1
|
Hou R, Wu H, Du P, Li S, Liu J, Chang J, Huang S, Cheng D, Zhang P, Zhang Z. Ecological risk assessment of castor oil based waterborne polyurethane: Mechanism of anionic/cationic state selective toxicity to Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135553. [PMID: 39173386 DOI: 10.1016/j.jhazmat.2024.135553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Cationic and anionic castor oil-based waterborne polyurethanes (C-WPU/A and C-WPU/C) have great potential for development in agriculture. However, it is still unclear whether these polyurethanes are harmful or toxic to soil fauna. Based on multilevel toxicity endpoints and transcriptomics, we investigated the effects of C-WPU/A and C-WPU/C on earthworms (Eisenia fetida). The acute toxicity results showed that C-WPU/A was highly toxic to the earthworms, whereas C-WPU/C was nearly nontoxic. C-WPU/A significantly affected the body weight, burrowing ability and cocoon production rate of earthworms compared to C-WPU/C. After exposure to C-WPU/A, the results showed accumulation of reactive oxygen species (ROS), abnormal peroxidase activity, and increased malondialdehyde levels. Additionally, more serious histopathological damage was observed in earthworms, such as epidermal damage, vacuolization, longitudinal muscle disorganization, and shedding of intestinal epidermal cells. At the cellular level, C-WPU/A induced more severe lysosomal damage, DNA damage and apoptosis than C-WPU/A. C-WPU/A made more differentially expressed genes and considerably more enriched pathways at the transcriptional level than C-WPU/C. These pathways are largely involved in cell membrane signaling, detoxification, and apoptosis. These results provide an important reference for elucidating the selective toxicity mechanisms of C-WPU/A and C-WPU/C in earthworms.
Collapse
Affiliation(s)
- Ruiquan Hou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Pengrui Du
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shengnan Li
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jinzhe Chang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Peiwen Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Lourenço R, Cesar R, Koifman G, Teixeira M, Santos D, Polivanov H, Alexandre K, Carneiro M, da Silva LID, Pereira MMSC, Castilhos Z. Land disposal of dredged sediments from an urbanized tropical lagoon: toxicity to soil fauna. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:590-607. [PMID: 38733499 DOI: 10.1007/s10646-024-02757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Urban tropical lagoons are commonly impacted by silting, domestic sewage and industrial wastes and the dredging of their sediments is often required to minimize environmental impacts. However, the ecological implications of land disposal of dredged sediments are still poorly investigated in the tropics. Aiming to contribute to filling this gap, an ecotoxicological evaluation was conducted with dredged sediments from Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence, including soil and sediment characterization, metal determination, and acute and avoidance bioassays with Eisenia andrei. Two different dredged sediment samples, a sandy sediment and another muddy one, were obtained in two distinct and spatially representative sectors of the Tijuca Lagoon. The sediments were mixed with an artificial soil, Ferralsol and Spodosol to obtain doses between 0 (pure soil) and 12%. The sediment dose that caused mortality (LC50) or avoidance responses (EC50) to 50% of the organisms was estimated through PriProbit analysis. Metal concentrations and toxicity levels were higher in the muddy sediment (artificial soil LC50 = 3.84%; Ferralsol LC50 = 4.58%; Spodosol LC50 = 2.85%) compared to the sandy one (artificial soil LC50 = 10.94%; Ferralsol LC50 = 14.36%; Spodosol LC50 = 10.38%), since fine grains tend to adsorb more organic matter and contaminants. Mortality and avoidance responses were the highest in Spodosol due to its extremely sandy texture (98% of sand). Metal concentrations in surviving earthworms were generally low, except sodium whose bioaccumulation was high. Finally, the toxicity is probably linked to marine salts, and the earthworms seem to accumulate water in excess to maintain osmotic equilibrium, increasing their biomass.
Collapse
Affiliation(s)
- Rodrigo Lourenço
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ricardo Cesar
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Koifman
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Matheus Teixeira
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Domynique Santos
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Helena Polivanov
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Katia Alexandre
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Manuel Carneiro
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lilian Irene Dias da Silva
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | - Zuleica Castilhos
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Raymundo LB, Gomes DF, Miguel M, Moreira RA, Rocha O. Effects of acute toxicity of the pesticide Chlorpyrifos and the metal Cadmium, both individually and in mixtures, on two species of native neotropical cladocerans. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:642-652. [PMID: 38776006 DOI: 10.1007/s10646-024-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 07/17/2024]
Abstract
The excessive use of pesticides in agriculture and the widespread use of metals in industrial activities and or technological applications has significantly increased the concentrations of these pollutants in both aquatic and terrestrial ecosystems worldwide, making aquatic biota increasingly vulnerable and putting many species at risk of extinction. Most aquatic habitats receive pollutants from various anthropogenic actions, leading to interactions between compounds that make them even more toxic. The aim of this study was to assess the effects of the compounds Chlorpyrifos (insecticide) and Cadmium (metal), both individually and in mixtures, on the cladocerans Ceriodaphnia rigaudi and Ceriodaphnia silvestrii. Acute toxicity tests were conducted for the compounds individually and in mixture, and an ecological risk assessment (ERA) was performed for both compounds. Acute toxicity tests with Cadmium resulted in EC50-48 h of 0.020 mg L-1 for C. rigaudi and 0.026 mg L-1 for C. silvestrii, while tests with Chlorpyrifos resulted in EC50-48 h of 0.047 μg L-1 and 0.062 μg L-1, respectively. The mixture test for C. rigaudi showed the occurrence of additive effects, while for C. silvestrii, antagonistic effects occurred depending on the dose level. The species sensitivity distribution curve for crustaceans, rotifers, amphibians, and fishes resulted in an HC5 of 3.13 and an HC50 of 124.7 mg L-1 for Cadmium; an HC5 of 9.96 and an HC50 of 5.71 μg L-1 for Chlorpyrifos. Regarding the ERA values, Cadmium represented a high risk, while Chlorpyrifos represented an insignificant to a high risk.
Collapse
Affiliation(s)
- Larissa Broggio Raymundo
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, São Paulo, 13565-905, Brazil.
| | - Diego Ferreira Gomes
- NEEA/SHS, Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Mariana Miguel
- NEEA/SHS, Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Raquel Aparecida Moreira
- Department of Basic Sciences (ZAB), College of Animal Science and Food Engineering (FZEA) at the University of São Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
4
|
Chen H, Yang L, Zhao S, Xu H, Zhang Z. Long-term toxic effects of iron-based metal-organic framework nanopesticides on earthworm-soil microorganism interactions in the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170146. [PMID: 38278247 DOI: 10.1016/j.scitotenv.2024.170146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
With the widespread use of controlled-release nanopesticides in field conditions, the interactions between these nanopesticides and biological systems are complex and highly uncertain. The toxicity of iron-based metal organic frameworks (CF@MIL-101-SL) loaded with chlorfenapyr (CF) to terrestrial invertebrate earthworms in filter paper and soil environments and the potential mechanisms of interactions in the nanopesticide-earthworm-cornfield soil microorganism system were investigated for the first time. The results showed that CF@MIL-101-SL was more poisonous to earthworms in the contact filter paper test than suspension concentrate of CF (CF-SC), and conversely, CF@MIL-101-SL was less poisonous to earthworms in the soil test. In the soil environment, the CF@MIL-101-SL treatment reduced oxidative stress and the inhibition of detoxifying enzymes, and reduced tissue and cellular substructural damage in earthworms compared to the CF-SC treatment. Long-term treatment with CF@MIL-101-SL altered the composition and abundance of microbial communities with degradative functions in the earthworm intestine and soil and affected the soil nitrogen cycle by modulating the composition and abundance of nitrifying and denitrifying bacterial communities in the earthworm intestine and soil, confirming that soil microorganisms play an important role in reducing the toxicity of CF@MIL-101-SL to earthworms. In conclusion, this study provides new insights into the ecological risks of nanopesticides to soil organisms.
Collapse
Affiliation(s)
- Huiya Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shiji Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Dong Y, Wang Q, Zhu J, Liang L, Xu D, Mi X, Ren Z, Wang P. A comprehensive study on the co-removal of Cr (VI) and ciprofloxacin via microbial-photocatalytic coupling: Mechanistic insights and performance evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120044. [PMID: 38184867 DOI: 10.1016/j.jenvman.2024.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
The increasing contamination of water systems by antibiotics and heavy metals has become a growing concern. The intimately coupled photocatalysis and biodegradation (ICPB) approach offers a promising strategy for the effective removal of mixed pollutants. Despite some prior research on ICPB applications, the mechanism by which ICPB eliminates mixed pollutants remains unclear. In our current study, the ICPB approach achieved approximately 1.53 times the degradation rate of ciprofloxacin (CIP) and roughly 1.82 times the reduction rate of Cr (VI) compared to photocatalysis. Remarkably, after 30 days, the ICPB achieved a 96.1% CIP removal rate, and a 97.8% reduction in Cr (VI). Our investigation utilized three-dimensional fluorescence analysis and photo-electrochemical characterization to unveil the synergistic effects of photocatalysis and biodegradation in removal of CIP and Cr (VI). Incorporation of B-Bi3O4Cl (B-BOC) photocatalyst facilitated electron-hole separation, leading to production of ·O2-, ·OH, and h+ species which interacted with CIP, while electrons reduced Cr (VI). Subsequently, the photocatalytic products were biodegraded by a protective biofilm. Furthermore, we observed that CIP, acting as an electron donor, promoted the reduction of Cr (VI). The microbial communities revealed that the number of bacteria favoring pollutant removal increased during ICPB operation, leading to a significant enhancement in performance.
Collapse
Affiliation(s)
- Yilin Dong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Qiuwen Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinyu Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Linlin Liang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Dongyu Xu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xueyue Mi
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
6
|
Sánchez-Del Cid EL, Osten JRV, Dzul-Caamal R, González-Chávez MDCÁ, Torres-Dosal A, Huerta-Lwanga E. Biochemical Response of the Endogeic Earthworm (Balanteodrilus extremus) Exposed to Tropical Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:35. [PMID: 38353745 PMCID: PMC10867048 DOI: 10.1007/s00128-024-03860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
This work evaluated the biochemical responses of the endogeic earthworm Balanteodrilus extremus exposed for 14 and 48 days (d) to soils collected from two tropical agricultural systems: maize-sorghum (MS) and soybean-sorghum (SS). A soil without agricultural management (WAM) and the use of pesticides was selected as a reference. The presence of organochlorine (OC) and organophosphate (OP) pesticide residues was quantified in MS and SS soils. Biomarkers of detoxification [glutathione S transferase (GST)], neurotoxicity [acetylcholinesterase (AChE)] and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and lipoperoxidation (LPO)] were evaluated in B. extremus. The concentration of OP pesticide residues was higher in SS than in MS. Activity of AChE in B. extremus exposed to SS soil for 14 d was significantly more inhibited (78%) than in MS soil (68%). B. extremus has been shown to be a good bioindicator of contaminated soils in tropical regions.
Collapse
Affiliation(s)
- E Lucero Sánchez-Del Cid
- Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av. Polígono s/n, Cd. Industrial, Lerma, Campeche, México
| | - Jaime Rendón-von Osten
- Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Av. Héroe de Nacozari 480, Campeche, 24070, México
| | - Ricardo Dzul-Caamal
- Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Av. Héroe de Nacozari 480, Campeche, 24070, México
| | - Ma Del Carmen Ángeles González-Chávez
- Programa de Edafología, Colegio de Postgraduados en Ciencias Agrícolas, Montecillo estado de México, Carretera México-Texcoco km 36.5, Montecillo, 56264, México
| | - Arturo Torres-Dosal
- Salud, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas, México
| | - Esperanza Huerta-Lwanga
- Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av. Polígono s/n, Cd. Industrial, Lerma, Campeche, México.
- Soil Physics and Land Management, Department of Environmental Sciences, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
7
|
Chen Y, Zhang J, Zhu X, Wang Y, Chen J, Sui B, Teng HH. Unraveling the complexities of Cd-aniline composite pollution: Insights from standalone and joint toxicity assessments in a bacterial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115509. [PMID: 37742573 DOI: 10.1016/j.ecoenv.2023.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Cadmium (Cd) and aniline frequently co-occur in industrial settings but have rarely been addressed as composite toxicants in terms of the overall toxicity despite extensive knowledge of the environmental impact of each individual pollutant. In this study, we attempt to assess the relation of individual and combined toxic effects of Cd and aniline using a bacterial consortium cultured from soils as a model system. Results showed that the consortial bacteria exhibited drastically stronger tolerance to stand-alone Cd and aniline in comparison to literature data acquired from single species studies. When occurring simultaneously, the joint toxicity displayed a concentration-dependent behavior that wasn't anticipated based on individual chemical tests. Specifically, additive effects manifested with Cd and aniline at their IC10s, but changed to synergistic when the concentrations increased to IC20, and finally transitioned into antagonistic at IC30s and beyond. In addition, co-occurring aniline appeared to have retarded the cellular accumulation of Cd while increasing the enzymatic activities of superoxide dismutase and catalase relative to that in Cd-alone treatments. Finally, the bacterial community experienced distinct compositional changes under solo and combined toxicities with several genera exhibiting inconsistent behavior between treatments of single and composite toxicants. Findings from this study highlight the complexity of bacterial response to composite pollutions and point to the need for more comprehensive references in risk and toxicology assessment at multi-chemical contamination sites.
Collapse
Affiliation(s)
- Yuxuan Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Jianchao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China.
| | - Xiangyu Zhu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Yuebo Wang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Biao Sui
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - H Henry Teng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China.
| |
Collapse
|
8
|
Drzymała J, Kalka J. Effects of diclofenac, sulfamethoxazole, and wastewater from constructed wetlands on Eisenia fetida: impacts on mortality, fertility, and oxidative stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:858-873. [PMID: 37633869 PMCID: PMC10533613 DOI: 10.1007/s10646-023-02690-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Soil contamination with micropollutants is an important global problem and the impact of these pollutants on living organisms cannot be underestimated. The effects of diclofenac (DCF) and sulfamethoxazole (SMX), their mixture (MIX), and wastewater containing these drugs on the mortality and reproduction of Eisenia fetida were investigated. The impact on the activities of antioxidant enzymes in earthworm cells was also assessed. Furthermore, the influence of the following parameters of the vertical flow constructed wetlands on wastewater toxicity was investigated: the dosing system, the presence of pharmaceuticals and the plants Miscanthus giganteus. The compounds and their mixture significantly affected the reproduction and mortality of earthworms. The calculated values of LC50,28 days values were 3.4 ± 0.3 mg kg-1 for DCF, 1.6 ± 0.3 mg kg-1 for SMX, and 0.9 ± 0.1 mg kg-1 for MIX. The EC50 (reproduction assay) for DCF was 1.2 ± 0.2 mg kg-1, whereas for SMX, it was 0.4 ± 0.1 mg kg-1, and for MIX, it was 0.3 ± 0.1 mg kg-1, respectively. The mixture toxicity index (MTI) was calculated to determine drug interactions. For both E. fetida mortality (MTI = 3.29) and reproduction (MTI = 3.41), the index was greater than 1, suggesting a synergistic effect of the mixture. We also observed a negative effect of wastewater (raw and treated) on mortality (32% for raw and 8% for treated wastewater) and fertility (66% and 39%, respectively) of E. fetida. It is extremely important to analyze the harmfulness of microcontaminants to organisms inhabiting natural environments, especially in the case of wastewater for irrigation of agricultural fields.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
9
|
Ahmadpour M, Wang W, Sinkakarimi MH, Ahmadpour M, Hosseini SH. Joint toxicity of cadmium and fenpyroximate on two earthworms: Interspecific differences, subcellular partitioning and biomarker responses. CHEMOSPHERE 2023:139329. [PMID: 37364643 DOI: 10.1016/j.chemosphere.2023.139329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Cadmium (Cd) and fenpyroximate are common soil contaminants found together in the field, but their combined toxicity to terrestrial invertebrates has not been studied. Therefore, earthworms Aporrectodea jassyensis and E. fetida were exposed into Cd (5, 10, 50 and 100 μg/g) and fenpyroximate (0.1, 0.5, 1, and 1.5 μg/g) and their mixture, and multiple biomarker responses (mortality, catalase (CAT), superoxide dismutase (SOD), total antioxidant activity (TAC), lipid peroxidation (MDA), protein content, weight loss and subcellular partitioning) were determined to estimate health status and mixture effect. MDA, SOD, TAC, and weight loss were significantly correlated with Cd in total internal and debris (p < 0.01). Fenpyroximate altered the subcellular distribution of Cd. It appears that maintaining Cd in a non-toxic form was the earthworms' primary Cd detoxification strategy. CAT activity was inhibited by Cd, fenpyroximate, and their combined presence. BRI values for all treatments indicated a major and severe alteration in earthworm's health. The combined toxicity of Cd and fenpyroximate was greater than the toxicity of either substance alone. According to EAI, all combined treatments exhibited a clear antagonistic effect. In general, the sensitivity of A. jassyensis was greater than that of E. fetida.
Collapse
Affiliation(s)
- Mousa Ahmadpour
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jingsu, 210037, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jingsu, 210037, China
| | - Mohammad Hosein Sinkakarimi
- Research Center for the Caspian Region, University of Mazandaran, CP: 47416-13534, Babolsar, Iran; Department of Environmental Sciences, Faculty of Marine and Environmental Sciences, University of Mazandaran, CP: 47416-13534, Babolsar, Iran.
| | - Mohsen Ahmadpour
- Research Center for the Caspian Region, University of Mazandaran, CP: 47416-13534, Babolsar, Iran; Department of Environmental Sciences, Faculty of Marine and Environmental Sciences, University of Mazandaran, CP: 47416-13534, Babolsar, Iran
| | - Seyed Hamid Hosseini
- Research Center for the Caspian Region, University of Mazandaran, CP: 47416-13534, Babolsar, Iran; College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Zhang Y, Tan Z, Qin K, Liu C. Effect of Cd/Cu on the toxicity and stereoselective environmental behavior of dinotefuran in earthworms Eisenia foetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115022. [PMID: 37207576 DOI: 10.1016/j.ecoenv.2023.115022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Pesticides and heavy metals commonly coexist in soil. In this study, the influence of Cd and Cu on the toxicity of rac-dinotefuran and the enantioselective behavior of dinotefuran enantiomers in soil-earthworm microcosms were investigated. The acute toxic tests showed that S-dinotefuran has higher toxic than that of R-dinotefuran. The rac-dinotefuran and Cd has an antagonistic effect on earthworms, and the Cu and rac-dinotefuran has a synergistic effect. Earthworms maybe promoted the enantioselective behavior of dinotefuran in soil. Co-exposure to Cd or Cu inhibited the dissipation of dinotefuran enantiomers (S-dinotefuran and R-enantiomers), and slightly reduced the enantioselectivity in soil. The earthworms were found to be preferentially enriched with S-dinotefuran. However, Cd or Cu attenuated the accumulation of dinotefuran enantiomers in earthworms and decreased the enantioselectivity. The effect of Cd and Cu on the environmental behaviors of dinotefuran enantiomers were correlated positively with the dose of Cd/Cu. These results showed that Cd and Cu alter the environmental behaviors and the toxicity of dinotefuran enantiomers in soil-earthworm microcosms. Thus, the influence of coexistent heavy metals on the ecological risk assessment of chiral pesticides should be considered.
Collapse
Affiliation(s)
- Yirong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
11
|
Anaduaka EG, Uchendu NO, Asomadu RO, Ezugwu AL, Okeke ES, Chidike Ezeorba TP. Widespread use of toxic agrochemicals and pesticides for agricultural products storage in Africa and developing countries: Possible panacea for ecotoxicology and health implications. Heliyon 2023; 9:e15173. [PMID: 37113785 PMCID: PMC10126862 DOI: 10.1016/j.heliyon.2023.e15173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Chemicals used for storage majorly possess insecticidal activities - deterring destructive insect pests and microorganisms from stored agricultural produce. Despite the controversy about their safety, local farmers and agro-wholesalers still predominantly use these chemicals in developing countries, especially Africa, to ensure an all-year supply of agriproducts. These chemicals could have short- or long-term effects. Despite the state-of-the-art knowledge, factors such as poor education and awareness, limited agricultural subventions, quests for cheap chemicals, over-dosage, and many more are the possible reasons for these toxic chemicals' setback and persistent use in developing countries. This paper provides an up-to-date review of the environmental and ecological effects, as well as the health impacts arising from the indiscriminate use of toxic chemicals in agriproducts. Existing data link pesticides to endocrine disruption, genetic mutations, neurological dysfunction, and other metabolic disorders, apart from the myriad of acute effects. Finally, this study recommended several naturally sourced preservatives as viable alternatives to chemical counterparts and emphasized the invaluable role of education and awareness programs in mitigating the use in developing nations for a sustainable society.
Collapse
Affiliation(s)
- Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Nene Orizu Uchendu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Corresponding author. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
| |
Collapse
|
12
|
Lopes Alves PR, de Araújo RS, Ogliari Bandeira F, Matias WG. Individual and combined toxicity of imidacloprid and two seed dressing insecticides on collembolans Folsomia candida. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:166-179. [PMID: 36756738 DOI: 10.1080/15287394.2023.2174464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to examine the chronic toxicity of imidacloprid (IMI), clothianidin (CLO) and fipronil (FIP) as a single exposure, as well as binary mixtures of IMI with CLO or FIP toward collembolans Folsomia candida, which are fauna present in the soil. Chronic toxicity assays were performed following an ISO guideline in a Tropical Artificial Soil (TAS), and the influence on the number and growth of the juveniles produced were determined. The range of nominal concentrations used in the tests with the individual compounds was 0.08-1.28 mg/kg (IMI), 0.079-1.264 mg/kg (FIP) and 0.007-0.112 mg/kg (CLO), whereas the mixture assays were performed with half the value used in the tests with individual compounds. Based upon single exposures, IMI produced a similar impact of reducing reproduction by 50% (EC50 ranging from 0.74 to 0.85 mg/kg) compared to FIP (EC50 = 0.78 mg/kg), whereas CLO was the most toxic to F. candida (EC50 = 0.08 mg/kg). Their mixtures generally resulted in a diminished effect on reproduction, as evidenced by the higher EC50 values. In contrast, in the case of the IMI+FIP combination at high concentrations at the EC50 level, a synergistic effect on toxicity was observed. The single exposure to the three insecticides and the mixture of IMI-FIP also decreased the size of generated juveniles, which was evidenced by the reduction in the proportion of large juveniles and increased proportion of small juveniles. However, both binary mixtures (IMI-FIP and IMI-CLO) presented antagonistic effects as evidenced by less than expected reductions in growth. Data on the toxic effects of IMI in a mixture with other seed dressing insecticides to collembolans provides useful information to environmental risk assessors by diminishing the uncertainties on the ecological risk of exposure to pesticides, enabling soil management degradation by utilizing multiple insecticides.
Collapse
Affiliation(s)
| | | | - Felipe Ogliari Bandeira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - William Gerson Matias
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
13
|
Soares C, Fernandes B, Paiva C, Nogueira V, Cachada A, Fidalgo F, Pereira R. Ecotoxicological relevance of glyphosate and flazasulfuron to soil habitat and retention functions - Single vs combined exposures. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130128. [PMID: 36303338 DOI: 10.1016/j.jhazmat.2022.130128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY) and flazasulfuron (FLA) are two non-selective herbicides commonly applied together. However, research focused on their single and combined ecotoxicological impacts towards non-target organisms is still inconclusive. Therefore, this study aimed to test their single effects on soil's habitat and retention functions, and to unravel their combined impacts to earthworms and terrestrial plants. For this, ecotoxicological assays were performed with plants (Medicago sativa), oligochaetes (Eisenia fetida) and collembola (Folsomia candida). Soil elutriates were also prepared and tested in macrophytes (Lemna minor) and microalgae (Raphidocelis subcapitata). FLA (82-413 µg kg-1) reduced earthworms' and collembola's reproduction and severely impaired M. sativa growth, being much more toxic than GLY (up to 30 mg kg-1). In fact, the latter only affected plant growth (≥ 9 mg kg-1) and earthworms (≥ 13 mg kg-1), especially at high concentrations, with no effects on collembola. Moreover, only elutriates from FLA-contaminated soils significantly impacted L. minor and R. sucapitata. The experiments revealed that the co-exposure to GLY and FLA enhanced the toxic effects of contaminated soils not only on plants but also on earthworms'. However, such increase in toxicity was dependent on GLY residual concentrations in soils. Overall, this work underpins that herbicides risk assessment should consider herbicides co-exposures, since the evaluation of single exposures is not representative of current phytosanitary practices and of the potential effects under field conditions, where residues of different compounds may persist in soils.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Beatriz Fernandes
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| | - Cristiana Paiva
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Verónica Nogueira
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Anabela Cachada
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ruth Pereira
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Sujeeth NK, Aravinth R, Thandeeswaran M, Angayarkanni J, Rajasekar A, Mythili R, Gnanadesigan M. Toxicity analysis and biomarker response of Quinalphos Organophosphate Insecticide (QOI) on eco-friendly exotic Eudrilus eugeniae earthworm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:274. [PMID: 36607436 DOI: 10.1007/s10661-022-10834-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
An ever-increasing use of pesticides in agricultural fields has led to a catastrophic decline in crop quality and, ultimately soil fertility. To control various pests, quinalphos is commonly used in India's tea plantations. This study aims to investigate the effects of the Quinalphos organophosphate insecticide on the non-target beneficial organism Eudrilus eugeniae earthworms and the biomarkers that respond to its effects. Earthworm species, especially E. eugeniae, remains as the most trustworthy and well-suited model organism for conducting a wide variety of environmental studies. The median lethal concentration (LC50) was identified as 3.561 µg cm-2 (contact filter paper) and 1.054 mg kg-2 (artificial soil toxicity). The 5% and 10% of LC50 value 3.561 µg cm-2 was exposed to earthworm to analyze the sublethal effects at pre-clitellum, clitellum, and post-clitellum segments. Specific enzymatic activities of neurotransmitter enzyme acetylcholinesterase; antioxidant enzymes such as lipid peroxidase, superoxide dismutase, and catalase; and detoxification enzymes including glutathione S transferase, reduced glutathione, carboxylesterase, and Cytochrome P450 were analyzed. Exposure of E. eugeniae earthworm to subacute exposures of pesticides caused significant alterations in these stress markers in a concentration-dependent manner. Morphological abnormalities like bulginess, coiling, and bleeding were observed after exposure of the insecticide treatments. Histological cellular disintegration, a reduced NRRT time, and an inhibited proteolytic zone were also identified in pesticide-exposed earthworms. Studies demonstrate that the organophosphate insecticide quinalphos causes acute toxicity in E. eugeniae; hence, it is suggested that non-target eco-friendly E. eugeniae earthworms may be at risk if exposed to the excessive concentrations of quinalphos organophosphate insecticide in soil.
Collapse
Affiliation(s)
- Nachimuthu Krishnan Sujeeth
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Ramasamy Aravinth
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Murugesan Thandeeswaran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Aruliah Rajasekar
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India
| | - R Mythili
- PG & Research, Department of Biotechnology, Mahendra Arts & Science College, Kallipatti, 637501, Namakkal, Tamilnadu, India
| | - Murugesan Gnanadesigan
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| |
Collapse
|
15
|
Li X, Yang Y, Wu R, Hou K, Allen SC, Zhu L, Du Z, Li B, Wang J, Wang J. Toxicity comparison of atrazine on Eisenia fetida in artificial soil and three natural soils. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109485. [PMID: 36220545 DOI: 10.1016/j.cbpc.2022.109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
Atrazine has been widely used in the world and caused environmental pollution, especially soil pollution. When assessing the toxicity of atrazine in soil, most studies used standardized artificial soils, while few studies focused on the real soil environments. In the present study, three natural soils and artificial soil were selected as test soils to study and compare the toxicities of atrazine to Eisenia fetida. Acute toxicity of atrazine was determined by filter paper and soil tests. In chronic toxicity study, after atrazine exposure, the content of reactive oxygen species in Eisenia fetida significantly increased and showed a dose-response relationship. The activity changes of three antioxidant enzymes and glutathione transferase showed that atrazine had obvious oxidative stress effect on earthworms. The contents of malondialdehyde and 8-hydroxy deoxyguanosine in 0.1 and 1 mg/kg atrazine treatment groups were significantly higher than the control, indicating that medium and high concentrations of atrazine could cause lipid and DNA damage in Eisenia fetida. The acute toxicity results and the integrated biomarker response index for chronic toxicity indicated that the toxicity order of atrazine was: red clay > fluvo-aquic soil > artificial soil > black soil, and that the toxicity of atrazine in artificial soil was not representative of its toxicity in real soil environment. The results of correlation analysis showed that three soil property parameters of organic carbon, organic matter and sand were most related to the toxicity of atrazine.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | | | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| |
Collapse
|
16
|
Pan L, Wan Z, Feng Q, Wang J, Xiong J, Wang S, Zhu H, Chen G. Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(VI). J Environ Sci (China) 2022; 122:50-61. [PMID: 35717090 DOI: 10.1016/j.jes.2021.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
The widespread contamination of water systems with antibiotics and heavy metals has gained much attention. Intimately coupled visible -light-responsive photocatalysis and biodegradation (ICPB) provides a novel approach for removing such mixed pollutants. In ICPB, the photocatalysis products are biodegraded by a protected biofilm, leading to the mineralization of refractory organics. In the present study, the ICPB approach exhibited excellent photocatalytic activity and biodegradation, providing up to ∼1.27 times the degradation rate of sulfamethoxazole (SMX) and 1.16 times the Cr(VI) reduction rate of visible-light-induced photocatalysis . Three-dimensional fluorescence analysis demonstrated the synergistic ICPB effects of photocatalysis and biodegradation for removing SMX and reducing Cr(VI). In addition, the toxicity of the SMX intermediates and Cr(VI) in the ICPB process significantly decreased. The use of MoS2/CoS2 photocatalyst accelerated the separation of electrons and holes, with•O2- and h+ attacking SMX and e- reducing Cr(VI), providing an effective means for enhancing the removal and mineralization of these mixed pollutants via the ICPB technique. The microbial community results demonstrate that bacteria that are conducive to pollutant removal are were enriched by the acclimation and ICPB operation processes, thus significantly improving the performance of the ICPB system.
Collapse
Affiliation(s)
- Liushu Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhou Wan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qilin Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| |
Collapse
|
17
|
Wang Q, Xie D, Peng L, Chen C, Li C, Que X. Phytotoxicity of atrazine combined with cadmium on photosynthetic apparatus of the emergent plant species Iris pseudacorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34798-34812. [PMID: 35040052 DOI: 10.1007/s11356-021-18107-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The combined pollution, instead of single pollution, has become a widespread contamination phenomenon in aquatic environment. However, little information is now available about the joint effects of the combined pollution, especially co-existed pesticides and heavy metals, on aquatic plants. In the present study, using continuous excitation chlorophyll fluorescence parameters and the OJIP transient, comparisons of herbicide atrazine (ATZ) phytotoxicity on Iris pseudacorus between in the presence and absence of cadmium (Cd) were evaluated over an exposure period of three weeks under laboratory conditions. Results showed that both ATZ and Cd were toxic to I. pseudacorus. The ratio Fv/Fo, specific electron transport energy (ET0/RC), and photochemistry efficiency (PIabs and PItotal) of this emergent plant species at individual ATZ and Cd concentrations were significantly lower than those of the control. ATZ mainly inhibited electron transport beyond QA at PSII acceptor side as indicated by the sharp rise of the J-step level of fluorescence rise kinetics. A pronounced K-step and the loss of I-step due to the damage on the OEC and PSI also occurred when ATZ was at or above 1.0 mg·L-1. In comparison to ATZ alone, ATZ combined with Cd resulted in a lower amplitude rise in J-step with apparent J-I and I-P phases; and significantly lower Fo with higher Fv/Fo, as well as greater ET0/RC with higher values of PIabs and PItotal. However, the adverse influences of ATZ combined with Cd on the above indicators were still significant as compared with the control. Therefore, the coexistence of Cd alleviated the individual phytotoxicities of ATZ, whereas combined pollution of ATZ and Cd still induced the decline in photosynthetic performance of I. pseudacorus, and its potential ecological impacts on the aquatic vegetation cannot be ignored. Our findings offer a better understanding of the joint effects of the pesticide and heavy metal on non-target aquatic plants, and provided valuable insights into the interaction of these pollutants in aquatic environment.
Collapse
Affiliation(s)
- Qinghai Wang
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Dongyu Xie
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lei Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Cui Li
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoe Que
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
18
|
Peluso J, Furió Lanuza A, Pérez Coll CS, Aronzon CM. Synergistic effects of glyphosate- and 2,4-D-based pesticides mixtures on Rhinella arenarum larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14443-14452. [PMID: 34617223 DOI: 10.1007/s11356-021-16784-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate and 2,4-D are two herbicides commonly used together. Since there is little information about the interactions between these pesticides, the aim of this study was to evaluate the single and joint lethal toxicity of the glyphosate-based herbicide (GBH) ATANOR® (43.8% of glyphosate, isopropylamine salt) and the 2,4-D-based herbicide (2,4-DBH) Así Max 50® (602000 mg/L of 2,4-D) on Rhinella arenarum larvae. Equitoxic and non-equitoxic mixtures were prepared according to the recommendation for their combination and analyzed with a fixed ratio design at different exposure times and levels of lethality (LC10, LC50, and LC90). GBH (504h-LC50=38.67 mg ae/L) was significantly more toxic than 2,4-DBH (504h-LC50=250.31 mg ae/L) and their toxicity was time-dependent. At 48h, the equitoxic mixture toxicity was additive and from the 96h was antagonistic at LC10 and LC50 effect level. The non-equitoxic mixture toxicity was additive at LC10 effect level from the 48h to the 168h, and synergistic from the 240h. At LC50 and LC90 effect level, the mixture interaction resulted synergistic for all exposure times. This is the first study to report the synergistic interactions between GBH and 2,4-DBH on amphibians, alerting about its negative impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Agustina Furió Lanuza
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem Toxicol 2022; 161:112826. [DOI: 10.1016/j.fct.2022.112826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
|
20
|
Oliveira KMGD, Carvalho EHDS, Santos Filho RD, Sivek TW, Thá EL, Souza IRD, Coelho LDDS, Pimenta MEB, Oliveira GARD, Oliveira DPD, Cestari MM, Leme DM. Single and mixture toxicity evaluation of three phenolic compounds to the terrestrial ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113226. [PMID: 34252852 DOI: 10.1016/j.jenvman.2021.113226] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are primarily studied regarding endocrine-mediated effects in mammals and fish. However, EDCs can cause toxicity by mechanisms outside the endocrine system, and, as they are released continuously into soils, they may pose risks to terrestrial organisms. In this work, the plant Allium cepa and the earthworm Eisenia foetida were used as test systems to evaluate the toxicity and cyto-/geno-toxicity of three environmental phenols known as EDCs (Bisphenol A - BPA, Octylphenol - OP, Nonylphenol - NP). The tested phenols were evaluated in environmentally relevant concentrations (μg/L) and in single forms and mixture. BPA, OP, and NP did not inhibit the seed germination and root development in A. cepa in their single forms and mixture. However, all single forms of the tested phenols caused cellular and DNA damages in A. cepa, and although these effects persist in the mixtures, the effects were verified at lower levels. These phenols caused acute toxicity to E. foetida after 48 h of exposure and at both conditions evaluated (single forms and mixture); however, unlike A. cepa, in earthworms, mixtures and single forms presented the same level of effects, indicating that interspecies physiological different might influence the mixture toxicity. In summary, our results suggest that BPA, OP, and NP are toxicants to earthworm and cyto-/geno-toxicants to monocotyledonous plants at low concentrations. However, interaction among these phenols reduces the magnitude of their individual effects (antagonistic effect) in the plant test system. Therefore, this study draws attention to the need to raise knowledge about the ecotoxicity of phenolic compounds to help predict their ecological risks and protect non-target terrestrial species.
Collapse
Affiliation(s)
- Ketelen Michele Guilherme de Oliveira
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | | | - Ronaldo Dos Santos Filho
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Tainá Wilke Sivek
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Emanoela Lundgren Thá
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Irisdoris Rodrigues de Souza
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Lauren Dalat de Sousa Coelho
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil
| | - Maria Eunice Bertelli Pimenta
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Marta Margarete Cestari
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Ma D, Yang S, Jiang J, Zhu J, Li B, Mu W, Dou D, Liu F. Toxicity, residue and risk assessment of tetraniliprole in soil-earthworm microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112061. [PMID: 33636466 DOI: 10.1016/j.ecoenv.2021.112061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Maize seed treatment with chemicals to control underground pests is a common agricultural practice, but inappropriate use of insecticides poses a considerable threat to plant development and soil nontarget organisms. In this study, the availability of tetraniliprole seed dressing to control the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) in the maize seeding stage and its safety to earthworms (Eisenia fetida) were investigated. The selective toxicity (ST) of tetraniliprole between E. fetida and A. ipsilon was greater than 4000. No significant adverse effect of tetraniliprole seed treatment on the germination of maize seeds was observed at concentrations of 2.4-9.6 g a.i. /kg seed. Compared with the untreated control, seed treatment with tetraniliprole at 9.6 g a.i. /kg seed greatly reduced the percentage of damaged plants from 88.73% to 26.67%, and achieved the highest control effect of 69.91%. Tetraniliprole of 2.4 g a.i. /kg seed can effectively inhibit A. ipsilon until 14 days after seed germination, with the lowest mortality rate of 44.44%. During the entire exposure period, the maximum residual concentration of tetraniliprole detected in the soil (5.86 mg/kg) was considerably lower than the LC50 value of tetraniliprole to E. fetida (>4000 mg/kg). According to the low-tier risk assessment, the highest risk quotient (RQ) of tetraniliprole seed treatment to earthworms at test concentrations was 2.8 × 10-3, which was evaluated as acceptable. This study provided data support for tetraniliprole seed treatment to control underground pests in maize fields.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Jiangong Jiang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
22
|
Xie D, Chen C, Li C, Wang Q. Influence of Cd on atrazine degradation and the formation of three primary metabolites in water under the combined pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16081-16091. [PMID: 33247401 DOI: 10.1007/s11356-020-11819-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To understand the influence of Cd on atrazine (ATZ) degradation in aqueous solution, the degradation of different initial levels of ATZ (0.1, 0.5, 1.0, and 2.0 mg·L-1) was investigated in the presence and absence of Cd2+ in a 20-day laboratory experiment. It was found that Cd2+ caused a significant decrease in ATZ degradation and increased its half-life from 17-34 days to 30-57 days (p < 0.0001). Regarding the three most common metabolites of ATZ, deethylatrazine (DEA) and deisopropylatrazine (DIA) were detected in water earlier than hydroxyatrazine (HYA). The DEA content was several times higher than the DIA and HYA contents, regardless of the presence or absence of Cd2+. In the presence of Cd2+, the DIA content was significantly lower and the HYA content was significantly higher. Furthermore, Cd2+ had a dose-dependent effect on HYA formation. Our results indicated that the coexistence of Cd2+ and ATZ resulted in greater herbicide persistence, thereby possibly increasing the risk of environmental contamination. DEA was still the predominant ATZ degradation product detected in water under the combined pollution, which was similar to the ATZ tendency.
Collapse
Affiliation(s)
- Dongyu Xie
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Cui Li
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qinghai Wang
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
23
|
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141873. [PMID: 32911142 DOI: 10.1016/j.scitotenv.2020.141873] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals pollution of soil and widespread application of neonicotinoid insecticides have caused environmental problems worldwide. To evaluate ecological toxicity resulting from the combined pollution of neonicotinoids and heavy metals, typical representatives of neonicotinoid insecticides (imidacloprid, thiamethoxam, dinotefuran) and heavy metals (cadmium, copper, zinc) were selected as soil pollutants; earthworms were used as test organisms. Analysis of the main and interaction effects of a combined pollution process were performed using a uniform design method. Results showed that the reactive oxygen species (ROS) content of earthworms in most treatment groups was higher during exposure than that of the control group. The malondialdehyde (MDA) and ROS content of earthworms demonstrated relatively low values on the 21st day and increased by the 28th day. The interaction between dinotefuran and Cd had significant antagonistic effects on ROS and MDA. The combined pollution adversely affected both the growth and genes of earthworms and also caused damage to the epidermis, midgut, and DNA. The interaction between imidacloprid and Cd was synergistic to ROS, weight inhibition rate, and Olive tail moment (OTM), but was antagonistic to MDA. Of all the single and combined exposures, Zn as a single chemical affected ROS and DNA damage the most, and MDA was significantly enhanced by imidacloprid. Composite pollutants may create different primary effects and interactions causing potential harm to soil organisms.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuyan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Jaskulak M, Rorat A, Kurianska-Piatek L, Hofman S, Bigaj J, Vandenbulcke F, Plytycz B. Species-specific Cd-detoxification mechanisms in lumbricid earthworms Eisenia andrei, Eisenia fetida and their hybrids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111425. [PMID: 33068978 DOI: 10.1016/j.ecoenv.2020.111425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Hermaphroditic lumbricid Eisenia sp. earthworms are ubiquitous and highly resistant to a variety of environmental stressors, including heavy metals. Among the progeny of laboratory mated inter-specific pairs of Eisenia fetida (Ea) and Eisenia andrei (Ef) there are fertile Ha hybrids derived from Ea ova fertilized by Ef spermatozoa and very rare sterile Hf hybrids from Ef ova fertilized by Ea spermatozoa. The aim of the first part of the experiment was to compare the life traits and whole body accumulation of cadmium in adult earthworms from genetically defined Ea, Ef and their hybrids (Ha) exposed for four weeks to commercial soil either unpolluted (control) or cadmium-spiked leading to moderate (M) or high (H) soil pollution (M = 425 and H = 835 mg kg-1 dry soil weight). Such exposure impaired cocoon production but not affected earthworm viability despite the massive Cd bioaccumulation in the whole earthworm bodies reaching at M and H groups 316-454, 203-338, 114-253, and 377-309 mg kg-1 dry body weights of Ea, Ef1, Ef2, and Ha, respectively, surprisingly reaching maximum accumulation quantities in hybrids. The second part of the experiment aimed to investigate cadmium-related defense mechanisms at transcriptomic level in coelomocytes non-invasively extruded from coelomic cavities of the new sets of Ea, Ef, Ha, and Hf earthworms exposed to Cd in microcosms for 0 days (control), 2 days, and 7 days (M = 425 mg kg-1). Expression level of stress-induced Cd-metallothionein (mt) and superoxide dismutase (sod) were gradually up-regulated, while the immune-connected lysenin (lys) was rapidly down-regulated; the expression of glutathione S-transferase (gst) and phytochelatin synthase (pcs) remained unaffected. Mt and sod gene up-regulation and lys gene down-regulation were especially pronounced in Ea-derived hybrids. In sum, capacity of cadmium bioaccumulation and detoxification mechanisms is more efficient in interspecific hybrids than in the pure Ea and Ef species.
Collapse
Affiliation(s)
- Marta Jaskulak
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France; Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | | | - Sebastian Hofman
- Department of Comparative Anatomy, and Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Janusz Bigaj
- Department of Comparative Anatomy, and Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Barbara Plytycz
- Department of Comparative Anatomy, and Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
25
|
Gwenzi W, Chaukura N, Muisa-Zikali N, Teta C, Musvuugwa T, Rzymski P, Abia ALK. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010068. [PMID: 33445633 PMCID: PMC7826649 DOI: 10.3390/antibiotics10010068] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount. Pleasant, Harare P.O. Box MP167, Zimbabwe
- Correspondence: or (W.G.); or (A.L.K.A.)
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Norah Muisa-Zikali
- Department of Environmental Sciences and Technology, School of Agricultural Sciences and Technology, Chinhoyi University of Technology, Private Bag, Chinhoyi 7724, Zimbabwe; or
| | - Charles Teta
- Future Water Institute, Faculty of Engineering & Built Environment, University of Cape Town, Cape Town 7700, South Africa;
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Correspondence: or (W.G.); or (A.L.K.A.)
| |
Collapse
|
26
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
27
|
Zhu L, Li B, Wu R, Li W, Wang J, Wang J, Du Z, Juhasz A, Zhu L. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils. CHEMOSPHERE 2020; 255:126982. [PMID: 32416393 DOI: 10.1016/j.chemosphere.2020.126982] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticides can damage the soil environment, including damage to sentinel organisms such as earthworms. When assessing the toxicity of pesticides towards earthworms, assays are usually performed using standardized artificial soil, however, soil physicochemical properties may affect pesticide toxicity. In the present study, the toxicity of a commonly used insecticide (chlorpyrifos) to earthworms (Eisenia fetida) was determined in artificial soil and three typical natural soils (fluvo-aquic soil, black soil and red clay) by measuring acute and subchronic toxicity. Soil tests were conducted to measure the acute toxicity of chlorpyrifos to Eisenia fetida quantified by the half lethal concentration (LC50) while subchronic toxicity tests assessed the impact of low dose chlorpyrifos exposure (0.01, 0.1, 1 mg/kg; up to 56 d) on reactive oxygen species content, antioxidant enzymes activities, detoxifying enzyme activity, malondialdehyde content, and 8-hydroxydeoxyguanosine content. Subchronic toxicity was quantified using the integrated biomarker response (IBR) which highlighted that the toxicity of chlorpyrifos in artificial and natural soils was not the same. Outcomes from artificial soil studies may underestimate (fluvo-aquic soil and red clay) or overestimate (black soil) chlorpyrifos effects.
Collapse
Affiliation(s)
- Lei Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Wenxiu Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
28
|
Alves Sá da Silva V, Silva Santos A, Ferreira TL, Codognoto L, Agostini Valle EM. Electrochemical Evaluation of Pollutants in the Environment: Interaction Between the Metal Ions Zn(II) and Cu(II) with the Fungicide Thiram in Billings Dam. ELECTROANAL 2020. [DOI: 10.1002/elan.201900438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vitor Alves Sá da Silva
- Universidade Federal de São Paulo –Instituto de Ciências Ambientais, Químicas e Farmacêuticas – Campus Diadema Professor Arthur Riedel Street, 275 09972-270 Diadema São Paulo Brazil
| | - Aymara Silva Santos
- Universidade Federal de São Paulo –Instituto de Ciências Ambientais, Químicas e Farmacêuticas – Campus Diadema Professor Arthur Riedel Street, 275 09972-270 Diadema São Paulo Brazil
| | - Tiago Luiz Ferreira
- Universidade Federal de São Paulo –Instituto de Ciências Ambientais, Químicas e Farmacêuticas – Campus Diadema Professor Arthur Riedel Street, 275 09972-270 Diadema São Paulo Brazil
| | - Lúcia Codognoto
- Universidade Federal de São Paulo –Instituto de Ciências Ambientais, Químicas e Farmacêuticas – Campus Diadema Professor Arthur Riedel Street, 275 09972-270 Diadema São Paulo Brazil
| | - Eliana Maíra Agostini Valle
- Universidade Federal de São Paulo –Instituto de Ciências Ambientais, Químicas e Farmacêuticas – Campus Diadema Professor Arthur Riedel Street, 275 09972-270 Diadema São Paulo Brazil
| |
Collapse
|
29
|
Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|