1
|
Coulibaly B, Pastor-López EJ, Diawara A, Savane FB, Escolà-Casas M, Matamoros V, Ba S. Occurrence of antibiotics in hospital wastewater effluents discharged into the Niger River in Bamako, Mali. Risk assessment and solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125912. [PMID: 40010595 DOI: 10.1016/j.envpol.2025.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Hospital wastewater effluents are a significant source of antibiotics (ABs) contamination in aquatic environments, contributing to antimicrobial resistance (AMR). This study examines 30 pharmaceutical compounds, including 22 ABs, in wastewater effluents from four hospitals in Bamako, Mali, at exit points (Po) and discharge sites (Pf) into the Niger River. The ABs belong to nine classes, mainly fluoroquinolones, macrolides, and sulfonamides. While half of the ABs were undetected, concentrations of detected ABs ranged from 0.1 to nearly 40 μg/L. Acetyl-sulfamethoxazole (ASMX) and ciprofloxacin (CIP) recorded the highest concentrations at 38.9 ± 25.7 μg/L and 32.0 ± 4.3 μg/L, respectively. Low concentrations (<1 μg/L) were observed for azithromycin, clarithromycin, and sulfadiazine. Significant variations in concentrations between Po and Pf were noted, with some ABs, like ASMX, achieving 100% abatement due to natural attenuation, while others, such as CIP and lincomycin, showed increases of up to 102% and 400%, respectively, possibly due to downstream accumulation or degradation of conjugates. Ecotoxicological and the potential microbial risk selection values revealed high risks (RQ > 1) at all sites although three of the hospitals reduced risks by over 50% for most of them. These findings underscore the need for effective wastewater treatment systems to mitigate ABs contamination. The study also provides critical baseline data and advocates for cost-effective, nature-based solutions like constructed wetlands and regulatory measures to reduce antibiotic pollution and curb risks for AMR proliferation in the Niger River.
Collapse
Affiliation(s)
- Balla Coulibaly
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali
| | - Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Abdoulaye Diawara
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali
| | - Fatoumata Bintou Savane
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali
| | - Mònica Escolà-Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Sidy Ba
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali; Department of Biomedical, Chemical and Environmental Engineering, ENI-ABT, BP 242, Bamako, Mali.
| |
Collapse
|
2
|
Pastor-López EJ, Escolà Casas M, Hellman D, Müller JA, Matamoros V. Impact of riverbed renaturalization on the attenuation of antibiotics and antimicrobial resistance in wastewater effluent-dominated streams. ENVIRONMENTAL RESEARCH 2025; 270:120910. [PMID: 39880113 DOI: 10.1016/j.envres.2025.120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Mediterranean streams contain substantial proportions of wastewater treatment plant effluent, occasionally constituting the entire water flow. Here, we analysed the seasonal occurrence of 23 antibiotics (AB) and antimicrobial resistance (AMR) by tracking 3 marker genes and bacterial community dynamics in two wastewater effluent-dominated streams. One stream was renaturalized with meanders and vegetation, while the other was linear and had a low vegetation density. The concentration of ABs in the effluents ranged from 33 to 1313 ng·L-1 during summer and 4 to 2337 ng·L-1 during winter. The attenuation of ABs 3.5 km downstream varied depending on the compound, ranging from 42 to 88%. The half-lives of ABs obtained for the streams were 0.2-4.1 h in summer and 0.6-12.6 h in winter. Most ABs had a half-life of <5 h, except sulfamethoxazole, acetyl-sulfamethoxazole, and trimethoprim. The vegetated stream exhibited a higher attenuation of ABs than the unaltered stream (88% vs. 67% on average), while also showing lower half-life values (on average 1.3 vs. 3.8 h). The bacterial community profiles in both streams were typical of effluents, with greater longitudinal dynamics in the vegetated stream during summer than in the other samplings. Similarly, AMR indicator genes decreased most in the vegetated stream during summer (0.8-1.1 log units). The ecotoxicological risk and the potential microbial risk selection values downstream at 3.5 km were reduced by > 45%. Overall, the results suggest that vegetation and meanders play an important role in the in-stream attenuation of ABs and AMRs.
Collapse
Affiliation(s)
- Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Dominik Hellman
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Marizzi Del Olmo A, López-Doval JC, Hidalgo M, Serra T, Colomer J, Salvadó V, Escolà Casas M, Medina JS, Matamoros V. Holistic assessment of chemical and biological pollutants in a Mediterranean wastewater effluent-dominated stream: Interactions and ecological impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125833. [PMID: 39952585 DOI: 10.1016/j.envpol.2025.125833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
The discharge of treated wastewater from wastewater treatment plants (WWTPs) into river systems is a significant source of pollution, introducing a range of chemical and biological pollutants that impact the chemical and ecological quality status of rivers. This study evaluates the effect of a secondary treated wastewater effluent on the Onyar River, in the northeast of Spain. Water and biofilm samples were collected at one upstream and four downstream sampling points (up to 2.8 km from the discharge point) across four seasons. A wide array of pollutants, including metals, pharmaceuticals, microplastics (MPs), per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), among other emerging pollutants, were detected downstream, with significant differences between upstream and downstream concentrations. Our results show that WWTP discharge also altered biofilm microbiome composition and ARGs presence, being these changes distinguishable from seasonal variations. Nevertheless, a partial recovery further downstream (525 m) was observed for biofilm microbiome and ARGs composition. These findings highlight the value of microbiome analysis in assessing wastewater impacts on river ecosystems and emphasize the need for further research to improve pollutant attenuation and biofilm recovery strategies in river streams.
Collapse
Affiliation(s)
- Anna Marizzi Del Olmo
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Julio C López-Doval
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), E-08500, Vic, Spain
| | - Manuela Hidalgo
- Department of Chemistry, University of Girona (UdG), E-17003, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona (UdG), E-17003, Girona, Spain
| | - Jordi Colomer
- Department of Physics, University of Girona (UdG), E-17003, Girona, Spain
| | - Victòria Salvadó
- Department of Chemistry, University of Girona (UdG), E-17003, Girona, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Jessica Subirats Medina
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
4
|
Conceicao KC, Freitas LS, Villamar-Ayala CA. Behavior space-temporal of biofilters based on hazelnut shells/sawdust treating pharmaceutical and personal care products from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178891. [PMID: 40010246 DOI: 10.1016/j.scitotenv.2025.178891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Nature-based solutions (NBS) such as biofiltration are an efficient, eco-friendly, and economical alternative for wastewater treatment under decentralized contexts. However, the influence on removing emerging contaminants (pharmaceuticals and personal care products or PPCPs), considering different typologies and seasonality fate, has been little studied. In this work, four lab-scale biofiltration typologies (BM: Biofilter + microorganisms, BEM: Biofilter + earthworms + microorganisms, BH: Biofilter + microorganisms + plants + earthworms or Biofilter hybrid, BPM: Biofilter + plants + microorganisms) were monitored seasonally (April-December, 250 days), being fed with rural domestic wastewater. Zantedeschia aethiopica (L.) and Eisenia foetida Savigny were used as biotic components, interacting with organic support components (hazelnut shells and sawdust) for removal of organic matter, nutrients, and 4 PPCPs (caffeine, ibuprofen, losartan, and triclosan). The mass balance of PPCPs was carried out considering the input (influent), output (effluent), support (soil), and plant (root and stem/leaf). The results showed that the different evaluated typologies removed close to 100 % COD, up to 89 % NH4+-N, and up to 99 % coliforms. Meanwhile, caffeine, ibuprofen, losartan, and triclosan were removed between 34 and 100 %. Seasonality or biofiltration typology was non-significantly influential (p > 0.05). However, biofilter hybrid and the warm season were the most efficient for removing organic matter, nutrients, coliforms, and PPCPs. The PPCPs' fate was plants/substrate/effluent with values up to 36, 95, and 64 %, respectively. The effluent was caffeine's main fate. Substrate was the main fate of ibuprofen, losartan, and triclosan. Plants uptake caffeine as a carbon source.
Collapse
Affiliation(s)
- Kennedy C Conceicao
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Facultad de Ingeniería, Departamento de Ingeniería Civil Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O ́Higgins 3363, Estación Central, Santiago, Chile; Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile
| | - Lisiane S Freitas
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Cristina A Villamar-Ayala
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago, Chile.
| |
Collapse
|
5
|
Pastor-López EJ, Escolà M, Kisielius V, Arias CA, Carvalho PN, Gorito AM, Ramos S, Freitas V, Guimarães L, Almeida CMR, Müller JA, Küster E, Kilian RM, Diawara A, Ba S, Matamoros V. Potential of nature-based solutions to reduce antibiotics, antimicrobial resistance, and pathogens in aquatic ecosystems. a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174273. [PMID: 38925380 DOI: 10.1016/j.scitotenv.2024.174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This comprehensive scientific review evaluates the effectiveness of nature-based solutions (NBS) in reducing antibiotics (ABs), combating antimicrobial resistance (AMR), and controlling pathogens in various aquatic environments at different river catchment levels. It covers conventional and innovative treatment wetland configurations for wastewater treatment to reduce pollutant discharge into the aquatic ecosystems as well as exploring how river restoration and saltmarshes can enhance pollutant removal. Through the analysis of experimental studies and case examples, the review shows NBS's potential for providing sustainable and cost-effective solutions to improve the health of aquatic ecosystems. It also evaluates the use of diagnostic indicators to predict NBS effectiveness in removing specific pollutants such as ABs and AMR. The review concludes that NBS are feasible for addressing the new challenges stemming from human activities such as the presence of ABs, AMR and pathogens, contributing to a better understanding of NBS, highlighting success stories, addressing knowledge gaps, and providing recommendations for future research and implementation.
Collapse
Affiliation(s)
- Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Mònica Escolà
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Carlos A Arias
- Department of Biology, Aarhus University, Aarhus, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Ana M Gorito
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Sandra Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vânia Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Dept. Bioanalytical Ecotoxicology, Leipzig, Germany
| | - R M Kilian
- Kilian Water Ltd., Torupvej 4, 8654 Bryrup, Denmark
| | - Abdoulaye Diawara
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Sidy Ba
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
6
|
Pastor-Lopez EJ, Casas ME, Hellman D, Müller JA, Matamoros V. Nature-based solutions for antibiotics and antimicrobial resistance removal in tertiary wastewater treatment: Microbiological composition and risk assessment. WATER RESEARCH 2024; 261:122038. [PMID: 38996727 DOI: 10.1016/j.watres.2024.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
This field-scale study evaluates the seasonal effectiveness of employing nature-based solutions (NBSs), particularly surface flow and horizontal subsurface flow constructed wetland configurations, as tertiary treatment technologies for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) compared to a conventional treatment involving UV and chlorination. Out of the 21 monitored ABs, 13 were detected in the influent of three tertiary wastewater treatments, with concentrations ranging from 2 to 1218 ng·L-1. The ARGs sul1 and dfrA1 exhibited concentrations ranging from 1 × 105 to 9 × 106 copies/100 mL. NBSs were better at reducing ABs (average 69 to 88 %) and ARGs (2-3 log units) compared to the conventional tertiary system (average 36 to 39 % and no removal to 2 log units) in both seasons. Taxonomic compositions in influent water samples shifted from wastewater-impacted communities (Actinomycetota and Firmicutes) to a combination of plant rhizosphere-associated and river communities in NBS effluents (Alphaproteobacteria). In contrast, the conventional technology showed no substantial differences in community composition. Moreover, NBSs substantially reduced the ecotoxicological risk assessment (cumulative RQs). Furthermore, NBSs reduced the ecotoxicological risk (cumulative RQs) by an average of over 70 % across seasons, whereas the benchmark technology only achieved a 6 % reduction. In conclusion, NBSs present a robust alternative for minimizing the discharge of ABs and ARGs into surface water bodies.
Collapse
Affiliation(s)
- Edward J Pastor-Lopez
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Mònica Escola Casas
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Dominik Hellman
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Víctor Matamoros
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
7
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Du R, Duan L, Zhang Q, Wang B, Huang J, Deng S, Yu G. Analysis on the attenuation characteristics of PPCPs in surface water and their influencing factors based on a compilation of literature data. WATER RESEARCH 2023; 242:120203. [PMID: 37336183 DOI: 10.1016/j.watres.2023.120203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The attenuation characteristics of PPCPs play an important part in predicting their environmental concentrations. However, considerable uncertainty remains in reported laboratory data on the attenuation characteristics of PPCPs. In this analysis, we compile information on laboratory-observed photodegradation half-lives (t1/2), biodegradation t1/2, the organic carbon normalized adsorption constant (KOC) and field-observed overall attenuation t1/2 for PPCPs in water bodies from more than 200 peer-reviewed studies. To mitigate the effects of such uncertainty, we derive representative values (RV) for PPCP degradability from these records to better compare the characteristics of different PPCPs. We further examine the influence of experimental conditions and environmental drivers on the determination of t1/2 using difference analysis and correlation analysis. The results indicate that for laboratory photodegradation tests, different light sources, initial concentration and volume significantly affect t1/2, whereas there is no significant difference between values obtained from tests conducted in pure water and natural water. For biodegradation, laboratory-measured t1/2 values in batch, flume and column studies gradually decrease, marking the controlling role of experimental setup. Redox condition, initial concentration and volume are also recognized as important influencing factors. For adsorption, water-sediment ratio is the primary reaction parameter. As two frequently investigated factors, however, pH and temperature are not significant factors in almost all cases. In field observations, the persistence of carbamazepine, typically used as a tracer, is in doubt. Water depth and latitude are the most correlated drivers of t1/2, indicating the predominant status of photodegradation in the overall attenuation rates. These findings call for caution when selecting experimental parameters and environmental drivers in determining PPCP's attenuation rates and establishing PPCP fate models in the field.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
9
|
Hamdhani H, Eppehimer DE, Quanrud DM, Bogan MT. Seasonal and longitudinal water quality dynamics in three effluent-dependent rivers in Arizona. PeerJ 2023; 11:e15069. [PMID: 37013146 PMCID: PMC10066693 DOI: 10.7717/peerj.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Effluent-fed streams, which receive inputs from wastewater treatment plants, are becoming increasingly common across the globe as urbanization intensifies. In semi-arid and arid regions, where many natural streams have dried up due to over extraction of water, many streams rely completely on treated effluent to sustain baseflow during dry seasons. These systems are often thought of as ‘second-class’ or highly disturbed stream ecosystems, but they have the potential to serve as refuges for native aquatic biota if water quality is high, especially in areas where few natural habitats remain. In this study, we investigated seasonal and longitudinal water quality dynamics at multiple sites across six reaches of three effluent-dependent rivers in Arizona (USA) with the objective (1) to quantify changes in effluent water quality due to distance traveled and season/climate and (2) to qualify whether water quality conditions in these systems are sufficient to support native aquatic species. Study reaches ranged in length from 3 to 31 km and in geographic setting from low desert to montane conifer forest. We observed the lowest water quality conditions (e.g., elevated temperature and low dissolved oxygen) during the summer in low desert reaches, and significantly greater natural remediation of water quality in longer vs. shorter reaches for several factors, including temperature, dissolved oxygen and ammonia. Nearly all sites met or exceeded water quality conditions needed to support robust assemblages of native species across multiple seasons. However, our results also indicated that temperature (max 34.2 °C), oxygen levels (min 2.7 mg/L) and ammonia concentrations (max 5.36 mg/L N) may occasionally be stressful for sensitive taxa at sites closest to effluent outfalls. Water quality conditions may be a concern during the summer. Overall, effluent-dependent streams have the capacity to serve as refuges for native biota in Arizona, and they may become the only aquatic habitat available in many urbanizing arid and semi-arid regions.
Collapse
Affiliation(s)
- Hamdhani Hamdhani
- Department of Aquatic Resources Management, Mulawarman University, Samarinda, East Kalimantan, Indonesia
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - Drew E. Eppehimer
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - David M. Quanrud
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - Michael T. Bogan
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Topaz T. Attenuation of organic pollutants and the effects of salinity and seasonality in a Mediterranean micro-estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158919. [PMID: 36167138 DOI: 10.1016/j.scitotenv.2022.158919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Micro-estuaries are small ubiquitous transitional water bodies that are often located in semi-arid zones. Unlike the vastly studied large estuaries, micro-estuaries lack the ability to dilute and contain pollution from point and non-point sources due to low natural water discharges. Therefore, these diverse ecological systems are susceptible to pollutant loads due to prolonged water residence time and complex geochemical dynamics. Although this elevated anthropogenic stress limits their potential to provide ecological and recreational services, micro-estuaries have some traits similar to those found in wetlands, which provide a natural potential to retain and mitigate organic pollutants. A two consecutive years study conducted at the Alexander micro-estuary tracked the influx and outflux of a large organic pollutant mixture during base-flow and flood events. During the research period, 165 kg of active ingredients entered the micro-estuary and 160 kg flowed out to the Mediterranean Sea, suggesting negligible net attenuation. However, this broad picture conceals inner shifts in pollutant mixture loads, which contained 46 pesticides and 19 pharmaceuticals. Only a handful of pollutants were actually balanced, whereas most compounds were either removed or added to the flow, with no observed correlation to chemical properties. A prominent observation was the load increase along the flow for some pollutants during base-flow conditions. This trend, which was correlated with salinity elevation and was verified in lab experiments, suggests that seawater intrusion to the bottom of the estuary may increase desorption rates of pollutants from the estuary bed, creating an estuarine desorption magnification effect. The combination of strong anthropogenic stress with increased desorption rates severely limits the estuary's potential to mitigate pollutants, frequently transforming it into a pollution source rather than a sink.
Collapse
Affiliation(s)
- Tom Topaz
- Faculty of Marine Sciences, Ruppin Academic Center, Mikhmoret 402970, Israel.
| |
Collapse
|
11
|
Zhang H, Wang XC, Zheng Y, Dzakpasu M. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116478. [PMID: 36272291 DOI: 10.1016/j.jenvman.2022.116478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
12
|
Zhao B, Nakada N, Hanamoto S, Zhang L, Wong Y. Modeling in-stream attenuation of N-nitrosodimethylamine and formaldehyde during urban river transportation based on seasonal and diurnal variation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10889-10897. [PMID: 33105007 DOI: 10.1007/s11356-020-11361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Disinfection by-products (DBPs) discharged from sewage treatment plants (STPs) could harm downstream receiving waters and drinking water resources. In-stream attenuation of photo- and non-photodegradable DBPs during river transportation is currently not well understood. Here we sought to fill this knowledge gap by meta-data-analysis for modeling in-stream attenuation of DBPs. Data were collected along a treated-wastewater-dominated 1.6-km stretch of a river channel for 3 years and incorporated seasonal and diurnal patterns. Photo-irradiation and water temperature were the main factors responsible for in-stream attenuation of photodegradable N-nitrosodimethylamine (NDMA), and water temperature for that of non-photodegradable formaldehyde (FAH). The factors were incorporated into photo-dependent and -independent models to account for temporal variations in NDMA and FAH, respectively. Estimated mass recoveries of NDMA and FAH agreed well with observed values along the stretch. The models developed here offer a novel and useful tool for estimating levels of NDMA and FAH during river transportation.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yongjie Wong
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
13
|
Zhang ZF, Zhang X, Sun MY, Meng B, Liu LY, Song WW, Ma WL, Li WL, Li YF. Substituted diphenylamine antioxidants (SDPAs) in typical domestic wastewater treatment plants and Songhua River in the northeast of China. CHEMOSPHERE 2020; 260:127519. [PMID: 32683033 DOI: 10.1016/j.chemosphere.2020.127519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Limited studies focus on the occurrence, removal rate and seasonal variation of substituted diphenylamine antioxidants (SDPAs) in surface water and wastewater in China. In this paper, the detection method of SDPAs was established by the ultra-performance liquid chromatography-tandem mass spectrometry. Daily variations suggested that significant variations were found for the concentrations of some SDPAs in the influent. It was found that the SDPAs could be detected in all the effluent samples and C8/C8-DPA was the predominant compound in two WWTPs. The levels of most SDPAs in the effluent were much lower than that of influent, with the removal efficiencies of total SDPAs ranged from 57.9% to 84.2%. There were significant differences with the SDPA concentrations in the influent between different seasons. Higher concentrations of SDPAs were found at downstream than those of upstream. The results of this study provide more environmental occurrence data and new insights into the research on the environmental fate of these compounds.
Collapse
Affiliation(s)
- Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, 150086, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ming-Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bo Meng
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, 150086, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wen-Long Li
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| |
Collapse
|
14
|
Delli Compagni R, Gabrielli M, Polesel F, Turolla A, Trapp S, Vezzaro L, Antonelli M. Risk assessment of contaminants of emerging concern in the context of wastewater reuse for irrigation: An integrated modelling approach. CHEMOSPHERE 2020; 242:125185. [PMID: 31689637 DOI: 10.1016/j.chemosphere.2019.125185] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 05/12/2023]
Abstract
Direct reuse of reclaimed wastewater (RWW) in agriculture has recently received increasing attention as a possible solution to water scarcity. The presence of contaminants of emerging concern (CECs) in RWW can be critical, as these chemicals can be uptaken in irrigated crops and eventually ingested during food consumption. In the present study, an integrated model was developed to predict the fate of CECs in water reuse systems where RWW is used for edible crops irrigation. The model was applied to a case study where RWW (originating from a municipal wastewater treatment plant) is discharged into a water channel, with subsequent irrigation of silage maize, rice, wheat and ryegrass. Environmental and human health risks were assessed for 13 CECs, selected based on their chemical and hazard characteristics. Predicted CEC concentrations in the channel showed good agreement with available measurements, indicating potential ecotoxicity of some CECs (estrogens and biocides) due to their limited attenuation. Plant uptake predictions were in good agreement with existing literature data, indicating higher uptake in leaves and roots than fruits. Notably, high uncertainties were shown for weakly acidic CECs, possibly due to degradation in soil and pH variations inside plants. The human health risk due to the ingestion of wheat and rice was assessed using the threshold of toxicological concern and the hazard quotient. Both approaches predicted negligible risk for most CECs, while sulfamethoxazole and 17α-ethinylestradiol exhibited the highest risk for consumers. Alternative scenarios were evaluated to identify possible risk minimization strategies (e.g., adoption of a more efficient irrigation system).
Collapse
Affiliation(s)
- Riccardo Delli Compagni
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Gabrielli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark; DHI A/S, Agern Allé 5, 2970, Hørsholm, Denmark
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Stefan Trapp
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Luca Vezzaro
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Manuela Antonelli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
15
|
Paz ADL, Salinas N, Matamoros V. Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studies. WATER RESEARCH 2019; 166:115031. [PMID: 31505310 DOI: 10.1016/j.watres.2019.115031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Water pollution with contaminants of emerging concern (CECs) is widespread in water bodies due to the low effectiveness of industrial and urban wastewater treatment systems. In recent decades, the implementation of vegetation-based wastewater treatment systems such as wetlands has been observed to help solve this issue. However, there is a lack of knowledge regarding the removal percentage attributable to plants and how plants affect this removal improvement. In this study, we monitored planted (Phragmites australis) and unplanted sand columns to assess the effect of vegetation on the attenuation of 5 well-known CECs (benzotriazole, sulfamethoxazole, carbamazepine, bisphenol A, and diclofenac) and link it to the presence of different root exudates. The columns were operated in a continuous feeding mode for more than 6 months at 3 hydraulic loading rates (HLRs) (70, 140, and 280 mm d-1). We found that the presence of vegetation increased CEC attenuation from no effect to more than 200% compared to the unplanted columns. The highest effect was observed for carbamazepine (94-200%), followed by diclofenac (22-171%), benzotriazole (48-127%), and sulfamethoxazole (no effect to 43%), depending on the tested HLR. Furthermore, the greater CEC attenuation in planted columns was linked to the release of certain root exudates that may shape the root microbiome. We expect our assay to be a starting point for exploring the role of root exudates in enhancing CEC removal efficiency in wastewater.
Collapse
Affiliation(s)
- Agnès de la Paz
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Nèstor Salinas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
16
|
Glaser C, Schwientek M, Zarfl C. Designing field-based investigations of organic micropollutant fate in rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28633-28649. [PMID: 31385254 DOI: 10.1007/s11356-019-06058-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Organic micropollutants in rivers are emitted via diffuse and point sources like from agricultural practice or wastewater treatment plants (WWTP). Extensive laboratory and field experiments have been conducted to understand emissions and fate of these pollutants in freshwaters. Nevertheless, data is often difficult to compare since common protocols for appropriate approaches are largely missing. Thus, interpretation of the observed changes in substance concentrations and of the underlying fate of these compounds downstream of the chemical input into the river is still challenging. To narrow this research gap, (1) process understanding and (2) measurement approaches for field-based investigations are critically reviewed in this article. The review includes, on the one hand, processes that change the volume of the water (hydrological processes) and, on the other hand, processes that affect the substance mass within the water (distribution and transformation). Environmental boundary conditions for the purpose of better comparability of different attenuation studies, as well as promising state-of-the-art measurement approaches from different disciplines, are presented. This overview helps to develop a tailored procedure to assess turnover mechanisms of organic micropollutants under field conditions. In this respect, further research needs to standardize interdisciplinary approaches to increase the informative value of collected data.
Collapse
Affiliation(s)
- Clarissa Glaser
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany.
| | - Marc Schwientek
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| |
Collapse
|
17
|
Guillet G, Knapp JLA, Merel S, Cirpka OA, Grathwohl P, Zwiener C, Schwientek M. Fate of wastewater contaminants in rivers: Using conservative-tracer based transfer functions to assess reactive transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1250-1260. [PMID: 30625655 DOI: 10.1016/j.scitotenv.2018.11.379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Interpreting the fate of wastewater contaminants in streams is difficult because their inputs vary in time and several processes synchronously affect reactive transport. We present a method to disentangle the various influences by performing a conservative-tracer test while sampling a stream section at various locations for chemical analysis of micropollutants. By comparing the outflow concentrations of contaminants with the tracer signal convoluted by the inflow time series, we estimated reaction rate coefficients and calculated the contaminant removal along a river section. The method was tested at River Steinlach, Germany, where 38 contaminants were monitored. Comparing day-time and night-time experiments allowed distinguishing photo-dependent degradation from other elimination processes. While photo-dependent degradation showed to be highly efficient for the removal of metroprolol, bisoprolol, and venlafaxine, its impact on contaminant removal was on a similar scale to the photo-independent processes when averaged over 24 h. For a selection of compounds analyzed in the present study, bio- and photodegradation were higher than in previous field studies. In the Steinlach study, we observed extraordinarily effective removal processes that may be due to the higher proportion of treated wastewater, temperature, DOC and nitrate concentrations, but also a higher surface to volume ratio from low flow conditions that favorizes photodegradation through the shallow water column and a larger transient storage than observed in comparable studies.
Collapse
Affiliation(s)
- Gaëlle Guillet
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Julia L A Knapp
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Sylvain Merel
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Olaf A Cirpka
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Christian Zwiener
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Marc Schwientek
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.
| |
Collapse
|
18
|
Mandaric L, Kalogianni E, Skoulikidis N, Petrovic M, Sabater S. Contamination patterns and attenuation of pharmaceuticals in a temporary Mediterranean river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:561-569. [PMID: 30089278 DOI: 10.1016/j.scitotenv.2018.07.308] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/22/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The contamination patterns and fate of pharmaceutically active compounds (PhACs) were investigated in the Evrotas River (Southern Greece). This is a temporary river with differing levels of water stress and water quality impairment in a number of its reaches. Three sampling campaigns were conducted in order to capture different levels of water stress and water quality. Four sampling sites located on the main channel of the Evrotas River were sampled in July 2015 (moderate stream flow), and June and September 2016 (low stream flow). Discharge of urban wastewater has been determined as the main source of pollution, with PhACs, nutrients and other physicochemical parameters considerably increasing downstream the wastewater treatment plant (WWTP) of Sparta city. Due to the pronounced hydrological variation of the Evrotas River, generally, the highest concentrations of PhACs have been detected during low flow conditions. Simultaneously, low flow resulted in an increased water travel time and consequently longer residence time that accounted for the higher attenuation of most PhACs. The average decrease in total concentration of PhACs within the studied waterbody segment (downstream of Sparta city) increased from 22% in July 2015 to 25% in June 2016 and 77% in September 2016. The PhACs with the highest average concentration decrease throughout the sampling campaigns were hydrochlorothiazide, followed by sotalol, carbamazepine, valsartan, and naproxen.
Collapse
Affiliation(s)
- Ladislav Mandaric
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, E-17003 Girona, Spain
| | - Eleni Kalogianni
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Souniou Av., 190 13, P.O. Box 712, Anavissos, Greece
| | - Nikolaos Skoulikidis
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Souniou Av., 190 13, P.O. Box 712, Anavissos, Greece
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, E-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Lluis Company 25, 08010 Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, E-17003 Girona, Spain; Institute of Aquatic Ecology (IEA), Faculty of Science, University of Girona (UdG), Campus de Montilivi, M. Aurélia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
19
|
McMinn BR, Klemm S, Korajkic A, Wyatt KM, Herrmann MP, Haugland RA, Lu J, Villegas EN, Frye C. A Constructed Wetland for Treatment of an Impacted Waterway and the Influence of Native Waterfowl on its Perceived Effectiveness. ECOLOGICAL ENGINEERING 2019; 128:48-56. [PMID: 31631948 PMCID: PMC6800712 DOI: 10.1016/j.ecoleng.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A constructed, variable-flow treatment wetland was evaluated for its ability to reduce microbial loads from the Banklick Creek, an impacted recreational waterway in Northern Kentucky. For this study, levels of traditional (Escherichia coli and enterococci measured by culture and molecular techniques) and alternative fecal indicators (infectious somatic and F+ coliphage, Clostridium spp. and Clostridium perfringens by culture), potential pathogens (molecular signal of Campylobacter spp.) as well as various microbial source tracking (MST) markers (human fecal marker HF183 and avian fecal marker GFD) were monitored during the summer and early fall through five treatment stages within the Banklick Creek Wetland. No difference in concentrations of traditional or alternative fecal indicators were observed in any of the sites monitored. Microbial source tracking markers were employed to identify sources of fecal contamination within the wetland. Human marker HF183 concentrations at beginning stages of treatment were found to be significantly higher (P value range: 0.0016-0.0003) than levels at later stages. Conversely, at later stages of treatment where frequent bird activity was observed, Campylobacter and avian marker (GFD) signals were detected at significantly higher frequencies (P value range: 0.024 to <0.0001), and both signals were strongly correlated (P = 0.0001). Our study suggests constructed wetlands are an effective means for removal of microbial contamination in ambient waters, but reliance on general fecal indicators is not ideal for determining system efficacy or assessing appropriate remediation efforts.
Collapse
Affiliation(s)
- Brian R. McMinn
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Sara Klemm
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Asja Korajkic
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Kimberly M. Wyatt
- Thomas More College 33 Thomas More Parkway Crestview Hills, Kentucky 41017
| | - Michael P. Herrmann
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Richard A. Haugland
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Jingrang Lu
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Eric N. Villegas
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Craig Frye
- Sanitation District No.1 1045 Eaton Drive Fort Wright, Kentucky 41017
| |
Collapse
|