1
|
Rex KR, Chakraborty P. Polychlorinated biphenyls in bovine milk from a typical informal electronic waste recycling and related source regions in southern India before and after the COVID-19 pandemic outbreak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168879. [PMID: 38013105 DOI: 10.1016/j.scitotenv.2023.168879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
For more than a decade, Chennai city in southern India has been evidenced with informal electronic waste (e-waste) recycling and open burning practices as the potential sources for polychlorinated biphenyls (PCBs). PCBs can bioaccumulate in livestock particularly cows grazing on the contaminated soil. The outbreak of the COVID-19 pandemic led to additional challenges associated with waste management practices. Hence this study aims to elucidate twenty-five PCB congeners in bovine milk from the previously reported PCB source regions in Chennai and the suburbs before and after about three years of the pandemic outbreak along electronic waste recycling (EWR), open burning dumps (OBD), and residential (RES) transects. The geomean concentration of Ʃ25PCBs in ng/g lipid weight (lw) followed a decreasing trend of EWR (13 ng/g lw) > OBD (8 ng/g lw) > RES (4 ng/g lw). Over 80 % of PCBs stemmed from EWR and OBD transects before and after the pandemic. However, a significant surge in the level of PCB-52 was observed in the OBD transect after the pandemic outbreak. Most toxic PCB congeners, PCB-126 and -169 were significant contributors to TEQs in EWR and OBD transects and can be reasoned with the burning of waste materials and mixed plastics in these transects. The highest average daily dose (ADD) exposure risk was for children from EWR and was significantly higher (p < 0.05) than other transects. Mean ADD-induced TEQ (6.6 pg TEQ/kg-bw/day) from the cows grazing around Kodungaiyur dumpsite slightly exceeded the EU guideline of 5.5 pg TEQ/kg-bw/day after the outbreak of the pandemic due to PCB-126. However, none of the samples exceeded the US FDA (1.5μg/g milk fat) recommendation limits for PCBs in milk fat. Prolonged exposure to such persistent organic pollutants interlinked with the burning of mixed waste in the open dumps can be a public health concern.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Ostadgholami M, Zeeb M, Amirahmadi M, Daraei B. Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods 2023; 13:143. [PMID: 38201171 PMCID: PMC10779142 DOI: 10.3390/foods13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 01/12/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are recognized as carcinogens and mutagenic food contaminants that threaten public health. As for food safety aspects, control of these contaminants in processed and fatty food is necessary. In this study, eleven factors were screened by the Plackett-Burman design, and four variables were chosen to optimize with the central composite design (CCD) for the improvement of extraction and cleanup procedures of these food contaminants. The optimized variables include 5 g of sample, 2 mL mixture of 2/2/1 ethyl acetate/acetone/isooctane, 1.6 g of ammonium formate, 0.9 g of sodium chloride, and 0.25 g of sorbent Z-Sep+. A 5 min cleanup vortex time with the spike calibration curve strategy, analyzed by gas chromatography-mass spectrometry (GC-MS), led to the validated limits of quantification (LOQs) for 16 PAHs and 36 PCBs of 0.5-2 and 0.5-1 ng/g, respectively, and recoveries of 72-120%, with an average relative standard deviation (%RSD) of 17, for PAHs, and 80-120%, with an %RSD of 3, for PCBs. The method introduces excellent accuracy, precision, and efficiency, and minimizes matrix effects, and ensures a control procedure, adopted with international standards, for food authorities to determine the contaminants of interest in processed meat, and consequently, prevent food-borne disease to improve public health indices.
Collapse
Affiliation(s)
- Mahsa Ostadgholami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran; (M.O.); (M.Z.)
| | - Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran; (M.O.); (M.Z.)
| | - Maryam Amirahmadi
- Food and Drug Reference Control Laboratory (FDRCL), Iran Food and Drug Administration (IFDA), Ministry of Health and Medical Education, Tehran 1113615911, Iran
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), Ministry of Health and Medical Education, Tehran 1113615911, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| |
Collapse
|
3
|
Monnolo A, Clausi MT, Del Piano F, Santoro M, Fiorentino ML, Barca L, Fusco G, Degli Uberti B, Ferrante L, Mercogliano R, Ferrante MC. Do Organochlorine Contaminants Modulate the Parasitic Infection Degree in Mediterranean Trout ( Salmo trutta)? Animals (Basel) 2023; 13:2961. [PMID: 37760361 PMCID: PMC10526105 DOI: 10.3390/ani13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated the occurrence of organochlorine pollutants (OCs) in the muscle of brown trout and evaluated their potential modulation of parasite infection. The toxicological risk for consumer health was assessed, too. Trout were collected from the Sila National Park (Calabria region, South of Italy). The highest concentrations emerged for the sum of the 6 non-dioxin-like (ndl) indicator polychlorinated biphenyls (Σ6ndl-PCBs), followed by the 1,1,1-trichloro-2,2-di(4-chlorophenyl)-ethane (DDT), dioxin-like PCBs, hexachlorobenzene (HCB), and dieldrin. Measured on lipid weight (LW), the mean value of Σ6ndl-PCBs amounted to 201.9 ng g-1, that of ΣDDTs (the sum of DDT-related compounds) to 100.2 ng g-1, with the major contribution of the DDT-metabolite p,p'-DDE which was detected in all sample units (97.6 ng g-1 on average). Among dioxin-like congeners, PCB 118 showed the highest mean concentration (21.96 ng g-1 LW) and was detected in all sample units. Regression analysis of intestinal parasites on OC concentration was performed, controlling for two potential confounding factors, namely sex and sexual stage. The results evidenced the existence of interactions between the dual stressors in the host-parasite system in the wild. A negative and statistically significant correlation was estimated, suggesting that OCs may decrease parasite infection degree. Regarding the toxicological risk evaluation, OC concentrations were consistently below the current European Maximum Residue Limits.
Collapse
Affiliation(s)
- Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Teresa Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 88100 Catanzaro, Italy;
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Maria Lorena Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Lorella Barca
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 87100 Cosenza, Italy;
| | - Giovanna Fusco
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Barbara Degli Uberti
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Luigia Ferrante
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| |
Collapse
|
4
|
Castellani F, Marini F, Simonetti G, Protano C, Fabiani L, Manzoli L, Vitali M. Occurrence and congener profiles of dioxins (PCDDs), furans (PCDFs) and polychlorinated biphenyls (PCBs) in ovine and caprine milk samples collected in a very polluted site in Central Italy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:415-424. [PMID: 36724881 DOI: 10.1080/19440049.2023.2173811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Concentrations of 7 polychlorinated dibenzo-p-dioxins (PCDDs), 10 polychlorinated dibenzofurans (PCDFs) and 18 polychlorinated biphenyls (PCBs), including 12 dioxin-like (DL-PCBs) and 6 non-dioxin-like PCBs (NDL-PCBs) were measured in 16 ovine and caprine milk samples collected in the territory of Bussi sul Tirino, central Italy, a Site of National Interest (SNI) due to its high and widespread environmental pollution. All the analyzed samples were compliant with the maximum levels fixed by Commission Regulation (EU) 1259/2011 for the content of PCDD/Fs and the sum of PCDD/Fs and DL-PCBs. In two cases, contamination levels of the sum of PCDD/Fs and DL-PCBs were higher than the action levels fixed by EU Recommendation 663/2014. The statistical analysis, performed by Principal Component Analysis (PCA), revealed that the differences in contamination profiles of the different milk samples were independent of the distance of the farms from the Bussi illegal landfill but likely related to local emission sources influencing the exposure to POPs of studied animals.
Collapse
Affiliation(s)
- Federica Castellani
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Federico Marini
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Leila Fabiani
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lamberto Manzoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
5
|
Persistent Organic Pollutants and Fatty Acid Profile in a Typical Cheese from Extensive Farms: First Assessment of Human Exposure by Dietary Intake. Animals (Basel) 2022; 12:ani12243476. [PMID: 36552395 PMCID: PMC9774984 DOI: 10.3390/ani12243476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Dairy products represent an important source of beneficial substances for humans. At the same time, they can expose the consumers to environmental contaminants ingested by animals through their diet, influencing their health negatively. This experiment aims to evaluate the risk and benefits related to the consumption of typical stretched cheeses, considering their fatty acid (FA) profile and persistent organic pollutants (POPs) content. Six representative farms, two of them organic, raising Cinisara cattle were selected, considering the typical extensive management systems, based on feeding of natural pasture integrated with concentrate and hay depending on the availability of forage on pastures. A total of 18 cheeses produced in winter, spring and summer with bulk milk of each farm were sampled and analyzed. The chemical composition of cheeses was influenced by farm management, and the FA profile mainly by the season. In particular, cheeses made in spring showed a healthier FA profile with the content of polyunsaturated fatty acids (PUFA), of omega3-PUFA and omega6/omega3 ratio pair to 7.29%, 1.44% and 1.32, respectively, while in winter 5.44%, 0.98% and 2.55, respectively, and in summer 4.77% 0.49% and 3.04, respectively. Due to high levels of feeding integration, cheese made in winter presented unhealthier characteristics compared to the cheeses made in spring and summer, showing high levels of saturated FA (66.2%, 64.2% and 65.5%, respectively), and large contents of polycyclic aromatic hydrocarbons (PAH) (57.07 ng/g fat, 36.25 ng/g fat and 10.22 ng/g fat, respectively) and polychlorinated biphenyls (PCBs) (36.19 ng/g fat, 4.68 ng/g fat and 3.73 ng/g fat, respectively), mainly in those from non-organic farms. Levels of PCBs considered to be hazardous to human health were found in nine samples.
Collapse
|
6
|
Update of Indicator PCB Levels in Food in Southern Italy: Assessment of the Dietary Exposure for Adult and Elderly Population. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The levels of non-dioxin-like PCB indicators (iPCBs 28, 52, 101, 138, 153, and 180) were determined in food samples (seafood, meat and processed meat, milk and dairy products, hen eggs, olive oil, and other fats) to evaluate the exposure of adult and elderly population. iPCB levels in samples were in the following order: fishery products > meat and processed meat > milk and dairy products > olive oil and other fats. None of the samples had concentrations above the maximum permissible limits for human consumption established by the European Union legislation, except for salami samples. The dietary intake for the total population was 12.33 ng·kg−1 bw·d−1, while depending on the sex/age groups, exposure was estimated between 9.60 and 12.11 ng·kg−1 bw·d−1, with seafood being the major contributor. The exposure scenario indicates that further efforts must still be carried out to protect the consumer from these harmful chemicals.
Collapse
|
7
|
Thakali A, MacRae JD, Isenhour C, Blackmer T. Composition and contamination of source separated food waste from different sources and regulatory environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115043. [PMID: 35429688 DOI: 10.1016/j.jenvman.2022.115043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Food waste recycling is needed to create a more sustainable, circular food system; however, the process must be carefully managed to avoid the introduction and build-up of contaminants. We collected and screened source-separated food waste for five classes of contaminants (physical contaminants, heavy metals, halogenated organics, pathogens and antibiotic resistance genes) from two regulatory environments (voluntary vs mandated food separation) to quantify contamination. Physical contamination was frequently found; 57% of samples contained non-compostable waste. Most heavy metals were not detected, and although copper and zinc were present in most samples, they were always below the most stringent global standards for compost. Some samples had detectable halogenated organics, including perfluoroalkyl substances (PFAS), which is cause for concern because some of these accumulate in the food chain. PFBA was detected in 60%, PFHxS in 8% and PFNA in 4% of samples tested. The pathogen Salmonella was present in 3% (2/71) and L. monocytogenes in 11% (8/71) of samples. Shiga toxin-producing E. coli was not detected. Next generation sequencing showed the presence of several genera that contain foodborne pathogens, most commonly Yersinia. Antibiotic resistance genes tet(M) and blaTEM were present in 96% and 97% of samples respectively, however the last-resort colistin resistance gene mcr-1 was not detected. Overall contamination in our source-separated samples was low, with the exception of some antibiotic resistance genes, however our processing method might have underestimated packaging-associated contamination. Regulatory environment did not affect contamination, but carbon, nitrogen phosphorus, calcium, copper, tet (M), and physical contamination varied by source type.
Collapse
Affiliation(s)
- Astha Thakali
- Department of Civil and Environmental Engineering, University of Maine, 5711, Boardman Hall, Orono, ME, USA.
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711, Boardman Hall, Orono, ME, USA.
| | - Cindy Isenhour
- Department of Anthropology and Climate Change Institute, University of Maine, 5773, S. Stevens Hall, Orono, ME, USA.
| | - Travis Blackmer
- School of Economics, University of Maine, 200 Winslow Hall, Orono, ME, USA.
| |
Collapse
|
8
|
A Useful Method with Appropriate Recovery and High Accuracy in Simultaneous Analysis of 12 Polychlorinated Biphenyls in Cereal-Based Baby Foods Using Gas Chromatography-Electron Capture Detector. NUTRITION AND FOOD SCIENCES RESEARCH 2022. [DOI: 10.52547/nfsr.9.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Hasan GMMA, Shaikh MAA, Satter MA, Hossain MS. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicol Rep 2022; 9:1514-1522. [DOI: 10.1016/j.toxrep.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022] Open
|
10
|
Du L, Xu H, Zuo J. Status quo of illegal dumping research: Way forward. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112601. [PMID: 33895451 DOI: 10.1016/j.jenvman.2021.112601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Due to the rapid social and economic development, the past decades have witnessed the improvement of human being's quality of life and the speedy development of the construction industry. Meanwhile, the illegal dumping of solid waste has presented a significant issue. By using the method of systematic review, this study critically examined the literature related to illegal dumping that were published since 1990, and analyzed the current status and future trends of related research. Results show that the current studies on illegal dumping mainly focus on four perspectives: environmental science and toxicology, economics, management, and the use of emerging technologies. This critical review revealed that although the issue of illegal dumping has been widely recognized in recent years, some questions remain unanswered. Therefore, a future research agenda is proposed. These include: (1) Identifying the migration of pollutants in the food chain during the illegal dumping; (2) Implementing targeted treatment of illegal dumping pollutants; (3) Improving the stakeholder decision analysis model; (4) Expanding the scope of research on stakeholders of illegal dumping; (5) Formulating an unified evaluation standard for the related costs of illegal dumping; (6) Strengthening the evaluation of the interaction effects of influencing factors; (7) Comparing the effects of different types of factors; (8) the exploration of other influencing factors; (9) Analyzing illegal dumping by combining big data with the amount of solid waste; (10) Combining with monitoring to analyze the illegal dumping of household waste.
Collapse
Affiliation(s)
- Linwei Du
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Jian Zuo
- School of Architecture and Built Environment, The University of Adelaide, SA, 5001, Australia.
| |
Collapse
|
11
|
Santonicola S, Albrizio S, Ferrante MC, Raffaelina M. Study on bisphenol F, a bisphenol A analogue, at a dairy company: Health hazard and risk assessment. Food Chem Toxicol 2021; 154:112334. [PMID: 34118346 DOI: 10.1016/j.fct.2021.112334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
The occurrence of analogues of bisphenol A (BPA), including bisphenol F(BPF) in milk is still not well known. BPF may enter the milk chain at the farm and during milk processing at the dairy company. This study identified the main BPF contamination pathways using a monitoring model based on the identification of the hazard at three stages along the dairy chain: raw milk from the storage tank, pasteurized milk from the storage tank, and cardboard packaged milk. Quantitative analysis was performed by high-performance liquid chromatography with fluorometric detection (HPLC/FD) system. BPF was detected in all analysed stages (from <LOQ to 2.686 μg/L). The structural and toxicological similarity between BPF and BPA suggested considering both bisphenols for a more comprehensive risk evaluation. The daily intake of BPF and of the sum of BPF and BPA, and the worst-case scenario through the consumption of packaged milk were calculated. Exposure levels below the temporary daily intake, fixed for only BPA, were detected in all consumer age classes. Nevertheless, the use of BPA substitutes represents a risk to human health because of their potential synergic effects. The application of a monitoring program at each stage of milk processing at the dairy company may represent a useful strategy to ensure food safety in the milk chain.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences, University of Molise, Via Francesco De Sanctis, 1, 86100, Campobasso, Italy
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49,80131, Napoli, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples, Via F. Delpino, 1, 80137, Napoli, Italy
| | - Mercogliano Raffaelina
- Department of Veterinary Medicine and Animal Production, University of Naples, Via F. Delpino, 1, 80137, Napoli, Italy.
| |
Collapse
|
12
|
Vitali M, Castellani F, Fragassi G, Mascitelli A, Martellucci C, Diletti G, Scamosci E, Astolfi ML, Fabiani L, Mastrantonio R, Protano C, Spica VR, Manzoli L. Environmental status of an Italian site highly polluted by illegal dumping of industrial wastes: The situation 15 years after the judicial intervention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144100. [PMID: 33360460 DOI: 10.1016/j.scitotenv.2020.144100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
In 2008 the Italian government classified the Bussi sul Tirino area (Central Italy) as Site of National Interest destined to remediation which, unfortunately, has not yet begun. The decision followed >20 years of illegal dumping of industrial wastes, lasting from 1984 to 2005, that generated the biggest illegal toxic waste disposal site in Europe. The contamination profile of the site was mainly characterized by PCDD/Fs, PCBs, PAHs, chlorinated solvents, Hg, and Pb. Due to the health concern of the population and local authorities, an extensive monitoring and biomonitoring campaign was carried out in 2017-2018, checking the site-specific pollutants in local food (free-range hens' eggs, milk from grazing sheep and goats, wild edible mushrooms, and drinking water), environmental (air and freshwaters) and biological (human urine) matrices. A total of 314 samples were processed, obtaining 3217 analytical data that were compared with regulatory limits, when available, and values reported by international literature. The sum PCDD/Fs and DL-PCBs ranged from 0.24 to 3.6 pg TEQ g-1 fat, and from 0.46 to 8.3 pg TEQ g-1 fat, respectively in milk in eggs, in line with the maximum levels established by CE Regulations except for an egg sample. As regards PAHs, all our results were lower than the literature data, as well as for Hg and Pb. Outdoor air showed levels of chlorinated solvents ranging from <LOD to 36 μg m-3, and freshwaters from 0.21 to 2.8 μg L-1. All drinking water samples resulted compliant with the maximum levels established by the current EU directive. Despite the severe pollution of the illegal dumping site and the remediation not yet carried out, the local environment and the population living in Bussi and surroundings seem not to be affected by significant exposure to the toxics characterizing the landfill.
Collapse
Affiliation(s)
- Matteo Vitali
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Federica Castellani
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Giorgia Fragassi
- Regional Healthcare Agency of Abruzzo, Via Attilio Monti 9, 65127 Pescara, PE, Italy
| | - Alfonso Mascitelli
- Regional Healthcare Agency of Abruzzo, Via Attilio Monti 9, 65127 Pescara, PE, Italy
| | - Cecilia Martellucci
- Department of Biomedical Sciences and Public Health, University of the Marche Region, Via Tronto 10/a, 60020 Torrette di Ancona, AN, Italy
| | - Gianfranco Diletti
- Istituto Zooprofilattico Sperimentale of Abruzzo and Molise "Giuseppe Caporale", via Campo Boario, 64100 Teramo, TE, Italy.
| | - Emanuela Scamosci
- Environmental Protection Regional Agency of Abruzzo, via Marconi 49, 65126 Pescara, PE, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, University of Rome La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Leila Fabiani
- Department of Life, Health & Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 67100 Coppito, L'Aquila, Italy.
| | - Riccardo Mastrantonio
- Department of Life, Health & Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 67100 Coppito, L'Aquila, Italy.
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135 Rome, Italy.
| | - Lamberto Manzoli
- Department of Medical Sciences, University of Ferrara, Via Fossato di Mortara 64B, 44121 Ferrara, FE, Italy.
| |
Collapse
|
13
|
Thakali A, MacRae JD. A review of chemical and microbial contamination in food: What are the threats to a circular food system? ENVIRONMENTAL RESEARCH 2021; 194:110635. [PMID: 33347866 DOI: 10.1016/j.envres.2020.110635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A circular food system is one in which food waste is processed to recover plant nutrients and returned to the soil to enable the production of more food, rather than being diverted to landfill or incineration. The approach may be used to reduce energy and water use in food production and contribute to the sustainability of the system. Anaerobic digestion and composting are common food waste treatment technologies used to stabilize waste and produce residual materials that can replenish the soil, thus contributing to a circular food system. This approach can only be deemed safe and feasible, however, if food waste is uncontaminated or any contaminants are destroyed during treatment. This review brings together information on several contaminant classes at different stages of the food supply chain, their possible sources, and their fates during composting and digestion. The main aim is to identify factors that could impede the transition towards a safe, reliable and efficient circular food system. We investigated heavy metals, halogenated organic compounds, foodborne pathogens and antibiotic resistance genes (ARGs) in the food system and their fates during digestion and composting. Production and processing stages were identified as major entry points for these classes of contaminants. Heavy metals and foodborne pathogens pose less risk in a circular system than halogenated organics or antibiotic resistance. Given the diversity of properties among halogenated organic compounds, there is conflicting evidence about their fate during treatment. There are relatively few studies on the fate of ARGs during treatment, and these have produced variable results, indicating a need for more research to clarify their fate in the final products. Repeated land application of contaminated food waste residuals can increase the risk of accumulation and jeopardize the safety of a circular food system. Thus, careful management of the system and research into the fate of the contaminants during treatment is needed.
Collapse
Affiliation(s)
- Astha Thakali
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| |
Collapse
|
14
|
Monnolo A, Clausi MT, Mercogliano R, Fusco G, Fiorentino ML, Buono F, Lama A, Ferrante MC. Levels of polychlorinated biphenyls and organochlorine pesticides in donkey milk: Correlation with the infection level by intestinal strongyles. CHEMOSPHERE 2020; 258:127287. [PMID: 32535446 DOI: 10.1016/j.chemosphere.2020.127287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
AIM The study aimed at evaluating the concentration levels of organochlorine pollutants in donkey milk and their modulation on the intestinal strongyle infection. Risk evaluation for consumer health was also investigated. METHODS We analyzed milk of grazing donkeys living in areas of Southern of Italy affected by organochlorine compounds environmental pollution and parasite infection. The presence of pollutants was assessed through summary statistics; regression analysis of intestinal strongyle on pollutant concentration was performed to investigate the relationship between the two variables. RESULTS PCB concentrations (mainly non-dioxin-like (ndl)-PCBs) were higher than OCP ones. Mean values of ndl-PCBs across areas ranged from 93.13 to 263.64 ng g-1. In all sample units we detected the six indicator PCBs with the prevalence of the PCB 153, followed by the PCB 28 and the PCB 101. Among the dioxin-like (dl)-PCBs, non-ortho PCB 169, 77 and 126 were assessed in some milk samples; in all areas we detected the mono-ortho PCB 118 and PCB 105. Positive correlation between infection level and six indicator PCBs as well as between the former and HCB, on WW and LW, were observed (at least statistically significant at 5 percent). In some cases, Dl-PCB concentrations emerged as dangerous given the EU maximum residue limit for PCDD/Fs and dl-PCBs. CONCLUSION Evidence supports the hypothesis of an immunosuppressive role of organochlorine pollutants; risk evaluation reveals the potential health impact of dl-PCB intake, particularly for major donkey milk consumers such as infants, children with cow milk and multiple food intolerance, and elders.
Collapse
Affiliation(s)
- A Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - M T Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - R Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - G Fusco
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - M L Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - F Buono
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - A Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
15
|
Di Bella C, Traina A, Giosuè C, Carpintieri D, Lo Dico GM, Bellante A, Del Core M, Falco F, Gherardi S, Uccello MM, Ferrantelli V. Heavy Metals and PAHs in Meat, Milk, and Seafood From Augusta Area (Southern Italy): Contamination Levels, Dietary Intake, and Human Exposure Assessment. Front Public Health 2020; 8:273. [PMID: 32733834 PMCID: PMC7359620 DOI: 10.3389/fpubh.2020.00273] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Heavy metals and PAHs were measured in animal foodstuffs from Augusta-Melilli-Priolo area in order to evaluate the potential human health risk associated to their consumption. All heavy metals were detected in seafood products while most of them were 1 for baby, children and teenagers, indicating a non-carcinogenic risk for these age categories by seafood ingestion. The CRAs overcame 1*10-5 for almost age categories (except "baby") and for elderly, by seafood and beef ingestions respectively. Moreover, the MOE for PAHs showed a certain cancer risk for "baby" related to cow milk ingestion.
Collapse
Affiliation(s)
- Calogero Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia (IZSSi), Palermo, Italy
| | - Anna Traina
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Cristina Giosuè
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Davide Carpintieri
- Istituto Zooprofilattico Sperimentale della Sicilia (IZSSi), Palermo, Italy
| | | | - Antonio Bellante
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Marianna Del Core
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Francesca Falco
- National Research Council of Italy- Institute for Biological Resources and Marine Biotechnology (IRBIM-CNR), Mazara Del Vallo, Italy
| | - Serena Gherardi
- National Research Council of Italy-Institute of Marine Science (ISMAR-CNR), Naples, Italy
| | | | | |
Collapse
|
16
|
Weber R, Herold C, Hollert H, Kamphues J, Ungemach L, Blepp M, Ballschmiter K. Life cycle of PCBs and contamination of the environment and of food products from animal origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16325-16343. [PMID: 29589245 DOI: 10.1007/s11356-018-1811-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/19/2018] [Indexed: 04/16/2023]
Abstract
This report gives a summary of the historic use, former management and current release of polychlorinated biphenyls (PCBs) in Germany and assesses the impact of the life cycle of PCBs on the contamination of the environment and of food products of animal origin. In Germany 60,000 t of PCBs were used in transformers, capacitors or as hydraulic oils. The use of PCB oils in these "closed applications", has been banned in Germany in 2000. Thirty to 50% of these PCBs were not appropriately managed. In West Germany, 24,000 t of PCBs were used in open applications, mainly as additive (plasticiser, flame retardant) in sealants and paints in buildings and other construction. The continued use in open applications has not been banned, and in 2013, an estimated more than 12,000 t of PCBs were still present in buildings and other constructions. These open PCB applications continuously emit PCBs into the environment with an estimated release of 7-12 t per year. This amount is in agreement with deposition measurements (estimated to 18 t) and emission estimates for Switzerland. The atmospheric PCB releases still have an relevant impact on vegetation and livestock feed. In addition, PCBs in open applications on farms are still a sources of contamination for farmed animals. Furthermore, the historic production, use, recycling and disposal of PCBs have contaminated soils along the lifecycle. This legacy of contaminated soils and contaminated feed, individually or collectively, can lead to exceedance of maximum levels in food products from animals. In beef and chicken, soil levels of 5 ng PCB-TEQ/kg and for chicken with high soil exposure even 2 ng PCB-TEQ/kg can lead to exceedance of EU limits in meat and eggs. Areas at and around industries having produced or used or managed PCBs, or facilities and areas where PCBs were disposed need to be assessed in respect to potential contamination of food-producing animals. For a large share of impacted land, management measures applicable on farm level might be sufficient to continue with food production. Open PCB applications need to be inventoried and better managed. Other persistent and toxic chemicals used as alternatives to PCBs, e.g. short chain chlorinated paraffins (SCCPs), should be assessed in the life cycle for exposure of food-producing animals and humans.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527, Schwäbisch Gmünd, Germany.
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527, Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Linda Ungemach
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany
| | | | | |
Collapse
|
17
|
Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:42. [PMID: 30464877 PMCID: PMC6224007 DOI: 10.1186/s12302-018-0166-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source. RESULTS The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure-suckling calves and laying hens housed outdoor-can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F-PCB-TEQ/kg dm. Egg consumers-especially young children-can easily exceed health-based guidance values (TDI). The soil-chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs. CONCLUSIONS The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | | |
Collapse
|