inoculation, in complex three-way interactions with fertilizer application. Fruit set of AMF inoculated plants increased with fertilizer inputs in low SOM soils, but decreased with fertilizer inputs under high SOM soils, with the highest fruit set occurring at no fertilizer inputs. In low SOM soils, the relation between single berry weight and fertilizer application was more pronounced in inoculated plants than in non-inoculated plants, while in high SOM soils the relative benefits of AMF inoculation on single berry weight decreased with increasing fertilizer inputs. We attribute the lack of effects of AMF inoculation and SOM content on flower number, fruit number and yield mainly to potential tradeoffs between the experimental variables that all influence resource uptake by plant root systems. Our results suggest that potentially beneficial effects of AMF and SOM can be offset by each other, probably driven by the dynamic relations between AMF and the host plants. The findings reveal fundamental implications for managing AMF inoculation and SOM management simultaneously in real-world agricultural systems.
Collapse
|
22
|
Yan Q, Li X, Xiao X, Chen J, Liu J, Lin C, Guan R, Wang D. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses. Ecol Evol 2022; 12:e9091. [PMID: 35845374 PMCID: PMC9273509 DOI: 10.1002/ece3.9091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Drought is the main limiting factor for plant growth in karst areas with a fragile ecological environment. Cinnamomum migao H.W. Li is an endemic medicinal woody plant present in the karst areas of southwestern China, and it is endangered due to poor drought tolerance. Arbuscular mycorrhizal fungi (AMF) are known to enhance the drought tolerance of plants. However, few studies have examined the contribution of AMF in improving the drought tolerance of C. migao seedlings. Therefore, we conducted a series of experiments to determine whether a single inoculation and coinoculation of AMF (Claroideoglomus lamellosum and Claroideoglomus etunicatum) enhanced the drought tolerance of C. migao. Furthermore, we compared the effects of single inoculation and coinoculation with different inoculum sizes (20, 40, 60, and 100 g; four replicates per treatment) on mycorrhizal colonization rate, plant growth, photosynthetic parameters, antioxidant enzyme activity, and malondialdehyde (MDA) and osmoregulatory substance contents. The results showed that compared with nonmycorrhizal plants, AMF colonization significantly improved plant growing status; net photosynthetic rate; superoxide dismutase, catalase, and peroxidase activities; and soluble sugar, soluble protein, and proline contents. Furthermore, AMF colonization increased relative water content and reduced MDA content in cells. These combined cumulative effects of AMF symbiosis ultimately enhanced the drought tolerance of seedlings and were closely related to the inoculum size. With an increase in inoculum size, the growth rate and drought tolerance of plants first increased and then decreased. The damage caused by drought stress could be reduced by inoculating 40-60 g of AMF, and the effect of coinoculation was significantly better than that of single inoculation at 60 g of AMF, while the effect was opposite at 40 g of AMF. Additionally, the interaction between AMF and inoculum sizes had a significant effect on drought tolerance. In conclusion, the inoculation of the AMF (Cl. lamellosum and Cl. etunicatum) improved photosynthesis, activated antioxidant enzymes, regulated cell osmotic state, and enhanced the drought tolerance of C. migao, enabling its growth in fragile ecological environments.
Collapse
Affiliation(s)
- Qiuxiao Yan
- Department of Ecology, College of Forestry Guizhou University Guiyang China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang China.,State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
| | - Xiangying Li
- Institute of New Rural Development Guizhou University Guiyang China
| | - Xuefeng Xiao
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Jingzhong Chen
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Jiming Liu
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Changhu Lin
- Department of Labor Health and Environmental Hygiene, School of Public Health Guizhou Medical University Guiyang China
| | - Ruiting Guan
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Daoping Wang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang China.,State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
| |
Collapse
|
23
|
Effects of an Arbuscular Mycorrhizal Fungus on the Growth of and Cadmium Uptake in Maize Grown on Polluted Wasteland, Farmland and Slopeland Soils in a Lead-Zinc Mining Area. TOXICS 2022; 10:toxics10070359. [PMID: 35878264 PMCID: PMC9322003 DOI: 10.3390/toxics10070359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) exist widely in soil polluted by heavy metals and have significant effects on plant growth and cadmium (Cd) uptake. Cd contents differ among wasteland, farmland and slopeland soils in a lead-zinc mining area in Yunnan Province, Southwest China. The effects of AMF on maize growth, root morphology, low-molecular-weight organic acid (LMWOA) concentrations and Cd uptake were investigated via a root-bag experiment. The results show that AMF increased maize growth on Cd-polluted soils, resulting in increases in root length, surface area, volume and branch number, with the effects being stronger in farmland than in wasteland and slopeland soils; increased malic acid and succinic acid secretion 1.3-fold and 1.1-fold, respectively, in roots on farmland soil; enhanced the iron- and manganese-oxidized Cd concentration by 22.6%, and decreased the organic-bound Cd concentration by 12.9% in the maize rhizosphere on farmland soil; and increased Cd uptake 12.5-fold and 1.7-fold in shoots and by 25.7% and 86.6% in roots grown on farmland and slopeland soils, respectively. Moreover, shoot Cd uptake presented significant positive correlations with root surface area and volume and LMWOA concentrations. Thus, these results indicated the possible mechanism that the increased maize Cd uptake induced by AMF was closely related to their effect on root morphology and LMWOA secretion, with the effects varying under different Cd pollution levels.
Collapse
|
24
|
Purkis JM, Bardos RP, Graham J, Cundy AB. Developing field-scale, gentle remediation options for nuclear sites contaminated with 137Cs and 90Sr: The role of Nature-Based Solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114620. [PMID: 35149404 DOI: 10.1016/j.jenvman.2022.114620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The remediation of contaminated land using plants, bacteria and fungi has been widely examined, especially in laboratory or greenhouse systems where conditions are precisely controlled. However, in real systems at the field scale conditions are much more variable and often produce different outcomes, which must be fully examined if 'gentle remediation options', or GROs, are to be more widely implemented, and their associated benefits (beyond risk-management) realized. These secondary benefits can be significant if GROs are applied correctly, and can include significant biodiversity enhancements. Here, we assess recent developments in the field-scale application of GROs for the remediation of two model contaminants for nuclear site remediation (90Sr and 137Cs), their risk management efficiency, directions for future application and research, and barriers to their further implementation at scale. We also discuss how wider benefits, such as biodiversity enhancements, water filtration etc. can be maximized at the field-scale by intelligent application of these approaches.
Collapse
Affiliation(s)
- Jamie M Purkis
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, United Kingdom
| | - R Paul Bardos
- Centre for Aquatic Environments, University of Brighton, Brighton, BN2 4AT, UK; r3 Environmental Technology Ltd., Reading, United Kingdom
| | - James Graham
- National Nuclear Laboratory, Sellafield, Cumbria, CA20 1PG, UK
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, United Kingdom.
| |
Collapse
|
25
|
Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Micropollutants in bodies of water represent many challenges. We addressed these challenges by the application of constructed wetlands, which represent advanced treatment technology for the removal of micropollutants from water. However, which mechanisms specifically contribute to the removal efficiency often remains unclear. Methods: Here, we focus on the removal of 27 micropollutants by bioremediation. For this, macrophytes Phragmites australis, Iris pseudacorus and Lythrum salicaria were taken from established wetlands, and a special experimental set-up was designed. In order to better understand the impact of the rhizosphere microbiome, we determined the microbial composition using 16S rRNA gene sequencing and investigated the role of identified genera in the micropollutant removal of micropollutants. Moreover, we studied the colonization of macrophyte roots by arbuscular mycorrhizal fungi, which are known for their symbiotic relationship with plants. This symbiosis could result in increased removal of present micropollutants. Results: We found Iris pseudacorus to be the most successful bioremediative system, as it removed 22 compounds, including persistent ones, with more than 80% efficiency. The most abundant genera that contributed to the removal of micropollutants were Pseudomonas, Flavobacterium, Variovorax, Methylotenera, Reyranella, Amaricoccus and Hydrogenophaga. Iris pseudacorus exhibited the highest colonization rate (56%). Conclusions: Our experiments demonstrate the positive impact of rhizosphere microorganisms on the removal of micropollutants.
Collapse
|
26
|
Han Y, Zveushe OK, Dong F, Ling Q, Chen Y, Sajid S, Zhou L, Resco de Dios V. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149222. [PMID: 34375244 DOI: 10.1016/j.scitotenv.2021.149222] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and one of the most toxic metals in the environment. Arbuscular mycorrhizal fungi (AMF) assisted phytoremediation can be used to remove Cd from polluted soils but the role of AMF, which mediate in Cd accumulation and tolerance, remains poorly understood. Here we inoculated Lolium perenne with two different AMF species (Glomus etunicatum and Glomus mosseae). Mycorrhizal L. perenne and non-mycorrhizal controls were exposed to Cd stress and we tested the effects of AMF mycorrhization on Cd uptake and subsequent tolerance, as well as the underlying mechanisms. Mycorrhizal infection increased root Cd2+ uptake and we observed that net Cd2+ influx was coupled with net Ca2+ influx. The inactivation of Ca2+ transporter channels decreased Cd2+ uptake in non-inoculated roots to a greater extent than in inoculated roots, indicating that AMF activates additional ion transport channels. In consequence, inoculated plants exhibited higher Cd accumulation in both roots and shoots than non-inoculated controls. However, AMF-inoculated plants showed higher chlorophyll concentrations, photosynthesis, and growth under Cd, indicating lower Cd toxicity in AMF-inoculated plants, despite the increase in Cd uptake. We observed that AMF-inoculated favored the isolation of Cd within cell walls and vacuoles, and had higher concentrations of superoxide dismutase activity and glutathione concentration in roots than non-inoculated plants, consequently experiencing less stress upon Cd exposure. Our results highlight the potential and mechanism of AMF for enhancing phytoremediation of L. perenne in heavy metal contaminated environments.
Collapse
Affiliation(s)
- Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yun Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sumbal Sajid
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Crop and Forest Sciences, Universitat de Lleida, Lleida 25198, Spain.
| |
Collapse
|
27
|
Zuzolo D, Sciarrillo R, Postiglione A, Guarino C. The remediation potential for PAHs of Verbascum sinuatum L. combined with an enhanced rhizosphere landscape: A full-scale mesocosm experiment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00657. [PMID: 34277366 PMCID: PMC8264111 DOI: 10.1016/j.btre.2021.e00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
A full-scale mesocosm study was conducted to depict how integrated biological systems interact to adapt to contaminant stress and improve remediation of polycyclic aromatic hydrocarbons (PAHs)contaminated soils. The combination of Verbascum sinuatum L. and microbial consortium (fungi and bacteria) was employed along with three differently contaminated soils. After 240 days the highest PAHs removal (up to 68 %) and 6-rings compounds decrease was found in soil with lower pollution and cation exchange capacity. V. sinuatum showed a significant adaptability over time in terms of redox biology. Soil enzyme activities and microscopic evidences proved a rising plant-microorganisms association and a successful mycorrhization, arising from the inoculation of our consortia. In addition, an enhanced richness of PAHs degrading genes was achieved. Microbial co-metabolism, helped by the establishment of complex relationships with hosting plant, demonstrated to be suitable for the degradation of high molecular weight PAHs and represents a biotechnology with great prospects.
Collapse
|
28
|
Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z. Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112252. [PMID: 33930772 DOI: 10.1016/j.ecoenv.2021.112252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland.
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| | - Katalin Posta
- Institute of Genetics, Microbiology and Biotechnology, Szent István University, Páter Károly 1 Street, Gödöllő H-2100, Hungary
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2 Street, 43-309 Bielsko-Biała, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| |
Collapse
|
29
|
Garcés-Ruiz M, Calonne-Salmon M, Bremhorst V, Declerck S. Diesel fuel differentially affects hyphal healing in Gigaspora sp. and Rhizophagus irregularis. MYCORRHIZA 2021; 31:413-421. [PMID: 33661390 DOI: 10.1007/s00572-021-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Hydrocarbon pollution is an increasing problem affecting soil ecosystems. However, some microorganisms can cope with these pollutants and even facilitate plant establishment and thus phytoremediation. Within soil, arbuscular mycorrhizal fungi (AMF) have developed several strategies to survive and flourish under adverse conditions. Among these is the hyphal healing mechanism (HHM), a process allowing hyphae to re-establish integrity after physical injury. This mechanism differs among species and genera of AMF. However, whether and to what extent hydrocarbon pollution impacts the HHM is unknown. Here, the HHM was monitored in vitro on two AMF strains, Rhizophagus irregularis MUCL 41833 and Gigaspora sp. MUCL 52331, under increasing concentrations of diesel (1, 2, and 5% v:v). The addition of diesel slowed-down the HHM in both fungi. On Gigaspora sp., this effect was limited and most hyphae were able to heal after injury. Conversely, all steps of healing were severely impaired in R. irregularis. That fungus reconnected the injured hyphae at a much lower frequency than the Gigaspora sp., instead investing its energy to link neighboring hyphae or roots, or developing new branches from uninjured hyphae.
Collapse
Affiliation(s)
- Mónica Garcés-Ruiz
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | - Vincent Bremhorst
- Statistical Methodology and Computing Service, Université catholique de Louvain, Voie du Roman Pays 20, 1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
30
|
Nasir F, Bahadur A, Lin X, Gao Y, Tian C. Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1546-1557. [PMID: 33252650 DOI: 10.1093/jxb/eraa538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
More than 80% of land plant species benefit from symbiotic partnerships with arbuscular mycorrhizal (AM) fungi, which assist in nutrient acquisition and enhance the ability of host plants to adapt to environmental constraints. Host-generated plasma membrane-residing receptor-like kinases and the intracellular α/β-hydrolase DWARF14-LIKE, a putative karrikin receptor, detect the presence of AM fungi before physical contact between the host and fungus. Detection induces appropriate symbiotic responses, which subsequently enables a favorable environment for AM symbiosis to occur. To prevent hyper-colonization and maintain a mutually beneficial association, the host plant precisely monitors and controls AM colonization by receptor-like kinases, such as SUPER NUMERIC NODULES. Previous studies have elucidated how host plant receptors and receptor-mediated signaling regulate AM symbiosis, but the underlying molecular mechanisms remain poorly understood. The identification of a rice CHITIN ELICITOR RECEPTOR KINASE 1 interaction partner, MYC FACTOR RECEPTOR 1, and new insights into DWARF14-LIKE receptor- and SUPER NUMERIC NODULES receptor-mediated signaling have expanded our understanding of how host plant receptors and their corresponding signals regulate AM symbiosis. This review summarizes these and other recent relevant findings. The identified receptors and/or their signaling components could be manipulated to engineer crops with improved agronomic traits by conferring the ability to precisely control AM colonization.
Collapse
Affiliation(s)
- Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Xiaolong Lin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
- Key Laboratory of Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
31
|
Zuzolo D, Guarino C, Tartaglia M, Sciarrillo R. Plant-Soil-Microbiota Combination for the Removal of Total Petroleum Hydrocarbons (TPH): An In-Field Experiment. Front Microbiol 2021; 11:621581. [PMID: 33584589 PMCID: PMC7873869 DOI: 10.3389/fmicb.2020.621581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
The contamination of soil with total petroleum hydrocarbons (TPH) may result in dramatic consequences and needs great attention, as soil rehabilitation would need more effort from a sustainability perspective. However, there is still no known general method since the remediation technology is strictly site-specific. Adaptive biological system dynamics can play a key role in understanding and addressing the potential of situ-specific biological combinations for soil pollutants removal. The potential worst-case of TPH contamination reflects soil affected by heavy industrial activities, such as oil refineries. Therefore, the experimental trial was conducted on a 2,000 m2 area from a contaminated site located in northern Italy. We evaluated the remediation potential over time (270 days) assessing (i) the phytoremediation efficiency of two species of Poaceae (Festuca arundinacea Schreb. and Dactylis glomerata L.) and two species of Fabaceae (Medicago sativa L. and Lotus corniculatus L.) and (ii) the role of the indigenous bacteria flora and endo-mycorrhizae consortium addition in plant growth promotion. We also induced resistance to contamination stress in a field experiment. Thirty-three indigenous bacteria selected from the contaminated soils showed marked plant growth promotion. Moreover, functional metagenomics confirmed the metabolic capability of hydrocarbon-degrading microorganisms living in the polluted soil. Our data showed that soil enzymatic activities increased with hydrocarbon degradation rate after 60 days. Both Poaceae and Fabaceae resulted in remarkable remediation potential. Stress markers and antioxidant activity indicated that the selected plant species generally need some time to adapt to TPH stress. In conclusion, our evaluation implied both the rhizosphere effects and functional features of the plant and suggested that plants should (i) have marked tolerance to specific contaminants, (ii) be characterized by an extensive root system, and (iii) be susceptible to arbuscular mycorrhizal fungi (AMF) infection.
Collapse
Affiliation(s)
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | | |
Collapse
|
32
|
Hachani C, Lamhamedi MS, Cameselle C, Gouveia S, Zine El Abidine A, Khasa DP, Béjaoui Z. Effects of Ectomycorrhizal Fungi and Heavy Metals (Pb, Zn, and Cd) on Growth and Mineral Nutrition of Pinus halepensis Seedlings in North Africa. Microorganisms 2020; 8:E2033. [PMID: 33352645 PMCID: PMC7766719 DOI: 10.3390/microorganisms8122033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
The pollution of soils by heavy metals resulting from mining activities is one of the major environmental problems in North Africa. Mycorrhizoremediation using mycorrhizal fungi and adapted plant species is emerging as one of the most innovative methods to remediate heavy metal pollution. This study aims to assess the growth and the nutritional status of ectomycorrhizal Pinus halepensis seedlings subjected to high concentrations of Pb, Zn, and Cd for possible integration in the restoration of heavy metals contaminated sites. Ectomycorrhizal and non-ectomycorrhizal P. halepensis seedlings were grown in uncontaminated (control) and contaminated soils for 12 months. Growth, mineral nutrition, and heavy metal content were assessed. Results showed that ectomycorrhizae significantly improved shoot and roots dry masses of P. halepensis seedlings, as well as nitrogen shoot content. The absorption of Pb, Zn, and Cd was much higher in the roots than in the shoots, and significantly more pronounced in ectomycorrhizal seedlings-especially for Zn and Cd. The presence of ectomycorrhizae significantly reduced the translocation factor of Zn and Cd and bioaccumulation factor of Pb and Cd, which enhanced the phytostabilizing potential of P. halepensis seedlings. These results support the use of ectomycorrhizal P. halepensis in the remediation of heavy metal contaminated sites.
Collapse
Affiliation(s)
- Chadlia Hachani
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia and Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Mohammed S. Lamhamedi
- Center for Forest Studies, Faculty of Forestry, Geography and Geomatics, Abitibi Price Building, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Claudio Cameselle
- BiotecnIA, Department of Chemical Engineering, University of Vigo, Rua Maxwell s/n, Building Fundicion, 36310 Vigo, Spain; (C.C.); (S.G.)
| | - Susana Gouveia
- BiotecnIA, Department of Chemical Engineering, University of Vigo, Rua Maxwell s/n, Building Fundicion, 36310 Vigo, Spain; (C.C.); (S.G.)
| | | | - Damase P. Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, QC G1V0A6, Canada;
| | - Zoubeir Béjaoui
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia and Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| |
Collapse
|
33
|
Ma X, Li X, Liu J, Cheng Y, Zhai F, Sun Z, Han L. Enhancing Salix viminalis L.-mediated phytoremediation of polycyclic aromatic hydrocarbon-contaminated soil by inoculation with Crucibulum laeve (white-rot fungus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41326-41341. [PMID: 32681334 DOI: 10.1007/s11356-020-10125-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 05/22/2023]
Abstract
Although plant-white-rot fungi (WRF) remediation is considered efficient in improving polycyclic aromatic hydrocarbon (PAH)-contaminated soil, the prospects for using it remain poorly known. Therefore, we evaluated whether the WRF Crucibulum laeve could improve the phytoremediation of PAH-contaminated soil by Salix viminalis L. A 60-day pot experiment was conducted to investigate the effects of C. laeve inoculation (using two inoculation treatments and a non-inoculated control) on the phytoremediation potential, growth, and antioxidant metabolism of S. viminalis cultivated in PAH-contaminated soil. The S. viminalis-C. laeve association synergistically caused the highest PAH removal rate. Under the S. viminalis-C. laeve treatment, 80% of the biological concentration and translocation factors for all tissues of S. viminalis were > 1, whereas only 20% of these factors were > 1 when S. viminalis was used alone. C. laeve inoculation remarkably enhanced phytoremediation by promoting S. viminalis-based phytoextraction of PAHs from soils. Furthermore, although C. laeve inoculation altered the antioxidant metabolism of S. viminalis by inducing oxidative stress, thereby inhibiting plant growth, the plant's hardiness enabled it to survive and grow normally for 60 days after treatment. Therefore, phytoremediation using S. viminalis inoculated with C. laeve can be considered a feasible approach for the phytoremediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Xiaodong Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing, 100091, China
| | - Xia Li
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing, 100091, China
- College of Agriculture and Bioengineering, Heze University, University Road, Mudan District, Heze, 274000, Shandong, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing, 100091, China
| | - Yunhe Cheng
- Beijing Academy of Forestry and Pomology Sciences, Shuguanghuayuanzhong Road, Haidian District, Beijing, 100097, China
| | - Feifei Zhai
- School of Architectural and Artistic Design, Henan Polytechxynic University, Jiefang Middle Road, Jiaozuo, 454000, Henan, China
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing, 100091, China
| | - Lei Han
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
34
|
Fei JJ, Wan YY, He XY, Zhang ZH, Ying YX. Unitary and binary remediations by plant and microorganism on refining oil-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41253-41264. [PMID: 32677018 DOI: 10.1007/s11356-020-10025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Refining oil contaminants are complex and cause serious harm to the environment. Remediation of refining oil-contaminated soil is challenging but has significant impact in China. Two plant species Agropyron fragile (Roth) P. Candargy and Avena sativa L. and one bacterium Bacillus tequilensis ZJ01 were used to investigate their efficiency in remediating the refining oil-polluted soil sampled from an oil field in northern China. The simulated experiments of remediations by A. fragile or A. sativa alone and A. fragile or A. sativa combined with B. tequilensis ZJ01 for 39 days and by B. tequilensis ZJ01 alone for 7 days were performed in the laboratory, with B. tequilensis ZJ01 added before or after the germination of seeds. Seed germination rates and morphological characteristics of the plants, along with the varieties of oil hydrocarbons in the soil, were recorded to reflect the remediation efficiency. The results showed that the contamination was weakened in all experimental groups. A. sativa was more sensitive to the pollutants than A. fragile, and A. fragile was much more resistant to the oil hydrocarbons, especially to aromatic hydrocarbons. Adding B. tequilensis ZJ01 before the germination of seeds could restrain the plant growth while adding after the germination of A. fragile seeds notably improved the remediation efficiency. The degradation rate of oil hydrocarbons by B. tequilensis ZJ01 alone was also considerable. Together, our results suggest that the unitary remediation by B. tequilensis ZJ01 and the binary remediation by A. fragile combined with B. tequilensis ZJ01 added after the germination of seeds are recommended for future in situ remediations.
Collapse
Affiliation(s)
- Jia Jia Fei
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yun Yang Wan
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Xin Yue He
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhi Huan Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Yu Xi Ying
- State Key Laboratory of Petroleum Resources and Prospecting, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, College of Geosciences, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
35
|
Fan X, Chang W, Sui X, Liu Y, Song G, Song F, Feng F. Changes in rhizobacterial community mediating atrazine dissipation by arbuscular mycorrhiza. CHEMOSPHERE 2020; 256:127046. [PMID: 32438129 DOI: 10.1016/j.chemosphere.2020.127046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Although it was well known that arbuscular mycorrhizal fungus (AMF) inoculation significantly increased atrazine dissipation in the soil, the effect of AMF on bacterial community, especially potential atrazine-degrading bacteria mediating atrazine dissipation has been overlooked. In the present study, there were four different treatments: Funnelliformis mosseae inoculation with or without atrazine; and non-AMF inoculation with or without atrazine. F. mosseae significantly increased atrazine dissipation rate from 28.7% to 53.3%. Then 16S rRNA gene sequencing results indicated that bacteria community differed significantly by F. mosseae inoculation and atrazine addition. The Shannon index decreased significantly with AMF and atrazine at phylum and family level, and significant inhibition of atrazine on evenness was also observed. LEFSe analysis revealed that Terrimonas and Arthrobacter were significantly associated with F. mosseae, as well as unidentified_Nitrospiraceae associated with atrazine addition. There are several bacterial taxa associated with both F. mosseae inoculation and atrazine addition. Totally, twelve atrazine-degrading bacterial genera (>0.10%) were identified. When atrazine was added, the abundance of Arthrobacter, Burkholderia, Mycobacterium and Streptomyces increased in F. mosseae inoculation treatment, but Nocardioides, Pseudomonas, Bradyrhizobium, Rhizobium, Rhodobacter, Methylobacterium, Bosea and Shinella decreased. In the presence of atrazine, activities of dehydrogenase, urease, acid and alkaline phosphatase in F. mosseae inoculation treatment were significantly higher than those in non-inoculation. However, there was no significant relationship between bacterial community and any soil enzyme activity in four treatments. Our findings reveal the potential relationship between soil bacterial community and AMF inoculation during atrazine dissipation.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Northeast Forestry University, Harbin, 150040, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yufei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Ge Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Fujuan Feng
- Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
36
|
Meglouli H, Fontaine J, Lounès-Hadj Sahraoui A. Dioxins/furans disturb the life cycle of the arbuscular mycorrhizal fungus, Rhizophagus irregularis and chicory root elongation grown under axenic conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1497-1504. [PMID: 32634318 DOI: 10.1080/15226514.2020.1784089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF)-assisted phytoremediation is a promising technology for sustainable removal of hazardous pollutants like dioxins/furans (PCDD/F) from the soil. However, little is known on AMF development in the presence of the persistent organic pollutants, PCDD/F. Thus, the present work aims at investigating the impact of increasing PCDD/F concentrations on the development of both partners of the symbiosis: the AMF, Rhizophagus irregularis and the chicory roots, Cichorium intybus L. grown under axenic conditions. Our results show that even R. irregularis spore germination is not affected by PCDD/F, it occurred mainly in linear way. However, root colonization, extra-radical hyphal elongation and sporulation are reduced by 40, 30, and 75%, respectively, at the highest PCDD/F concentration. In addition, while non-mycorrhizal root growth (length and dry weight) decreased at the highest PCDD/F concentration, no negative effect was observed on the dry weight of mycorrhizal roots. In conclusion, our findings show that although high PCDD/F concentrations disturb the main stages of R. irregularis development, the AMF remains able to fulfill its life cycle in the presence of PCDD/F. Moreover, the mycorrhizal inoculation protects the host plant against PCDD/F phytotoxicity. AMF could thus represent an interesting amendment option to assist phytoremediation of PCDD/F contaminated soils.
Collapse
Affiliation(s)
- Hacene Meglouli
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, U Calais Cedex, France
| | - Joel Fontaine
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, U Calais Cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, U Calais Cedex, France
| |
Collapse
|
37
|
Abstract
Wastewaters generated by the pyrolytic process require treatments to reduce the risks of contamination in rivers, lakes, and coastal waters. Utilizing constructed wetlands is one of the possible approaches according to a Circular Economy System. Plant Growth-Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal Fungi (AMF) can improve plant growth and enhance the bioremediation of wastewater. Two experiments were set up: in the first, a pilot mesocosm was designed to evaluate the effects of a consortium of AM fungi and a PGPB strain on Phragmites australis. After 60 days, the highest plant growth was obtained after inoculation with the combination of microorganisms. In the second experiment, a constructed wetland was built to remediate wastewaters from gasification plant. The plants were efficient in scavenging biological oxygen demand (BOD5), chemical oxygen demand (COD), total fat and oils, hydrocarbons, phenols, aldehydes, surfactants, fluorides, sulfites, sulfates, nitrate, and phosphorus. These data suggest that inoculation of P. australis with AMF and PGPB strains significantly improve the depuration process of wastewaters from gasification plants via constructed wetlands.
Collapse
|
38
|
Malicka M, Magurno F, Piotrowska-Seget Z, Chmura D. Arbuscular mycorrhizal and microbial profiles of an aged phenol-polynuclear aromatic hydrocarbon-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110299. [PMID: 32058165 DOI: 10.1016/j.ecoenv.2020.110299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland.
| | - Franco Magurno
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, 2 Willowa Street, 43-309 Bielsko-Biała, Poland
| |
Collapse
|
39
|
Abbaspour A, Zohrabi F, Dorostkar V, Faz A, Acosta JA. Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109755. [PMID: 31733468 DOI: 10.1016/j.jenvman.2019.109755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Soil contamination by petroleum compounds threatens the health of soil and water resources. This research was conducted with the objective of reaching an efficient technique for the removal or reduction of harmful effects caused by total petroleum hydrocarbons (TPH) in soils. In a greenhouse experiment, the effect of biochar (B), mycorrhizae (M) and combination of mycorrhizae and biochar (M + B) on the growth of two native species; clover (Trifolium arvense) and mallow (Malva sylvestris L.), and removal efficiency of TPH (16.79 mg kg-1) from an oil-contaminated soil were studied. The plant analyses after 50 days of growth period showed a significant (p ≤ 0.05) increase in shoot dry weight of mallow in B and M + B treatments but no significant effect was observed for clover compared to the control (C). The initial TPH concentration, determined by gas chromatography technique was reduced from 9.4% in unplanted soil until 56.4% (clover) and 55.9% (mallow) in M + B treatment. The relative concentration of long chain alkanes (LCAs) were also reduced when treatments were applied, in which the highest and lowest reductions was found in C21-C25 and C11-C15, respectively, though octacosane (C28) was increased or unchanged in soil. This result suggests that likely the occurrence of C28 in the mycorrhizal hyphae or the higher removal of the other alkanes increase octacosane relative concentration in soil, which more research is necessary.
Collapse
Affiliation(s)
- Ali Abbaspour
- Water and Soil Department, Shahrood University of Technology, Shahrood, Semnan Province, 3619995161, Iran.
| | - Farshad Zohrabi
- Water and Soil Department, Shahrood University of Technology, Shahrood, Semnan Province, 3619995161, Iran.
| | - Vajiheh Dorostkar
- Water and Soil Department, Shahrood University of Technology, Shahrood, Semnan Province, 3619995161, Iran.
| | - Angel Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
| | - Jose A Acosta
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
| |
Collapse
|
40
|
Pérez-Moreno A, Sarabia-Castillo CR, Medina-Pérez G, Pérez-Hernández H, De La Puente JR, González-Pozos S, Corlay-Chee L, Chamizo-Checa A, Campos-Montiel RG, Fernández-Luqueño F. Nanomaterials modify the growth of crops and some characteristics of organisms from agricultural or forest soils: An experimental study at laboratory, greenhouse and land level. ACTA ACUST UNITED AC 2019. [DOI: 10.29267/mxjb.2019.4.4.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Currently, some concerns regarding the potential toxicity of nanoparticles (NP) on the environment have emerged. The effect of ZnO, TiO2, and Fe2O3 NP on corn (Zea mays L.), common beans (Phaseolus vulgaris L.), nanobioremediation of polycyclic aromatic hydrocarbons (PAH), and soil organisms from agricultural or forest soils was studied at laboratory, greenhouse, and land level. The samples were analyzed by X-ray diffraction
(XRD), field emission scanning electron microscopy with X-ray energy dispersion spectrometry (FESEM-EDS), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) gas chromatography (GC), ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and Fourier transform infrared spectrometry with attenuated total reflectance (FTIR-ATR). ZnO-NP did not harm the
mycorrhizal root colonization but, the presence of ZnO-NP decreased the degradation of PAH. The synthesis of metabolites from corn was more affected by the PAH than by ZnONP. FTIR spectra showed that NP affected the synthesis of compounds from specific functional groups in common bean plants. Fe2O3-NP were attached to the body of forestsoil organisms and significantly increased the concentration of Fe in their body, while TiO2-NP changed the morphological tissue of roots and stems of common bean as witnessed by micrographs of longitudinal and cross-sections. The NP used in this research significantly changed some response variables on the experiments carried-out at laboratory, greenhouse, and land level.
Collapse
Affiliation(s)
- Andrea Pérez-Moreno
- Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico
| | | | - Gabriela Medina-Pérez
- Transdisciplinary Doctoral Program in Scientific and Technological Development for the Society, Cinvestav-Zacatenco, Mexico City, Mexico
| | | | - Jorge Roque De La Puente
- Unidad de Microscopia Electrónica y Laboratorio Avanzado de Nanoscopía Electrónica (LANE) de Cinvestav Zacatenco, Ciudad de Mexico, Mexico
| | - Sirenia González-Pozos
- Unidad de Microscopia Electrónica y Laboratorio Avanzado de Nanoscopía Electrónica (LANE) de Cinvestav Zacatenco, Ciudad de Mexico, Mexico
| | - Langen Corlay-Chee
- Departamento de Suelos de la Universidad Autónoma Chapingo, Estado de Mexico, Mexico
| | | | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico
| |
Collapse
|
41
|
Miettinen H, Bomberg M, Nyyssönen M, Reunamo A, Jørgensen KS, Vikman M. Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area. PLoS One 2019; 14:e0218834. [PMID: 31265451 PMCID: PMC6605675 DOI: 10.1371/journal.pone.0218834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
Two long-term potentially oil exposed Baltic Sea coastal sites near old oil refineries and harbours were compared to nearby less exposed sites in terms of bacterial, archaeal and fungal microbiomes and oil degradation potential. The bacterial, archaeal and fungal diversities were similar in oil exposed and less exposed sampling sites based on bacterial and archaeal 16S rRNA gene and fungal 5.8S rRNA gene amplicon sequencing from both DNA and RNA fractions. The number of genes participating in alkane degradation (alkB) or PAH-ring hydroxylation (PAH–RHDα) were detected by qPCR in all water and sediment samples. These numbers correlated with the number of bacterial 16S rRNA gene copies in sediment samples but not with the concentration of petroleum hydrocarbons or PAHs. This indicates that both the clean and the more polluted sites at the Baltic Sea coastal areas have a potential for petroleum hydrocarbon degradation. The active community (based on RNA) of the coastal Baltic Sea water differed largely from the total community (based on DNA). The most noticeable difference was seen in the bacterial community in the water samples were the active community was dominated by Cyanobacteria and Proteobacteria whereas in total bacterial community Actinobacteria was the most abundant phylum. The abundance, richness and diversity of Fungi present in water and sediment samples was in general lower than that of Bacteria and Archaea. Furthermore, the sampling location influenced the fungal community composition, whereas the bacterial and archaeal communities were not influenced. This may indicate that the fungal species that are adapted to the Baltic Sea environments are few and that Fungi are potentially more vulnerable to or affected by the Baltic Sea conditions than Bacteria and Archaea.
Collapse
Affiliation(s)
- Hanna Miettinen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
- * E-mail:
| | - Malin Bomberg
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
| | - Mari Nyyssönen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
| | - Anna Reunamo
- Marine Research Centre, Finnish Environment Institute SYKE, Helsinki, Finland
| | | | - Minna Vikman
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
| |
Collapse
|
42
|
Garcés‐Ruiz M, Senés‐Guerrero C, Declerck S, Cranenbrouck S. Community composition of arbuscular mycorrhizal fungi associated with native plants growing in a petroleum-polluted soil of the Amazon region of Ecuador. Microbiologyopen 2019; 8:e00703. [PMID: 30117306 PMCID: PMC6529925 DOI: 10.1002/mbo3.703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are worldwide distributed plant symbionts. However, their occurrence in hydrocarbon-polluted environments is less investigated, although specific communities may be present with possible interest for remediation strategies. Here, we investigated the AMF community composition associated with the roots of diverse plant species naturally recolonizing a weathered crude oil pond in the Amazon region of Ecuador. Next generation 454 GS-Junior sequencing of an 800 bp LSU rRNA gene PCR amplicon was used. PCR amplicons were affiliated to a maximum-likelihood phylogenetic tree computed from 1.5 kb AMF reference sequences. A high throughput phylogenetic annotation approach, using an evolutionary placement algorithm (EPA) allowed the characterization of sequences to the species level. Fifteen species were detected. Acaulospora species were identified as dominant colonizers, with 73% of relative read abundance, Archaeospora (19.6%) and several genera from the Glomeraceae (Rhizophagus, Glomus macrocarpum-like, Sclerocystis, Dominikia and Kamienskia) were also detected. Although, a diverse community belonging to Glomeraceae was revealed, they represented <10% of the relative abundance in the Pond. Seventy five % of the species could not be identified, suggesting possible new species associated with roots of plants under highly hydrocarbon-polluted conditions.
Collapse
Affiliation(s)
- Mónica Garcés‐Ruiz
- Laboratory of MycologyEarth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
- Laboratorio de micologíaCarrera de Microbiología, Facultad de Ciencia Exactas y NaturalesPontificia Universidad Católica del EcuadorQuitoEcuador
| | | | - Stéphane Declerck
- Laboratory of MycologyEarth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Sylvie Cranenbrouck
- Laboratory of MycologyEarth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
- Laboratory of MycologyMycothèque de l'Université catholique de Louvain (MUCL/BCCM)Earth and Life Institute, Université catholique de LouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
43
|
Mitter EK, Kataoka R, de Freitas JR, Germida JJ. Potential use of endophytic root bacteria and host plants to degrade hydrocarbons. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:928-938. [PMID: 30907105 DOI: 10.1080/15226514.2019.1583637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbe-assisted phytoremediation depends on competent root-associated microorganisms that enhance remediation efficiency of organic compounds. Endophytic bacteria are a key element of the root microbiome and may assist plant degradation of contaminants. The aim of this study was to investigate the application of four hydrocarbon-degrading endophytic strains previously isolated from an oil sands reclamation area. Strains EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.), and EA6-5 (Pseudomonas sp.) were inoculated in white sweet clover growing on soils amended with diesel at 5,000, 10,000, and 20,000 mg·kg-1. Our results indicate that plant growth inhibition caused by diesel fuel toxicity was overcome in inoculated plants, which showed significantly higher plant biomass. Analysis of soil F2 and F3 hydrocarbon fractions also revealed that these soils were remediated by inoculated plants when diesel was applied at 10,000 mg·kg-1 and 20,000 mg·kg-1. In addition, quantification of hydrocarbon-degrading genes suggests that all bacterial strains successfully colonized sweet clover plants. Overall, the endophytic strain EA6-5 (Pseudomonas sp.), which harbored hydrocarbon-degrading genes, was the most effective candidate in phytoremediation experiments and could be a strategy to increase plant tolerance and hydrocarbon degradation in contaminated (e.g., diesel fuel) soils.
Collapse
Affiliation(s)
- Eduardo K Mitter
- a Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryota Kataoka
- b Department of Environmental Sciences , University of Yamanashi, Takeda , Kofu , Yamanashi , Japan
| | - J Renato de Freitas
- c Department of Soil Science , University of Saskatchewan , Saskatoon , Canada
| | - James J Germida
- c Department of Soil Science , University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
44
|
Chen S, Wang J, Waigi MG, Gao Y. Glomalin-related soil protein influences the accumulation of polycyclic aromatic hydrocarbons by plant roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:465-473. [PMID: 29981996 DOI: 10.1016/j.scitotenv.2018.06.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Studies have demonstrated that the inoculation of soil with arbuscular mycorrhizal fungi (AMF) enhances the content of glomalin-related soil protein (GRSP), which in turn elevates the availability of polycyclic aromatic hydrocarbons (PAHs) in soil. However, few studies have examined the influence of GRSP on PAH accumulation by plants and their tissues. Understanding of this issue would provide new perspectives on the role of GRSP in PAH uptake by plants at contaminated sites. This investigation was the first observational study of the GRSP-influenced PAH accumulation in roots of ryegrass (Lolium multiflorum Lam.). GRSP (0-120 mg/L) enhanced the root PAH accumulation in a GRSP-concentration-dependent manner, based on the observed root concentrations and root concentration factors (RCFs). The greatest enhancement of ΣPAH accumulation appeared at 40 mg/L of the total GRSP (T-GRSP) and 80 mg/L of the easily extracted GRSP (EE-GRSP), respectively. The weakly and strongly adsorbed fractions accounted for 88.8-94.4%, while the absorbed fraction contributed no >11.2% of total PAH accumulation in roots. The capacity of PAH adsorption on roots was enlarged in the presence of GRSP (0-120 mg/L). As the adsorbed fraction dominated the total PAH contents in roots overwhelmingly, the GRSP-induced changes in root PAH accumulation were ascribed to GRSP-affected PAH sorption by roots.
Collapse
Affiliation(s)
- Shuang Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Computational investigation of small RNAs in the establishment of root nodules and arbuscular mycorrhiza in leguminous plants. SCIENCE CHINA-LIFE SCIENCES 2018; 61:706-717. [DOI: 10.1007/s11427-017-9203-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
46
|
Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Garcés-Ruiz M, Senés-Guerrero C, Declerck S, Cranenbrouck S. Arbuscular Mycorrhizal Fungal Community Composition in Carludovica palmata, Costus scaber and Euterpe precatoria from Weathered Oil Ponds in the Ecuadorian Amazon. Front Microbiol 2017; 8:2134. [PMID: 29163421 PMCID: PMC5674942 DOI: 10.3389/fmicb.2017.02134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/18/2017] [Indexed: 12/02/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous to most natural and anthropized ecosystems, and are often found in polluted environments. However, their occurrence and community composition in highly weathered petroleum-polluted soils has been infrequently reported. In the present study, two ponds of weathered crude oil and their surrounding soil from the Charapa field in the Amazon region of Ecuador were selected and root colonization by AMF of their native plants investigated. The AMF community was further analyzed in three selected plant species (i.e., Carludovica palmata, Costus scaber and Euterpe precatoria) present in the two ponds and the surrounding soil. A fragment covering partial SSU, the whole ITS and partial LSU rDNA region was amplified (i.e., 1.5 kb), cloned and sequenced from the roots of each host species. AMF root colonization exceeded 56% in all plant species examined and no significant difference was observed between sites or plants. For AMF community analysis, a total of 138 AMF sequences were obtained and sorted into 32 OTUs based on clustering (threshold ≥97%) by OPTSIL. The found OTUs belonged to the genera Rhizophagus (22%), Glomus (31%), Acaulospora (25%) and Archaeospora (22%). Glomus and Archaeospora were always present regardless of the plant species or the site. Acaulospora was found in the three plant species and in the two ponds while Rhizophagus was revealed only in the surrounding soil in one plant species (Euterpe precatoria). Our study contributed to the molecular community composition of AMF and revealed an unexpected high presence of four AMF genera which have established a symbiosis with roots of native plants from the Amazon forest under high polluted soil conditions.
Collapse
Affiliation(s)
- Mónica Garcés-Ruiz
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Laboratorio de Micología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sylvie Cranenbrouck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Laboratory of Mycology, Mycothèque de l’Université catholique de Louvain (BCCM/MUCL), Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
48
|
Lenoir I, Fontaine J, Tisserant B, Laruelle F, Lounès-Hadj Sahraoui A. Beneficial contribution of the arbuscular mycorrhizal fungus, Rhizophagus irregularis, in the protection of Medicago truncatula roots against benzo[a]pyrene toxicity. MYCORRHIZA 2017; 27:465-476. [PMID: 28197735 DOI: 10.1007/s00572-017-0764-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungi are able to improve plant establishment in polluted soils but little is known about the genes involved in the plant protection against pollutant toxicity by mycorrhization, in particular in the presence of polycyclic aromatic hydrocarbons (PAH). The present work aims at studying in both symbiotic partners, Medicago truncatula and Rhizophagus irregularis: (i) expression of genes putatively involved in PAH tolerance (MtSOD, MtPOX, MtAPX, MtGST, MtTFIIS, and MtTdp1α), (ii) activities of antioxidant (SOD, POX) and detoxification (GST) enzymes, and (iii) H2O2 and the heavy PAH, benzo[a]pyrene (B[a]P) accumulation. In the presence of B[a]P, whereas induction of the enzymatic activities was detected in R. irregularis and non-mycorrhizal roots as well as upregulation of the gene expressions in the non-mycorrhizal roots, downregulation of the gene expressions and decrease of enzyme activities were observed in mycorrhizal roots. Moreover, B[a]P increased H2O2 production in non-mycorrhizal roots and in R. irregularis but not in mycorrhizal roots. In addition, a lower B[a]P bioaccumulation in mycorrhizal roots was measured in comparison with non-mycorrhizal roots. Being less affected by pollutant toxicity, mycorrhizal roots did not activate any defense mechanism either at the gene expression regulation level or at the enzymatic level.
Collapse
Affiliation(s)
- Ingrid Lenoir
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais cedex, France., SFR Condorcet FR CNRS 3417, 50, rue Ferdinand Buisson, F-62228, Calais cedex, France
| | - Joël Fontaine
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais cedex, France., SFR Condorcet FR CNRS 3417, 50, rue Ferdinand Buisson, F-62228, Calais cedex, France
| | - Benoît Tisserant
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais cedex, France., SFR Condorcet FR CNRS 3417, 50, rue Ferdinand Buisson, F-62228, Calais cedex, France
| | - Frédéric Laruelle
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais cedex, France., SFR Condorcet FR CNRS 3417, 50, rue Ferdinand Buisson, F-62228, Calais cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais cedex, France., SFR Condorcet FR CNRS 3417, 50, rue Ferdinand Buisson, F-62228, Calais cedex, France.
| |
Collapse
|
49
|
Biotechnological Advances for Restoring Degraded Land for Sustainable Development. Trends Biotechnol 2017; 35:847-859. [PMID: 28606405 DOI: 10.1016/j.tibtech.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Global land resources are under severe threat due to pollution and unsustainable land use practices. Restoring degraded land is imperative for regaining ecosystem services, such as biodiversity maintenance and nutrient and water cycling, and to meet the food, feed, fuel, and fibre requirements of present and future generations. While bioremediation is acknowledged as a promising technology for restoring polluted and degraded lands, its field potential is limited for various reasons. However, recent biotechnological advancements, including producing efficient microbial consortia, applying enzymes with higher degrees of specificity, and designing plants with specific microbial partners, are opening new prospects in remediation technology. This review provides insights into such promising ways to harness biotechnology as ecofriendly methods for remediation and restoration.
Collapse
|
50
|
Govarthanan M, Fuzisawa S, Hosogai T, Chang YC. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv 2017. [DOI: 10.1039/c6ra28687a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel fungal strain, Penicillium sp. CHY-2, isolated from Antarctic soils, was effective for the degradation of decane at lower (20 °C) and medium (30 °C) temperatures.
Collapse
Affiliation(s)
- Muthusamy Govarthanan
- Department of Applied Sciences
- College of Environmental Technology
- Muroran Institute of Technology
- Muroran
- Japan
| | - Soichiro Fuzisawa
- Course of Chemical and Biological Engineering
- Division of Sustainable and Environmental Engineering
- College of Environmental Technology
- Muroran Institute of Technology
- Muroran
| | - Toshiki Hosogai
- Department of Applied Sciences
- College of Environmental Technology
- Muroran Institute of Technology
- Muroran
- Japan
| | - Young-Cheol Chang
- Department of Applied Sciences
- College of Environmental Technology
- Muroran Institute of Technology
- Muroran
- Japan
| |
Collapse
|