1
|
Ren S, Feng Y, Zhang Y, Liu Y, Zhao J, Li X, Li J, Jia H, Li Z, Lou X. Optical-fiber sensor for 17β-Estradiol-binding aptamer evaluation and specific detection of 17β-Estradiol in serum at physiological concentrations. Talanta 2025; 285:127320. [PMID: 39642610 DOI: 10.1016/j.talanta.2024.127320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Methods for evaluation of immobilized-small molecule-binding aptamers are rare. In this study, taking the evaluation of 17β-Estradiol (E2) aptamers as an example, we first summarized the reported affinity and specificity results of 16 E2 aptamers, highlighting the issues of insufficient and inconsistent results and the lacking of evaluation of immobilized aptamers. We further exemplified the limited application scope of current affinity techniques by testing the two most widely-applied E2 aptamers, Kim76 and Alsa35, using the three label-free fluorescence assays and two nuclease protection assays. Subsequently, we evaluated the affinity of immobilized-E2 aptamers, Alsa35 and E09, using fiber optic evanescent wave aptasensor (FOEW) based on the competitive binding of target and fluorophore-labeled complementary strand with the fiber surface immobilized-aptamer. The results revealed that Alsa35 had the better affinity and specificity than E09. Using Alsa35-based FOEW, the enzyme-free detection of E2 spiked in river water and human serum was respectively realized with the unprecedented limits of detection (LOD, S/N = 3) of 4.75 (undiluted river water) and 206 pM (undiluted serum). FOEW is a valuable addition to analytical approaches for evaluation of immobilized-aptamers and a general platform for ultrasensitive target detection.
Collapse
Affiliation(s)
- Shang Ren
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yanqi Feng
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yi Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yulin Liu
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Jiaxing Zhao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xiaoqi Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Jinming Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Haijing Jia
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China.
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China.
| |
Collapse
|
2
|
Pan H, Hao P, Li Q, Lv Z, Gao K, Liang X, Yang L, Gao Y. The role of lignin in 17β-estradiol biodegradation: insights from cellular characteristics and lipidomics. Microb Cell Fact 2024; 23:347. [PMID: 39731085 DOI: 10.1186/s12934-024-02605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature. In this study, we conducted a comprehensive analysis using cellular and lipidomics approaches to investigate the relationship between E2-degrading strain, Rhodococcus sp. RCBS9, and lignin. Our findings demonstrate that lignin significantly enhances E2 degradation efficiency, reaching 94.28% within 5 days with the addition of 0.25 mM lignin. This enhancement is associated with increased microbial growth and activity, reduced of membrane damages, and alleviation of oxidative stress. Fourier Transform Infrared Spectroscopy (FTIR) results indicate that lignin addition alters lipid peaks. Consequently, by analyzing lipid metabolism changes, we further elucidate how lignin addition promotes E2 degradation.
Collapse
Affiliation(s)
- Hanyu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qiannan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zongshuo Lv
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Kun Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaojun Liang
- Institute of Animal Husbandry, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750002, China
| | - Lianyu Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Li S, Wang Y, Sun K, Li Y, Lu C, Gao Y. Fe(III)-Aided Novosphingobium sp. ES2-1 Regulates Molecular Mechanisms of 17β-Estradiol Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22245-22256. [PMID: 39636603 DOI: 10.1021/acs.est.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
17β-estradiol (E2) is one of the strongest environmental estrogens threatening wildlife and human health globally. Microbial degradation is an alternative strategy to remediate E2-contaminated sites and may be regulated by ubiquitous Fe(III) in eco-environments. We have previously obtained a high-efficiency E2 degrader, Novosphingobium sp. ES2-1, and investigated its metabolic pathway in connection with monooxygenase EstO1-induced ring-B opening; however, the molecular mechanisms of ring-A cleavage in E2 are sorely lacking, especially under Fe(III)-aided regulation. Here, an extradiol dioxygenase EstN1 from strain ES2-1 involved in the ring-A cleavage of E2 was reported. It catalyzed the 4,5-seco reaction of 4-hydroxyestrone (4-OH-E1, a key E2-oxidized intermediate) with the support of the electron transport chain consisting of ferredoxin EstN2 and ferredoxin reductase EstN3, resulting in a ring-A meta-cleaved product. Interestingly, Fe(III)-assisted strain ES2-1 consolidated the opening of rings A and B in E2 by reinforcing the expression of estO1 and estN1 genes, consequently enhancing E2 metabolism. Compared to Fe(III) starvation, the biodegradation half-life of E2 was sharply reduced from 1.35 to 0.59 d after Fe(III) supplementation. Simultaneously, the transcription of estO1 and estN1 genes increased clearly from 4.3 to 47.5 times and 6.6 to 246.8 times after Fe(III) induction, respectively, accompanied by remarkable improvement in the abundance of ring-A/B cleavage products and their pyridine derivatives. These findings highlight the significance of Fe(III) in regulating the microbial remediation of environmental estrogens at the molecular level.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Yiru Wang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuxin Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Chao Lu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
4
|
Zhang M, Gao S, Pan K, Liu H, Li Q, Bai X, Zhu Q, Chen Z, Yan X, Hong Q. Functional analysis, diversity, and distribution of the ean cluster responsible for 17 β-estradiol degradation in sphingomonads. Appl Environ Microbiol 2024; 90:e0197423. [PMID: 38619269 PMCID: PMC11107178 DOI: 10.1128/aem.01974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
17β-estradiol (E2) is a natural endocrine disruptor that is frequently detected in surface and groundwater sources, thereby threatening ecosystems and human health. The newly isolated E2-degrading strain Sphingomonas colocasiae C3-2 can degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway; the former is the primary pathway supporting the growth of this strain and the latter is a branching pathway. The novel gene cluster ean was found to be responsible for E2 degradation through the 4,5-seco pathway, where E2 is converted to estrone (E1) by EanA, which belongs to the short-chain dehydrogenases/reductases (SDR) superfamily. A three-component oxygenase system (including the P450 monooxygenase EanB1, the small iron-sulfur protein ferredoxin EanB2, and the ferredoxin reductase EanB3) was responsible for hydroxylating E1 to 4-hydroxyestrone (4-OH-E1). The enzymatic assay showed that the proportion of the three components is critical for its function. The dioxygenase EanC catalyzes ring A cleavage of 4-OH-E1, and the oxidoreductase EanD is responsible for the decarboxylation of the ring A-cleavage product of 4-OH-E1. EanR, a TetR family transcriptional regulator, acts as a transcriptional repressor of the ean cluster. The ean cluster was also found in other reported E2-degrading sphingomonads. In addition, the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 via the 9,10-seco pathway, but its encoding genes are not located within the ean cluster. These results refine research on genes involved in E2 degradation and enrich the understanding of the cleavages of ring A and ring B of E2.IMPORTANCESteroid estrogens have been detected in diverse environments, ranging from oceans and rivers to soils and groundwater, posing serious risks to both human health and ecological safety. The United States National Toxicology Program and the World Health Organization have both classified estrogens as Group 1 carcinogens. Several model organisms (proteobacteria) have established the 4,5-seco pathway for estrogen degradation. In this study, the newly isolated Sphingomonas colocasiae C3-2 could degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway. The novel gene cluster ean (including eanA, eanB1, eanC, and eanD) responsible for E2 degradation by the 4,5-seco pathway was identified; the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 through the 9,10-seco pathway. The TetR family transcriptional regulator EanR acts as a transcriptional repressor of the ean cluster. The cluster ean was also found to be present in other reported E2-degrading sphingomonads, indicating the ubiquity of the E2 metabolism in the environment.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Siyuan Gao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
5
|
Lin H, Zhou L, Lu S, Yang H, Li Y, Yang X. Occurrence and spatiotemporal distribution of natural and synthetic steroid hormones in soil, water, and sediment systems in suburban agricultural area of Guangzhou City, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134288. [PMID: 38626685 DOI: 10.1016/j.jhazmat.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Steroid hormones are highly potent compounds that can disrupt the endocrine systems of aquatic organisms. This study explored the spatiotemporal distribution of 49 steroid hormones in agricultural soils, ditch water, and sediment from suburban areas of Guangzhou City, China. The average concentrations of Σsteroid hormones in the water, soils, and sediment were 97.7 ng/L, 4460 ng/kg, and 9140 ng/kg, respectively. Elevated hormone concentrations were notable in water during the flood season compared to the dry season, whereas an inverse trend was observed in soils and sediment. These observations were attributed to illegal wastewater discharge during the flood season, and sediment partitioning of hormones and manure fertilization during the dry season. Correlation analysis further showed that population, precipitation, and number of slaughtered animals significantly influenced the spatial distribution of steroid hormones across various districts. Moreover, there was substantial mass transfer among the three media, with steroid hormones predominantly distributed in the sediment (60.8 %) and soils (34.4 %). Risk quotients, calculated as the measured concentration and predicted no-effect concentration, exceeded 1 at certain sites for some hormones, indicating high risks. This study reveals that the risk assessment of steroid hormones requires consideration of their spatiotemporal variability and inter-media mass transfer dynamics in agroecosystems.
Collapse
Affiliation(s)
- Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Liangzhuo Zhou
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Shudong Lu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Han Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Liu J, Zeng D, Pan J, Hu J, Zheng M, Liu W, He D, Ye Q. Effects of polyethylene microplastics occurrence on estrogens degradation in soil. CHEMOSPHERE 2024; 355:141727. [PMID: 38499076 DOI: 10.1016/j.chemosphere.2024.141727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Growing focus has been drawn to the continuous detection of high estrogens levels in the soil environment. Additionally, microplastics (MPs) are also of growing concern worldwide, which may affect the environmental behavior of estrogens. However, little is known about effects of MPs occurrence on estrogens degradation in soil. In this study, polyethylene microplastics (PE-MPs) were chosen to examine the influence on six common estrogens (estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), diethylstilbestrol (DES), and 17α-ethinylestradiol (17α-EE2)) degradation. The results indicated that PE-MPs had little effect on the degradation of E3 and DES, and slightly affected the degradation of 17α-E2, however, significantly inhibited the degradation of E1, 17α-EE2, and 17β-E2. It was explained that (i) obvious oxidation reaction occurred on the surface of PE-MPs, indicating that PE-MPs might compete with estrogens for oxidation sites, such as redox and biological oxidation; (ii) PE-MPs significantly changed the bacterial community in soil, resulting in a decline in the abundance of some bacterial communities that biodegraded estrogens. Moreover, the rough surface of PE-MPs facilitated the estrogen-degrading bacterial species (especially for E1, E2, and EE2) to adhere, which decreased their reaction to estrogens. These findings are expected to deepen the understanding of the environmental behavior of typical estrogens in the coexisting system of MPs.
Collapse
Affiliation(s)
- Jiangyan Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Dong Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Jie Pan
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Jiawu Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Mimi Zheng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
7
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Jia Y, Zhang C, Zheng H, Zhang G, Zhang S. Organic peroxyl radicals from biacetyl accelerated the visible-light degradation of steroid estrogens in aqueous solution. CHEMOSPHERE 2024; 351:141195. [PMID: 38242516 DOI: 10.1016/j.chemosphere.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Indirect photodegradation is an important pathway for the reduction of steroid estrogens in sunlit surface waters. Nevertheless, the kinetics and mechanisms governing the interaction between coexisting carbonyl compounds and estrogens under visible light (Vis) remain unexplored. This study systematically investigates the Vis-induced photodegradation of 17β-estradiol (E2) in the presence of five specific carbonyl compounds-biacetyl (BD), acetone, glyoxal, pyruvic acid, and benzoquinone. The results demonstrate that, among these compounds, only BD significantly enhanced the photodegradation of E2 under Vis irradiation (λ > 400 nm). The pseudo-first order photodegradation rate constants (k1) of E2 in the Vis/BD system were 0.025 min-1 and 0.076 min-1 in ultrapure water and river water, respectively. The enhancing effect of BD was found to be pH-dependent, increasing the pH from 3.0 to 11.0 resulted in a 76% reduction in the k1 value of E2 in the Vis/BD system. Furthermore, the presence of humic acid, NO3-, or HCO3- led to an increase of more than 35% in the k1 value of E2, while NO2- exerted a pronounced inhibitory effect, resulting in a 92% decrease. Peroxyacetyl and peroxymethyl radicals, derived from BD in a yield ratio of 9, played a crucial role in the degradation of E2. These peroxyl radicals primarily targeted electron-rich hydroxyl sites of E2, initiating hydroxylation and ring-opening reactions that culminated in the formation of acidic byproducts. Notably, toxicity evaluation indicates that these hydroxylated and acidic products exhibited lower toxicity than the parent compound E2. This study highlights the important role of peroxyl radicals in estrogen degradation within aquatic environment, and also helps to design efficient visible light-responsive photo-activators for the treatment of estrogen-contaminated waters.
Collapse
Affiliation(s)
- Yulu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Qin Y, Liu S, Meng S, Liu D, You T. Split aptamer-based sandwich-type ratiometric biosensor for dual-modal photoelectrochemical and electrochemical detection of 17β-estradiol. Anal Chim Acta 2024; 1285:342030. [PMID: 38057051 DOI: 10.1016/j.aca.2023.342030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND As one of the most potent environmental estrogens, 17β-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuda Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuyun Meng
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dong Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
10
|
Glineur A, Nott K, Carbonnelle P, Ronkart S, Pollet T, Purcaro G. Occurrence and environmental risk assessment of 4 estrogenic compounds in surface water in Belgium in the frame of the EU Watch List. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6857-6873. [PMID: 38153577 DOI: 10.1007/s11356-023-31698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The presence of natural estrogens estrone (E1), 17β-estradiol (E2), estriol (E3) and synthetic estrogen 17α-ethynylestradiol (EE2) in the aquatic environment has raised concerns because of their high potency as endocrine disrupting chemicals. The European Commission (EC) established a Watch List of contaminants of emerging concerns including E1, E2 and EE2. The proposed environmental quality standards (EQSs) are 3.6, 0.4, 0.035 ng/L, for E1, E2, EE2, respectively. A thorough evaluation of analytical procedures developed by several studies aiming to perform sampling campaigns in different European countries highlighted that the required limits of quantification in surface water were not reached, especially for EE2 and to a lesser extent for E2. Moreover, data regarding the occurrence of these contaminants in Belgian surface water are very limited. A sampling campaign was therefore performed on a wide range of rivers in Belgium (accounting for a total of 63 samples). The detection frequencies of E1, E2, E3 and EE2 were 100, 98, 86 and 48%, respectively. E1 showed the highest mean concentration (= 4.433 ng/L). In contrast, the mean concentration of EE2 was 0.042 ng/L. The risk quotients (RQs) were calculated based on the respective EQS of each analyte. The frequency of exceedance of the EQS was 31.7% for E1, EE2, while it increased to 44.4% for E2. The extent of exceedance of the EQS, represented by the 95th percentile of the RQ dataset, was higher than 1 for E1, E2, EE2. The use of a confusion matrix was investigated to try to predict the risk posed by E2, EE2, based on the concentration of E1.
Collapse
Affiliation(s)
- Alex Glineur
- Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium.
| | - Katherine Nott
- La Société Wallonne Des Eaux, Rue de La Concorde 41, 4800, Verviers, Belgium
| | | | - Sébastien Ronkart
- La Société Wallonne Des Eaux, Rue de La Concorde 41, 4800, Verviers, Belgium
| | - Thomas Pollet
- Biodiversity and Landscape, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030, Gembloux, Belgium
| | - Giorgia Purcaro
- Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
11
|
Leng C, Wang Q, Zhang G, Xu M, Yang X. Transport of prednisolone, cortisone, and triamcinolone acetonide in agricultural soils: Sorption isotherms, transport dynamics, and field-scale simulation. ENVIRONMENTAL RESEARCH 2023; 239:117287. [PMID: 37813136 DOI: 10.1016/j.envres.2023.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The occurrence of glucocorticoids (GCs) in agricultural soils has raised concerns due to their high polarity, widespread biological effects in vertebrates, and their potential to disrupt vital processes such as glucose metabolism and immune function. This study investigated the sorption and transport dynamics of three GCs, namely cortisone (COR), prednisolone (PNL), and triamcinolone acetonide (TCA) in five soil-water systems (S1-S5 systems). The sorption data of the GCs were fitted to a linear sorption model (R2 = 0.95-0.99), with organic carbon (OC) normalized sorption coefficients ranging from 2.26 ± 0.02 to 3.36 ± 0.02. The sorption magnitudes (Kd) of the GCs exhibited a nearly linear correlation with their corresponding octanol-water partition coefficients (logKow) in the S1-S3 systems. However, some deviations from linearity were observed in the S4 and S5 systems. Furthermore, a strong correlation was observed between the Kd values of the GCs and the OC% of the soils. These data indicated that specific and hydrophobic partitioning interactions governed the sorption of GCs onto soils. The transport data of the GCs were fitted to a two-site nonequilibrium model using the CXTFIT program (R2 = 0.82-0.98). The retardation factor (R) for each GC exhibited a positive correlation with the OC% and clay contents of soils. Additionally, the relationships between the logR values and logKow values of the GCs deviated slightly from linear correlation in most columns. These results indicated that specific interactions in the columns were more pronounced compared to the batch systems. An initial field-scale simulation demonstrated that frequent precipitation can facilitate the dilution and vertical transport of the GCs through soil profiles. The transport potential of the GCs was affected by the properties and soils and GCs. Overall, these findings provide valuable insights into the transport potential and associated environmental risks of GCs in soil-water systems.
Collapse
Affiliation(s)
- Chen Leng
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingwei Wang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Ge Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, PR China.
| |
Collapse
|
12
|
Li Y, Zeng D, Jiang XL, He DC, Hu JW, Liang ZW, Wang JC, Liu WR. Effect comparisons of different conditioners and microbial agents on the degradation of estrogens during dairy manure composting. CHEMOSPHERE 2023; 345:140312. [PMID: 37863209 DOI: 10.1016/j.chemosphere.2023.140312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
To investigate the degradation efficiency of conditioners and commercial microbial agents on estrogens (E1, 17α-E2, 17β-E2, E3, EE2, and DES) in the composting process of dairy manure, seven different treatments (RHB-BF, OSP-BF, SD-BF, MR-BF, MR-FS, MR-EM, and MR-CK) under forced ventilation conditions were composted and monitored regularly for 30 days. The results indicated that the removal rates of estrogens in seven treatments ranged from 95.35% to 99.63%, meanwhile the degradation effect of the composting process on 17β-Estradiol equivalent (EEQ) was evaluated, and the removal rate of ΣEEQ ranged from 96.42% to 99.72%. With the combined addition of rice husk biochar (RHB) or oyster shell powder (OSP) and bio-bacterial fertilizer starter cultures (BF), namely RHB-BF and OSP-BF obviously promoted the rapid degradation of estrogens. 17β-E2 was completely degraded on the fifth day of composting in OSP-BF. Microbial agents have some promotional effect and enhances the microbial degradation of synthetic estrogen (EE2, DES). According to the results of RDA, pH and EC were the main environmental factors affecting on the composition and succession of estrogen-related degrading bacteria in composting system. As predominant estrogens-degrading genera, Acinetobacter, Bacillus, and Pseudomonas effected obviously on the change of estrogens contents. The research results provide a practical reference for effective composting of dairy manure to enhancing estrogens removal and decreasing ecological risk.
Collapse
Affiliation(s)
- Yan Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China; Chongqing Three Gorges University, Chongqing, Wanzhou 404100, China
| | - Dong Zeng
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Xiao-Lu Jiang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - De-Chun He
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jia-Wu Hu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Zi-Wei Liang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510550, China
| | - Jia-Cheng Wang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China.
| |
Collapse
|
13
|
Wang L, Li A. Ammonia monooxygenase-mediated transformation of 17α-ethinylestradiol: Underlying molecular mechanism. ENVIRONMENTAL RESEARCH 2023; 237:116930. [PMID: 37604224 DOI: 10.1016/j.envres.2023.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
17α-ethinylestradiol (EE2) has received increasing attention as an emerging and difficult-to-remove emerging contaminant in recent years. Ammonia-oxidizing bacteria (AOB) have been reported to be effective in EE2 removal, and ammonia monooxygenase (AMO) is considered as the primary enzyme for EE2 removal. However, the molecular mechanism underlying the transformation of EE2 by AOB and AMO is still unclear. This study investigated the molecular mechanism of EE2 degradation using a combination of experimental and computational simulation methods. The results revealed that ammonia nitrogen was essential for the co-metabolism of EE2 by AOB, and that NH3 bound with CuC (one active site of AMO) to induce a conformational change in AMO, allowing EE2 to bind with the other active site (CuB), and then EE2 underwent biological transformation. These results provide a theoretical basis and a novel research perspective on the removal of ammonia nitrogen and emerging contaminants (e.g., EE2) in wastewater treatment.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute of Water Transport Engineering, Tanggu, Tianjin, 300456, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Griffith DR, Carolan M, Gutierrez MM, Romig A, Garcia-Diaz N, Hutchinson CP, Zayas RL. Microbial Degradation of Free and Halogenated Estrogens in River Water-Sediment Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428977 PMCID: PMC10373497 DOI: 10.1021/acs.est.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Halogenated estrogens are formed during chlorine-based wastewater disinfection and have been detected in wastewater treatment plant effluent; however, very little is known about their susceptibility to biodegradation in natural waters. To better understand the biodegradation of free and halogenated estrogens in a large river under environmentally relevant conditions, we measured estrogen kinetics in aerobic microcosms containing water and sediment from the Willamette River (OR, USA) at two concentrations (50 and 1250 ng L-1). Control microcosms were used to characterize losses due to sorption and other abiotic processes, and microbial dynamics were monitored using 16S rRNA gene sequencing and ATP. We found that estrogen biodegradation occurred on timescales of hours to days and that in river water spiked at 50 ng L-1 half-lives were significantly shorter for 17β-estradiol (t1/2,bio = 42 ± 3 h) compared to its monobromo (t1/2,bio = 49 ± 5 h), dibromo (t1/2,bio = 88 ± 12 h), and dichloro (t1/2,bio = 98 ± 16 h) forms. Biodegradation was also faster in microcosms with high initial estrogen concentrations as well as those containing sediment. Free and halogenated estrone were important transformation products in both abiotic and biotic microcosms. Taken together, our findings suggest that biodegradation is a key process for removing free estrogens from surface waters but likely plays a much smaller role for the more highly photolabile halogenated forms.
Collapse
Affiliation(s)
- David R Griffith
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - MacKayla Carolan
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Anya Romig
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Nathan Garcia-Diaz
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Rosa León Zayas
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| |
Collapse
|
15
|
Wang L, Li A. Impact of zero-valent iron on nitrifying granular sludge for 17α-ethinylestradiol removal and its mechanism. CHEMOSPHERE 2023; 333:138904. [PMID: 37182710 DOI: 10.1016/j.chemosphere.2023.138904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Aerobic granulation of nitrifying activated sludge could enhance the removal of 17α-ethinylestradiol (EE2) via abiotic nitration induced by reactive nitrogen species, cometabolism by ammonia-oxidizing bacteria and biodegradation by heterotrophic bacteria. Zero-valent iron (ZVI), a promising and low-cost material, has previously been applied to effectively enhance biological wastewater treatment. The impact and the effect mechanism of ZVI on nitrifying granular sludge (NGS) for EE2 removal was investigated in this study. The results showed that the addition of ZVI achieved better EE2 removal, though ZVI was not conducive to the accumulation of nitrite in NGS which reduced the abiotic transformation of EE2. Moreover, ZVI enriched heterotrophic denitrifying bacteria such as Arenimonas, thus changing the EE2 removal pathway and improving the degradation and mineralization of EE2. In addition, ZVI reduced the emission risk of the greenhouse gas N2O and strengthened the stability of the granules. Metagenomic analysis further revealed that the functional genes related to EE2 mineralization, nitrite oxidation, N2O reduction and quorum sensing in NGS were enriched with ZVI addition. This study provides meaningful guidance for ZVI application in the NGS process to achieve efficient and simultaneous removal of ammonia and emerging contaminants.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute of Water Transport Engineering, Tanggu, Tianjin, 300456, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Jiang X, Xue Z, Chen W, Xu M, Liu H, Liang J, Zhang L, Sun Y, Liu C, Yang X. Biotransformation kinetics and pathways of typical synthetic progestins in soil microcosms. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130684. [PMID: 36586332 DOI: 10.1016/j.jhazmat.2022.130684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Gestodene (GES), altrenogest (ALT), and medroxyprogesterone acetate (MPA) are three potent synthetic progestins detected in agricultural soils; however, their biotransformation outcomes in soils remain unclear. This study explored the biotransformation of these progestins in five agricultural soils with different physicochemical properties. The biotransformation data were well-described by a first-order decay model (R2 = 0.83-0.99), with estimated half-lives ranging between 12.1 and 188 h. Amplicon sequencing indicated that the presence of progestins changed the bacterial richness and community structure in the soils. Linear correlation, canonical correlation, and two-way correlation network analysis revealed that soil properties can affect biotransformation rates by interfering with progestin-soil interactions or with keystone taxa in soils. The clustermap demonstrated the formation of abundant transformation products (TPs). Isomerization and C4(5) hydrogenation were the major transformation pathways for GES (yields of ∼ 13.7 % and ∼ 10.6 %, respectively). Aromatic dehydrogenation was the major transformation pathway for ALT (yield of ∼ 17.4 %). The C17 hydrolysis with subsequent dehydration and hydrogenation was the major transformation pathway for MPA (yield of ∼ 196 %). In particular, some TPs exhibited progestagenic, androgenic, or estrogenic activity. This study highlights the importance of evaluating the ecotoxicity of progestin and TP mixtures for better understanding their risks in the environment.
Collapse
Affiliation(s)
- Xiuping Jiang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhongye Xue
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - He Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jiahao Liang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lu Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Sun
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong 510650, PR China
| | - Churong Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
17
|
Xiong W, Peng W, Fu Y, Deng Z, Lin S, Liang R. Identification of a 17β-estradiol-degrading Microbacterium hominis SJTG1 with high adaptability and characterization of the genes for estrogen degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130371. [PMID: 36423453 DOI: 10.1016/j.jhazmat.2022.130371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Environmental estrogen contamination poses severe threat to wildlife and human. Biodegradation is an efficient strategy to remove the wide-spread natural estrogen, while strains suitable for hostile environments and fit for practical application are rare. In this work, Microbacterium hominis SJTG1 was isolated and identified with high degrading efficiency for 17β-estradiol (E2) and great environment fitness. It could degrade nearly 100% of 10 mg/L E2 in minimal medium in 6 days, and remove 93% of 1 mg/L E2 and 74% of 10 mg/L E2 in the simulated E2-polluted solid soil in 10 days. It maintained stable E2-degrading efficiency in various harsh conditions like non-neutral pH, high salinity, stress of heavy metals and surfactants. Genome mining and comparative genome analysis revealed that there are multiple genes potentially associated with steroid degradation in strain SJTG1. One 3β/17β-hydroxysteroid dehydrogenase HSD-G129 induced by E2 catalyzed the 3β/17β-dehydrogenation of E2 and other steroids efficiently. The transcription of hsd-G129 gene was negatively regulated by the adjacent LysR-type transcriptional regulator LysR-G128, through specific binding to the conserved site. E2 can release this binding and initiate the degradation process. This work provides an efficient and adaptive E2-degrading strain and promotes the biodegrading mechanism study and actual remediation application.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
18
|
Zhou Z, Liu X, Ma J, Huang J, Lin C, He M, Ouyang W. Activation of persulfate by vanadium oxide modified carbon nanotube for 17β-estradiol degradation in soil: Mechanism, application and ecotoxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159760. [PMID: 36306855 DOI: 10.1016/j.scitotenv.2022.159760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Steroid hormones in the environment have attracted public attention because of their high endocrine-disrupting activity even at rather low exposure level. Excessive hormones in the soil from the pollutant discharge of intensive farming would pose a potential threat to the ecology and the human health. Vanadium oxide modified carbon nanotube (VOX-CNT) was synthesized and applied as persulfate (PDS) activator to reduce17β-estrogen (17β-E2) in soil. 86.06 % 17β-E2 could be degraded within 12 h. Process of materials exchange during oxidation was interfered by soil, resulting in insufficient degradation of 17β-E2, but the active species involved in 17β-E2 degradation would also be enriched by it. 17β-E2 was adsorbed on the VOX-CNT surface and directly degraded mainly by the active species generated on the catalyst surface, and •OH dominated the degradation of 17β-E2 in VOX-CNT/PDS system. CO, defective sites and vanadium oxides on the surface of VOX-CNT contributed to the generation of activate species. Oxidizer dosage, catalyst dosage, water-soil ratio and soil properties would affect the degradation of 17β-E2. The ecotoxicological impact on soil caused by VOX-CNT/PDS was acceptable, and would be weakened with time. Additionally, a rapid decrease in the concentration of 17β-E2 and the promotion of maize growth were observed with VOX-CNT/PDS in situ pilot-scale remediation. Those results reveal that VOX-CNT/PDS is a potential technology to remove excessive steroid hormone from soil around large-scale livestock and poultry farms.
Collapse
Affiliation(s)
- Zhou Zhou
- North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100120, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jun Ma
- Development Research Center of the Ministry of Water Resources of P.R.China, Beijing 100038, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Hung HS, Yeh KJC, Chen TC. Investigation of free and conjugated estrogen fate and emission coefficients in three duck farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9874-9885. [PMID: 36059016 DOI: 10.1007/s11356-022-22829-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Concentration animal feeding operation (CAFO) is an important source of environmental estrogen. However, to the best of our knowledge, the data on estrogen discharge during duck breeding and growth is insufficient. This study used liquid chromatography with tandem mass spectrometry (LC/MS/MS) to analyze the free and conjugated estrogen concentrations in the surface water, outlet water, groundwater, and duck manure/soil mixture at three duck farms in Taiwan. Natural estrogen species included estrone (E1), 17β-estradiol (E2), estriol (E3), estrone-3-sulfate (E1-3S), 17β-estradiol-3-sulfate (E2-3S), estrone-3-glucuronide (E1-3G), and 17β-estradiol-3-glucuronide (E2-3G), whereas synthetic estrogen included 17α-ethynylestradiol (EE2) and diethylstilbestrol (DES). This study showed that the total estrogen concentrations in the surface water and groundwater were 15.4 and 4.5 ng/L, respectively, which constituted 56% and 58%, respectively, conjugated estrogen. From the pond to the outlet water, the total estrogen concentration decreased by 3.9 ng/L (23% loss) in the duck farms. However, the estrogenic potency was slightly reduced from 0.91 to 0.88 E2 equivalent/L, showing a negligible decrease. From the pond to the outlet water, the field results showed that converting the conjugated estrogen into free estrogen in the duck farm-released water increased their environmental hazard. Primarily E1, with an average concentration of 0.9 ± 1.6 ng/g, was present in the duck manure. The estrogen excreted by the ducks in the pond (from surface water to outlet water) was estimated to be 0.18 kg/million head-year. Although the estrogen concentration in the duck farms was low, the environmental impact of CAFO should not be neglected.
Collapse
Affiliation(s)
- Hao-Shen Hung
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Kuei-Jyum C Yeh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
20
|
Wang Y, Zhong L, Song X, Adeel M, Yang Y. Natural colloids facilitated transport of steroidal estrogens in saturated porous media: Mechanism and processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120315. [PMID: 36216178 DOI: 10.1016/j.envpol.2022.120315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Steroid estrogens (SEs) as typical endocrine disrupting compounds (EDCs) are widely detected in terrestrial environment, whilst the transport of SEs in groundwater remains unwell understood. Specifically, the effects of ubiquitous natural colloids on the SEs transport are unclear in subsurface environment, especially in aquifer systems. Here, the influence of inorganic colloids (i.e. silica and illite) and organic colloids, i.e. Humic acid (HA), on the transport of estrone (E1) and estradiol (E2) in saturated porous media was studied utilizing laboratory scale column experiments. Characterization on the colloids and porous aquifer material was conducted to provide a basis for interpretation of the experimental findings. Results showed that the transport of SEs was clearly affected by the natural colloids migrating through the saturated porous media. About 38.5% of E1 and 24.6% of E2 were retained in the column when colloids were absent in the system. When transporting with silica colloids, illite colloids, and HA colloids, the transport of E1 was enhanced by 15.64%, 11.17% and 25.60%, respectively; whilst the transport of E2 was improved by 19.56%, 23.06% and 36.40%, respectively. The SEs transport enhancement by colloids depended upon not only the mobility of the colloids but also their geochemical characteristics. The organic colloids showed 1.5-2.5 times greater ability on promoting the transport of SEs than the inorganic ones tested in this study. The proposed mechanisms of nature colloids facilitated transport of SEs including competing for adsorption sites on the sand surfaces by the colloids resulting mobilization of adsorbed SEs from solid matrix, and transport of colloids as carriers for SEs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China
| | - Lirong Zhong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiaoming Song
- Key Lab of Eco-restoration of Region Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519085, China
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Key Lab of Eco-restoration of Region Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China.
| |
Collapse
|
21
|
Song X, Zhang Z, Wen Y, Zhang W, Xie Y, Cao N, Sun D, Yang Y. The response of steroid estrogens bioavailability to various sorption mechanisms by soil organic matter extracted with sequential alkaline-extraction method from an agriculture soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119630. [PMID: 35760201 DOI: 10.1016/j.envpol.2022.119630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The long-term groundwater contamination risks posed by steroidal estrogens (SEs) in animal-manured agricultural soils are closely associated with the soil organic matter (SOM) content and composition. In this study, the bioavailability of estrone (E1) and 17β-estradiol (17β-E2) under different sorption mechanism in humic acids (HA1 and HA2) and humin (HM) extracted with sequential alkaline-extraction technique (SAET) were examined. These SOMs extracted by SAET showed various properties and sorption characteristics for SEs. The alkyl carbon and condensed SOM increased during SAET, but aromatic carbon decreased and the same trend for polarity. Quick sorption was the major SEs sorption mechanism on HA1 and HA2, which contributed more than 69%; whilst slow sorption rate was about 50% in soil and HM. The logKoc values were proportional to the TOC of SOM according to Freundlich fitting, and the sorption capacity of sorbent for E1 and 17β-E2 was related to the logKow values, indicating that the main mechanism controlling the SEs sorption was hydrophobic interaction. The larger micropore volume of HM and soil was more conducive to the micropore filling of SEs. Meanwhile, the specific sorption of SEs on condensed domain of SOM was the main reason for the strong desorption hysteresis and slow sorption in HM and soil. The SEs degradation rate was positively correlated with the contribution rate of quick adsorption and negatively correlated with the contribution rate of slow adsorption, indicating that the bioavailability of SEs sorbed by hydrophobic interaction was higher than that of micropore filling or specific sorption, which was also the reason for the low bioavailability of SEs in HM and soil. This work confirms the regulation of on-site SOM compositions and their properties on SEs sorption and bioavailability. Characterization of these details is crucial for the improved prediction of long-term risks to groundwater.
Collapse
Affiliation(s)
- Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Chengdu Center of Hydrogeology and Engineering Geology, Sichuan Bureau of Geology & Mineral Resources, Chengdu, 610081, China.
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Wei Zhang
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Yi Xie
- Liaoning Provincial Ecology & Environment Monitoring Center, Shenyang, 110161, China
| | - Nan Cao
- Chengdu Center of Hydrogeology and Engineering Geology, Sichuan Bureau of Geology & Mineral Resources, Chengdu, 610081, China
| | - Dong Sun
- Chengdu Center of Hydrogeology and Engineering Geology, Sichuan Bureau of Geology & Mineral Resources, Chengdu, 610081, China
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Fu Y, Peng W, Lin S, Deng Z, Liang R. The 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase HSD-X1 of Pseudomonas Citronellolis SJTE-3 Catalyzes the Conversion of 17β-estradiol to Estrone. Protein Pept Lett 2022; 29:199-207. [PMID: 35049426 DOI: 10.2174/0929866529666220113140721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pseudomonas citronellolis SJTE-3 can efficiently degrade 17β-estradiol (E2) and other estrogenic chemicals. However, the enzyme responsible for E2 metabolism within strain SJTE-3 has remained unidentified. OBJECTIVE Here, a novel 3-oxoacyl-(acyl-carrier protein) (ACP) reductase, HSD-X1 (WP_ 009617962.1), was identified in SJTE-3 and its enzymatic characteristics for the transformation of E2 were investigated. METHODS Multiple sequence alignment and homology modelling were used to predict the protein structure of HSD-X1. The concentrations of different steroids in the culture of recombinant strains expressing HSD-X1 were determined by high performance liquid chromatography. Additionally, the transcription of hsd-x1 gene was investigated using reverse transcription and quantitative PCR analysis. Heterologous expression and affinity purification were used to obtain recombinant HSD- X1. RESULTS The transcription of hsd-x1 gene in P. citronellolis SJTE-3 was induced by E2. Multiple sequence alignment (MSA) indicated that HSD-X1 contained the two consensus regions and conserved residues of short-chain dehydrogenase/reductases (SDRs) and 17β-hydroxysteroid dehydrogenases (17β-HSDs). Over-expression of hsd-x1 gene allowed the recombinant strain to degrade E2. Recombinant HSD-X1 was purified with a yield of 22.15 mg/L and used NAD+ as its cofactor to catalyze the oxidization of E2 into estrone (E1) while exhibiting a Km value of 0.025 ± 0.044 mM and a Vmax value of 4.92 ± 0.31 mM/min/mg. HSD-X1 could tolerate a wide range of temperature and pH, while the presence of divalent ions exerted little influence on its activity. Further, the transformation efficiency of E2 into E1 was over 98.03% across 15 min. CONCLUSION Protein HSD-X1 efficiently catalyzed the oxidization of E2 and participated in estrogen degradation by P. citronellolis SJTE-3.
Collapse
Affiliation(s)
- Yali Fu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
23
|
Sources, Pollution Characteristics, and Ecological Risk Assessment of Steroids in Beihai Bay, Guangxi. WATER 2022. [DOI: 10.3390/w14091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroids are environmental endocrine disruptors that are discharged from vertebrates and are also byproducts of aquaculture. They have strong endocrine disrupting effects and are extremely harmful to the environment. The pollution of steroids in Beihai Bay was assessed through analyzing sources from rivers entering the bay. Six different types of steroids were detected in seagoing rivers, seagoing discharge outlets, and marine aquaculture farms, ranging from 0.12 (methyltestosterone) to 2.88 ng/L (estrone), from 0.11 (cortisol) to 5.41 ng/L (6a-methylprednisone (Dragon)), and from 0.13 (estradiol) to 2.51 ng/L (nandrolone), respectively. Moreover, 5 steroids were detected in 13 of the 19 seawater monitoring stations, accounting for 68.4% of the samples, and their concentrations ranged from 0.18 (methyltestosterone) to 4.04 ng/L (estrone). Furthermore, 7 steroids were detected in 15 of the 19 sediment monitoring stations, accounting for 78.9% of the samples, with concentrations ranging from 26 (estrone) to 776 ng/kg(androsterone). Thus, the main source of marine steroids were the discharging rivers and pollution sources entering the sea. An ecological risk assessment indicated that estrone and methyltestosterone were at high risk in this region; 17β estradiol (E2β) was medium risk, and other steroids were of low or no risk. This study provides a scientific basis for ecological risk assessment and control.
Collapse
|
24
|
Liu S, Gao H, Dong Q, Su Y, Dai T, Qin Z, Yang Y, Gao Q. Bacteria are better predictive biomarkers of environmental estrogen transmission than fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118838. [PMID: 35031405 DOI: 10.1016/j.envpol.2022.118838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/08/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The heavy reliance on estrogens in the food industry worldwide greatly contributes to the environmental release of these compounds, begetting serious public concern of their fate. Various microorganisms capable of estrogen degradation, and their catabolic pathways, have been isolated, suggesting that they can eliminate estrogens in both engineered and natural environments. Nonetheless, it remains little understood as to how potential estrogen-degrading microorganisms are distributed within those habitats. An estrogen transmission chain from swine manure to compost, compost-amended soil, and neighboring agricultural soil was investigated in five suburban areas of Beijing, China. The concentrations of major estrogen classes decreased by > 90% from manure to soils, which did not co-vary with environmental antibiotics and heavy metal concentrations. Many bacterial taxa, such as Lactobacillus and Bacteroides, could serve as potential biomarkers of estrogen concentrations, while fungi were only occasionally accurate. To explain this phenomenon, stochasticity was found to be dominant in shaping the fungal communities across all samples, while deterministic selection, arising from biotic interactions, was important for bacterial communities. Metabolic genes involved in oxidizing phenol and catalyzing oxidative ring cleavage of catechol were detected, co-varying with estrogen concentrations. These findings are important as identifying microbial biomarkers of estrogen dynamics, spanning the levels of both taxonomy and functional genes, provides valuable information for assessing estrogen bioavailability and biomarking of estrogen fate in the environment.
Collapse
Affiliation(s)
- Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanbo Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing, 102205, China
| | - Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianjiao Dai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Peng W, Fu Y, Jia B, Sun X, Wang Y, Deng Z, Lin S, Liang R. Metabolism analysis of 17α-ethynylestradiol by Pseudomonas citronellolis SJTE-3 and identification of the functional genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127045. [PMID: 34488099 DOI: 10.1016/j.jhazmat.2021.127045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Synthetic estrogens are the most hazardous and persistent environmental estrogenic contaminants, with few reports on their biodegradation. Pseudomonas citronellolis SJTE-3 degraded natural steroids efficiently and metabolized 17α-ethynylestradiol (EE2) with the addition of different easily used energy sources (glucose, peptone, ethanol, yeast extract, fulvic acid and ammonia). Over 92% of EE2 (1 mg/L) and 55% of EE2 (10 mg/L) in culture were removed in seven days with the addition of 0.1% ethanol, and the EE2-biotransforming efficiency increased with the increasing ethanol concentrations. Two novel intermediate metabolites of EE2 (C22H22O and C18H34O2) were identified with high-performance liquid chromatography (HPLC) and GC-Orbitrap/MS. Comparative analysis and genome mining revealed strain SJTE-3 contained a unique genetic basis for EE2 metabolism, and the putative EE2-degrading genes exhibited dispersed distribution. The EE2 metabolism of strain SJTE-3 was inducible and the transcription of eight genes were significantly induced by EE2. Three genes (sdr3, yjcH and cyp2) encoding a short-chain dehydrogenase, a membrane transporter and a cytochrome P450 hydroxylase, respectively, were vital for EE2 metabolism in strain SJTE-3; their over-expression accelerated EE2 metabolic processes and advanced the generation of intermediate metabolites. This work could promote the study of bacterial EE2 metabolism mechanisms and facilitate efficient bioremediation for EE2 pollution.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ben Jia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
26
|
Dehkordi SK, Paknejad H, Blaha L, Svecova H, Grabic R, Simek Z, Otoupalikova A, Bittner M. Instrumental and bioanalytical assessment of pharmaceuticals and hormone-like compounds in a major drinking water source-wastewater receiving Zayandeh Rood river, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9023-9037. [PMID: 34498192 DOI: 10.1007/s11356-021-15943-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Zayandeh Rood river is the most important river in central Iran supplying water for a variety of uses including drinking water for approximately three million inhabitants. The study aimed to investigate the quality of water concerning the presence of pharmaceutical active compounds (PhACs) and hormonelike compounds, which have been only poorly studied in this region. Sampling was performed at seven sites along the river (from headwater sites to downstream drinking water source, corresponding drinking water, and treated wastewater) affected by wastewater effluents, specific drought conditions, and high river-water demand. The targeted and nontargeted chemical analyses and in vitro bioassays were used to evaluate the presence of PhACs and hormonelike compounds in river water. In the samples, 57 PhACs and estrogens were detected with LC-MS/MS with the most common and abundant compounds valsartan, carbamazepine, and caffeine present in the highest concentrations in the treated wastewater in the concentrations of 8.4, 19, and 140 μg/L, respectively. A battery of in vitro bioassays detected high estrogenicity, androgenicity, and AhR-mediated activity (viz., in treated wastewater) in the concentrations 24.2 ng/L, 62.2 ng/L, and 0.98 ng/L of 17β-estradiol, dihydrotestosterone and 2,3,7,8-TCDD equivalents, respectively. In surface water samples, estrogenicity was detected in the range of <0.42 (LOD) to 1.92 ng/L of 17β-estradiol equivalents, and the drinking water source contained 0.74 ng/L of 17β-estradiol equivalents. About 19% of the estrogenicity could be explained by target chemical analyses, and the remaining estrogenicity can be at least partially attributed to the potentiation effect of detected surfactant residues. Drinking water contained several PhACs and estrogens, but the overall assessment suggested minor human health risk according to the relevant effect-based trigger values. To our knowledge, this study provides some of the first comprehensive information on the levels of PhACs and hormones in Iranian waters.
Collapse
Affiliation(s)
- Shima Kouhi Dehkordi
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Hamed Paknejad
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Helena Svecova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Zdenek Simek
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Alena Otoupalikova
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Michal Bittner
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia.
| |
Collapse
|
27
|
Distribution and Estrogenic Risk of Alkylphenolic Compounds, Hormones and Drugs Contained in Water and Natural Surface Sediments, Morelos, Mexico. SEPARATIONS 2022. [DOI: 10.3390/separations9010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the distribution and potential estrogenic risk of the presence of bisphenol A (BPA), 4-nonylphenol (4NP), naproxen (NPX), ibuprofen (IBU), 17-β-estradiol (E2) and 17-α-ethinylestradiol (EE2) in water and sediments of the Apatlaco river micro-basin (Morelos, Mexico). The concentration of the determined compounds ranged between <LOD to 86.40 ng·L−1 and <LOD to 3.97 ng g−1 in water and sediments, respectively. The Log Kd distribution obtained (from 1.05 to 1.91 L Kg−1) indicates that the compounds tend to be adsorbed in sediments, which is probably due to the hydrophobic interactions confirmed by the significant correlations determined mainly between the concentrations and parameters of total organic carbon (TOC), total suspended solids (TSS), biological oxygen demand (BOD5) and chemical oxygen demand (COD). Of five sites analyzed, four presented estrogenic risk due to the analyzed endocrine-disrupting compounds (EEQE2 > 1 ng·L−1).
Collapse
|
28
|
Wang L, Liu Z, Jiang X, Li A. Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149546. [PMID: 34438142 DOI: 10.1016/j.scitotenv.2021.149546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The positive correlation between the nitrification activity of activated sludge and 17α-ethinylestradiol (EE2) removal has been widely reported. However, up to now the effect of the granulation of nitrifying activated sludge (NAS) on EE2 removal has not been determined. In this study, nitrifying granular sludge (NGS) exhibited more effective EE2 removal efficiency with 3.705 μgEE2∙(gMLSS∙h)-1 in a sequential batch reactor (SBR). Through the artificial neural network (ANN) model and Spearman correlation analysis, nitrite accumulation was demonstrated to be the key factor affecting EE2 removal. Notably, under the same aeration condition (0.15 L/min), nitrite accumulation was more easily achieved in NGS because of its dense structure. Full-length 16S rRNA gene sequencing suggested that EE2 could strongly influence the microbial communities of NAS and NGS. NGS exhibited an increase in community diversity and richness, but NAS exhibited a decrease. In addition, the relative abundance of Nitrosomonas (ammonia-oxidizing bacteria, AOB) decreased considerably in both NAS and NGS, whereas the expression of amoA and nirK genes in Nitrosomonas was upregulated. It was suggested that Nitrosomonas was forced to regulate its gene expression to resist the negative effects of EE2. Denitrifying bacteria, such as Comamonas, were enriched in both NAS and NGS, and there were more species of heterotrophs that can degrade micropollutants in NGS with exposure to EE2. The transformation pathways of EE2 were uniform in NAS and NGS. Ammonia monooxygenase (AMO) in AOB directly biotransformed EE2 while reactive species produced by AOB chemically transformed EE2. Heterotrophs degraded EE2 and its transformation products (TPs) generated by AOB. According to TPs and microbial structure, NGS exhibited better performance than NAS regarding the collaborative removal of EE2 by AOB and heterotrophs. These results provide important information for the development and application of NGS to treat wastewater containing estrogen and high-strength ammonium.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifang Liu
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Anjie Li
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
29
|
Sutaswiriya N, Homklin S, Kreetachat T, Vaithanomsat P, Kreetachat N. Monitoring estrogen and androgen residues from livestock farms in Phayao Lake, Thailand. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:812. [PMID: 34786612 DOI: 10.1007/s10661-021-09607-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study was to investigate steroid hormone residues from livestock farms and assess their risks to the surface water of Phayao Lake. These steroid hormones are endocrine-disrupting compounds (EDCs), which can be found in natural and synthetic forms. This research focused on examining the residues of seven steroid hormones (five estrogens and two androgens-estrone (E1), 17α-estradiol (αE2), 17β-estradiol (βE2), estriol (E3), 17α-ethinyl estradiol (EE2), testosterone (T), and 17α-methyltestosterone (MT)) from four types of livestock farms around Phayao Lake, Thailand. The samples collected from the livestock farms included feces, soil, and wastewater and were extracted by the solid phase extraction (SPE) technique and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The risks from the residual steroid hormones were also characterized by estradiol equivalents (EEQs), testosterone equivalents (TEQs), and risk quotients (RQs). The results indicated that most hormone contamination from the farms' livestock was due to the estrogen hormones E1 (1.38-97.10 ng/g), βE2 (10.08-1366 ng/g), and EE2 (1.50-99.92 ng/g), which originate from the natural excretion and admixture of steroids in feedstock or medicines. Steroid hormones were not detected in the wastewater from cleaning processes on farms with wastewater treatment plants, whereas farms without wastewater treatment plants showed high values of estrogen hormone contamination, with EEQs of 128.8-472.9 ng/L and RQs of 208.3-294.3. However, the analysis of steroid hormone residues in Phayao Lake demonstrated that the residues did not severely affect aquatic organisms (with RQs of 0.002-144.5), and no estrogen or androgen residues were observed in the water treatment plant or tap water.
Collapse
Affiliation(s)
- Nawaphop Sutaswiriya
- Department of Environmental Engineering, School of Energy and Environment, University of Phayao, 56000, Phayao, Thailand
| | - Supreeda Homklin
- Department of Environmental Engineering, School of Energy and Environment, University of Phayao, 56000, Phayao, Thailand
| | - Torpong Kreetachat
- Department of Environmental Engineering, School of Energy and Environment, University of Phayao, 56000, Phayao, Thailand
| | - Pilanee Vaithanomsat
- Nanotechnology and Biotechnology Research Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
| | - Nathiya Kreetachat
- Department of Environmental Engineering, School of Energy and Environment, University of Phayao, 56000, Phayao, Thailand.
| |
Collapse
|
30
|
Adriano N, Ahearn C, Black C, Cracchiolo M, Ghere D, Nuñez A, Olivan L, Patel R, Saner S, Smith KR, Watkins B, Hare PM. Solvent- and Wavelength-Dependent Photolysis of Estrone. Photochem Photobiol 2021; 98:783-797. [PMID: 34664279 DOI: 10.1111/php.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
The direct photolysis of estrone in solvents ranging from water to cyclohexane is reported. The photodegradation is dominated by lumiestrone, an epimer of estrone resulting from the inversion of the methyl group at carbon 13, regardless of solvent and photolysis wavelength in the range 254-320 nm. Solvent addition products are also observed in lesser amounts. The photodegradation rate in water is an order of magnitude slower than in nonaqueous solvents. Short wavelength excitation enhances photodegradation. Together, these results suggest complicated photophysics underlie the photochemistry with implications for the remediation of environmental estrogens.
Collapse
Affiliation(s)
- Natalie Adriano
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Ceilidh Ahearn
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Cory Black
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Michael Cracchiolo
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Daniel Ghere
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Alexandra Nuñez
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Lars Olivan
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Raj Patel
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Stephanie Saner
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Krista R Smith
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Barbie Watkins
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Patrick M Hare
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
31
|
Melo LED, de Paulo DV, Montagner CC, Carvalho PSM. Behavioral and reproductive effects in Poecilia vivipara males from a tropical estuary affected by estrogenic contaminants. MARINE POLLUTION BULLETIN 2021; 169:112543. [PMID: 34062326 DOI: 10.1016/j.marpolbul.2021.112543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Contamination of aquatic habitats by endocrine disruptor chemicals is a major concern globally. This study evaluated histochemical, behavioral, and reproductive effects on adult male Poecilia vivipara sampled from Capibaribe River Estuarine System (CRES), compared to laboratory control males after breeding with virgin control females. CRES is contaminated by a mixture of estrogenic contaminants estrone, 17β-estradiol, estriol, 17α-Ethinylestradiol, bisphenol A and caffeine in concentrations averaging 13.9; 4.2; 19.5; 8.6; 27 and 23.2 ng L-1, respectively. Estrogenic risk in 17β-estradiol-equivalent-concentrations is above probable no effect concentrations. Males sampled from CRES indicated liver phosphoprotein induction, decreased number of contacts and copulation attempts when paired with control females, slower swimming speed and lower female impregnation success rates, compared to control males. A reduction of 62% in fecundity was observed in control females paired with field sampled males compared with control males. Our results highlight hazards posed to fish reproduction by estrogenic micropollutants.
Collapse
Affiliation(s)
- Laura Estela de Melo
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Av. Prof. Moraes Rego, s/n, Recife, PE, 50670-920, Brazil
| | - Driele Ventura de Paulo
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Av. Prof. Moraes Rego, s/n, Recife, PE, 50670-920, Brazil
| | - Cassiana C Montagner
- Laboratório de Química Ambiental, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Av. Prof. Moraes Rego, s/n, Recife, PE, 50670-920, Brazil.
| |
Collapse
|
32
|
Zhang QQ, Xing C, Cai YY, Yan XT, Ying GG. How much do human and livestock actually contribute to steroids emission and surface water pollution from past to the future: A global research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145558. [PMID: 33571775 DOI: 10.1016/j.scitotenv.2021.145558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A comprehensive global inventory of past, present, and future steroid emissions was firstly developed based on the global 5' × 5' grids relevant data available. From 1970 to 2070, the growth rate of the annual global steroid emission was relatively stable around 10%. At present (in 2015), the global steroid emissions was 18,270 t, with 17% contributed by humans. Almost one-third of total animal emissions have been occurring in India and Brazil. India also had the highest value of human steroid emissions. Regions with highest steroid emissions were concentrated between 10° ~ 35° N and 70° ~ 90° E. The increase of sewage treatment rates can effectively reduce the total quantity of steroids entering the environment, especially for some developing countries. But the "technology bonus" from sewage treatment process will be exhausted until to 2030. Meanwhile, global surface water pollution was predicted based on steroid emissions into water compartment and on the digital river network with annual river discharge. The modelling results show that steroids are widely distributed across the globe, with concentrations mostly below 100 ng/L. However, if no proper treatment measures for animal excretions, in another 100 years, the range of the surface water contaminated by steroids will increase by 1.2 times. The Nile River resulted as the most polluted among the eight world's longest and famous rivers during the whole period investigated. Various measured concentrations worldwide validated our modelling result. The global steroid emission inventory and surface water pollution from past to the future will stand as an important data and knowledge base for the management of pollution from different types of steroids at global and regional level.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Cheng Xing
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ya-Ya Cai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
33
|
Wang J, Huang Y, Wang S, Yang Y, He J, Li C, Zhao YH, Martyniuk CJ. Identification of active and inactive agonists/antagonists of estrogen receptor based on Tox21 10K compound library: Binomial analysis and structure alert. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112114. [PMID: 33711575 DOI: 10.1016/j.ecoenv.2021.112114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting chemicals can mimic, block, or interfere with hormones in organisms and subsequently affect their development and reproduction, which has raised significant public concern over the past several decades. To investigate (quantitative) structure-activity relationship, 8280 compounds were compiled from the Tox21 10K compound library. The results show that 50% activity concentrations of agonists are poorly related to that of antagonists because many compounds have considerably different activity concentrations between the agonists and antagonists. Analysis on the chemical classes based on mode of action (MOA) reveals that estrogen receptor (ER) is not the main target site in the acute toxicity to aquatic organisms. Binomial analysis of active and inactive ER agonists/antagonists reveals that ER activity of compounds is dominated by octanol/water partition coefficient and excess molar refraction. The binomial equation developed from the two descriptors can classify well active and inactive ER chemicals with an overall prediction accuracy of 73%. The classification equation developed from the molecular descriptors indicates that estrogens react with the receptor through hydrophobic and π-n electron interactions. At the same time, molecular ionization, polarity, and hydrogen bonding ability can also affect the chemical ER activity. A decision tree developed from chemical structures and their applications reveals that many hormones, proton pump inhibitors, PAHs, progestin, insecticides, fungicides, steroid and chemotherapy medications are active ER agonists/antagonists. On the other hand, many monocyclic/nonaromatic chain compounds and herbicides are inactive ER compounds. The decision tree and binomial equation developed here are valuable tools to predict active and inactive ER compounds.
Collapse
Affiliation(s)
- Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Hill D, Morra MJ, Stalder T, Jechalke S, Top E, Pollard AT, Popova I. Dairy manure as a potential source of crop nutrients and environmental contaminants. J Environ Sci (China) 2021; 100:117-130. [PMID: 33279025 DOI: 10.1016/j.jes.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/12/2023]
Abstract
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 - 348 mg/kg) was more abundant than Cu (56 - 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.
Collapse
Affiliation(s)
- Danika Hill
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | | | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Gießen, Germany
| | - Eva Top
- Department of Biology, University of Idaho, ID 83844-3051, USA
| | - Anne T Pollard
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Inna Popova
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA.
| |
Collapse
|
35
|
Argolo ADS, Gomes G, Bila DM. Insights into total estrogenic activity in a sewage-impacted urban stream assessed via ER transcriptional activation assay: Distribution between particulate and dissolved phases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111574. [PMID: 33396100 DOI: 10.1016/j.ecoenv.2020.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/17/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting chemicals (EDC) are exogenous substances that can potentially mimic hormonal substances and cause adverse effects on the endocrine system of living beings. The behavior and fate of these compounds in the environment is directly related to their physical-chemical properties, which indicate great affinity for solid and organic particles and suggest an inherent mechanism of fractionation between dissolved and particulate phases of aqueous matrices. However, few studies have been considering this fact when quantifying these pollutants and their effects through bioassays. In this study, the fractionation of estrogenic substances between dissolved and particulate phases in an urban stream was investigated via estrogenic activity evaluation by the YES assay. Two fractions of suspended solids (< 0.7 µm and between 0.45 and 0.7 µm) and the dissolved phase were considered and two approaches of SPE percolations were applied. Total estradiol equivalent (E2-Eq) values were observed in the 29-65 ng L-1 range, of which 35-62% were associated with the particulate phase. Most of the estrogenicity was associated with particles between 0.45 and 0.7 µm, whereas cytotoxicity was induced by extracts of particles greater than 0.7 µm. Results demonstrated the importance of solid fractions analysis towards the quantification of total estrogenic activity from aqueous environmental matrices and highlights the relevance of controlling fine suspended solids in sewage treatment plant effluents, regarding the control of endocrine disrupters in the environment.
Collapse
Affiliation(s)
- Allan Dos Santos Argolo
- Rio de Janeiro State University, Department of Sanitary and Environmental Engineering, Rio de Janeiro, Brazil.
| | - Giselle Gomes
- Rio de Janeiro State University, Department of Sanitary and Environmental Engineering, Rio de Janeiro, Brazil
| | - Daniele Maia Bila
- Rio de Janeiro State University, Department of Sanitary and Environmental Engineering, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Yang S, Yu W, Yang L, Du B, Chen S, Sun W, Jiang H, Xie M, Tang J. Occurrence and Fate of Steroid Estrogens in a Chinese Typical Concentrated Dairy Farm and Slurry Irrigated Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:67-77. [PMID: 33205963 DOI: 10.1021/acs.jafc.0c05068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Animal husbandry is the second largest source of steroid estrogen (SE) pollutants in the environment, and it is significant to investigate the occurrence and fate of SEs discharged from concentrated animal feeding operations. In this research, with a Chinese typical concentrated dairy farm as the object, the concentrations of SEs (E1, 17α-E2, 17β-E2, E3, and E1-S3) in slurry, lagoon water, and slurry-irrigated soil samples in summer, autumn, and winter were determined. The total concentrations of SEs (mainly E1, 17α-E2, and 17β-E2) in slurry were very high in the range of 263.1-2475.08 ng·L-1. In the lagoon water, the removal efficiencies of the aerobic tank could reach up to 89.53%, with significant fluctuation in different seasons. In the slurry-irrigated soil, the maximum concentrations of SEs in the topsoil and subsoil were 21.54 ng·g-1 to 6.82 g·g-1, respectively. Most of the SEs tended to transport downward and accumulate in the soil accompanied with the complex mutual conversion. Correlations and hierarchical clustering analysis showed a variety of intertransformation among SEs, and the concentrations of SEs were correlated with various physicochemical indexes, such as TN and NO3--N of the slurry, chemical oxygen demand of the lagoon water, and the heavy metals of soil. In addition, 17β-estradiol equivalency assessment and risk quotients indicated that the slurry irrigation and discharge of the lagoon water would cause potential estrogenic risks to the environment. Consequently, reasonable slurry irrigation and lagoon water discharge are essential to efficiently control SE pollution in the environment.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, Fujian 350116, China
| | - Shiling Chen
- Risland Thailand Co., Ltd., Huai Khwang, Bangkok 10310, Thailand
| | - Weizhe Sun
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hui Jiang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mingyuan Xie
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jingjing Tang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
37
|
Tao HY, Zhang J, Shi J, Guo W, Liu X, Zhang M, Ge H, Li XY. Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111521. [PMID: 33254396 DOI: 10.1016/j.ecoenv.2020.111521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Phthalates (PAEs), bisphenol A (BPA), and oestrogenic compounds have become major concerns due to their endocrine-disrupting effect. However, few studies related to the occurrence of PAEs, BPA, and oestrogen in food and compost from different growth age livestock have been conducted. In this study, faeces, urine and food samples were collected from a typical livestock (cow) and a special livestock (pigeon) from concentrated animal feeding operations (CAFOs). The daily total oestrogen excretion of a single cow ranged from 192 μg/day to 671 μg/day, which was significantly higher than that of a single pigeon (0-0.01 μg/day). Conjugated oestrogens represented 22.0-46.0% of the total oestrogens excreted from cow faeces and 80.7-91.8% of those from cow urine, indicating that the form of the excreted oestrogens depends on the livestock species and type of excrement. BPA was all detected in all livestock manure and food, and the concentration in pigeon was 9.2-40.2 ng/g and 23.1 ng/g respectively, while that in cattle was 50.5-72.0 ng/g and 41.1 ng/g respectively. The results indicated that the food is significant sources of BPA entering the process of cow and pigeon breeding. Diethyl phthalate (DEP) was detected at high frequency in pigeon faeces samples, suggesting that pigeons were highly exposed to these plasticisers. The total oestradiol equivalent quantity (EEQt) of livestock origin in aquatic environments was estimated to be 2.99 ng/L, which was higher than the baseline hazard value (1 ng/L) (Xu et al., 2018). The study provides data on the emissions and sources of PAEs, BPA, and oestrogenic compounds from different livestock in CAFOs and demonstrates that food is a significant source of BPA entering livestock.
Collapse
Affiliation(s)
- Huan-Yu Tao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiawei Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianghong Shi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Wei Guo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Xiaowei Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Mengtao Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hui Ge
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
38
|
Zhang F, Yu Y, Pan C, Saleem M, Wu Y. Response of periphytic biofilm in water to estrone exposure: Phenomenon and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111513. [PMID: 33254393 DOI: 10.1016/j.ecoenv.2020.111513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
The responses of pure strains to contaminant (i.e., estrone, E1) exposure have been widely studied. However, few studies about the responses of multispecies microbial aggregates (e.g., periphytic biofilm) to E1 exposure are available. In this study, the changes in physiological activity and community composition of periphytic biofilms before and after E1 exposure were investigated. The results showed that periphytic biofilms exhibited high adaptability to E1 exposure at a concentration of 0.5 mg L-1 based on physiological results. The increase in productivity of extracellular polymeric substances (EPS) after exposure to E1 was the main factor preventing association between E1 and microbial cells. The increase in the activity of superoxide dismutase (SOD) and ATP enzyme activity and the change in the co-occurrence pattern of microbial communities (increasing the relative abundance of Xanthomonadaceae and Cryomorphacea) also protected biofilms from E1 exposure. However, exposure to a high concentration of E1 (>10 mg L-1) significantly decreased EPS productivity and metabolic activity due to the excessive accumulation of reactive oxygen species. In addition, the abundance of some sensitive species, such as Pseudanabaenaceae, decreased sharply at this concentration. Overall, this study highlighted the feasibility of periphytic biofilms to adapt to E1 exposure at low concentrations in aquatic environments.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yuanchun Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Chang Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Muhammad Saleem
- Department of Chemistry, Govt. Post Graduate College, Mirpur, Affiliated Mirpur University of Science and Technology, Mirpur, Azad Kashmir, Pakistan
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
39
|
Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115405. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.115405] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 05/15/2023]
Abstract
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Collapse
Affiliation(s)
- Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
40
|
Yu W, Du B, Fan G, Yang S, Yang L, Zhang M. Spatio-temporal distribution and transformation of 17α- and 17β-estradiol in sterilized soil: A column experiment. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122092. [PMID: 31972526 DOI: 10.1016/j.jhazmat.2020.122092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/12/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The environmental behaviors of steroid estrogens (SEs) associated with land irrigation and application are of critical concern worldwide. Understanding the spatio-temporal distribution and transformation process of these estrogenic compounds in soil is greatly significant. In this study, laboratory soil column experiments were conducted to investigate and explore the migration and abiotic transformation of 17α-estradiol (17α-E2) and 17β-estradiol (17β-E2) over spatial and time scales. Results indicated that the migration tendency of 17α-E2 and 17β-E2 was similar. Discrepancies in transport for different SEs groups might be due to the competitive sorption and isomeric transformation in the binary-solute system. 17α-E2 and 17β-E2 can also undergo the abiotic transformation during soil column transport. The soil with naturally abundant mineral substances (e.g., iron and manganese oxides) indicated that E2 isomers tended to mineral-promoted racemization, oxidation, reduction, and radical coupling reactions. Some possible transformation products (e.g., SE239, E2378, and SE dimer476) were identified and proposed in soil samples. Compared to the single compound tests, the estimated 17β-estradiol equivalency (EEQ) values of E2 mixture were higher during SEs migration process.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
41
|
Qin G, Zhang Y, Zhang B, Zhang Y, Liu Y, Lin Q. Environmental estrogens and progestins disturb testis and brood pouch development with modifying transcriptomes in male-pregnancy lined seahorse Hippocampus erectus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136840. [PMID: 32032986 DOI: 10.1016/j.scitotenv.2020.136840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Exposure to environmental estrogens and progestins has contributed to adverse effects on the reproduction of many aquatic wildlife species. However, few reports have paid attention to fish species with specialized reproductive strategies, such as male-pregnancy seahorses. In this study, the potential effects on the behavior, gonad and brood pouch development, and transcriptomic profiles of lined seahorse Hippocampus erectus exposed to environmentally relevant concentrations of 17α-ethynyl estradiol (EE2, 5 ng/L, 50 ng/L, 10 ng/L, 100 ng/L) or progesterone (P4) for 60 days were examined. Both EE2 and P4 significantly inhibited male brood pouch development by disrupting the extracellular matrix and basement membrane pathways. In addition, both EE2 and P4 impaired the expression of genes associated with spermatogenesis in the testis, and even caused male feminization. We suggest that seahorses be regarded as a sensitive indicator for evaluating the potential effects of endocrine disrupting chemical (EDC) pollution on aquatic biotic communities.
Collapse
Affiliation(s)
- Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510275, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510275, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510275, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510275, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510275, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Xiong W, Yin C, Wang Y, Lin S, Deng Z, Liang R. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121616. [PMID: 31780289 DOI: 10.1016/j.jhazmat.2019.121616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17β-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17β-hydroxysteroid dehydrogenases (17β-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
43
|
Pratush A, Yang Q, Peng T, Huang T, Hu Z. Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5097-5107. [PMID: 31848950 DOI: 10.1007/s11356-019-06894-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Steroid estrogens are natural hormonal compounds produced by various animals and humans. Estrone (E1), estradiol (E2), and estriol (E3) are the most commonly known estrogens that are released into the environment along with human and animal excreta, which end up polluting water bodies. While these estrogens are usually biotransformed into their respective by-products by various microbial strains, E2 could also be transformed into E1 by 17β-hydroxysteroid dehydrogenases (17β-HSDs) under reducing environmental conditions. However, due to limited further biotransformation of E1, it accumulates to higher levels in water bodies compared to other natural estrogens in the aquatic environment. Given that E1 is one of the potential endocrine-disrupting compounds (EDCs), with several adverse effects on aquatic animals and consequently on the seafood industry, it is vital to remove E1 from the environment via improved steroid bioremediation. In the present study, we successfully isolated a potential E1-degrading microbial strain (named as BH2-1) from soil sediments collected from the Bai Hai mangrove region of the South China Sea. The strain BH2-1 has excellent E1-degrading potential and could degrade 89.5% of E1 after 6 days of incubation in a MSM-E1 medium containing 1% NaCl at pH 6. Besides, after 3 h and 6 h of extraction, two non-accumulating intermediate compounds [3-hydroxyandrosta-5,7,9(11)-trien-17-one and androsta-1,4,6-triene-3,17-dione (ATD)], respectively, were successfully identified using GC-MS analysis. These non-accumulating intermediate compounds have not previously been reported during E1 biodegradation and might be new intermediate metabolites. The identification of these new compounds also gives more insight into the mechanism of E1 metabolism and helps to establish a clear E1 biodegradation pathway, which further enriches our knowledge on the overall microbial steroid degradation pathway. Furthermore, whole-genome sequence analysis of strain BH2-1 revealed the presence of 46 genes that belong to 6 major steroid-degrading gene classes.
Collapse
Affiliation(s)
- Amit Pratush
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Yang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
44
|
Xiong W, Yin C, Peng W, Deng Z, Lin S, Liang R. Characterization of an 17β-estradiol-degrading bacterium Stenotrophomonas maltophilia SJTL3 tolerant to adverse environmental factors. Appl Microbiol Biotechnol 2019; 104:1291-1305. [PMID: 31834439 DOI: 10.1007/s00253-019-10281-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023]
Abstract
Bioremediation of environmental estrogens requires microorganisms with stable degradation efficiency and great stress tolerance in complex environments. In this work, Stenotrophomonas maltophilia SJTL3 isolated from wastewater was found to be able to degrade over 90% of 10 μg/mL 17β-estradiol (E2) in a week and the degradation dynamic was fitted by the first-order kinetic equations. Estrone was the first and major intermediate of E2 biodegradation. Strain SJTL3 exhibited strong tolerance to several adverse conditions like extreme pH (3.0-11.0), high osmolality (2%), co-existing heavy metals (6.25 μg/mL of Cu2+) and surfactants (5 CMC of Tween 80), and retained normal cell vitality and stable E2-degradaing efficiency. In solid soil, strain SJTL3 could remove nearly 100% of 1 μg/mL of E2 after the bacteria inoculation and 8-day culture. As to the contamination of 10 μg/mL E2 in soil, the biodegradation efficiency was about 90%. The further obtainment of the whole genome of strain SJTL3 and genome analysis revealed that this strain contained not only the potential genes responsible for estrogen degradation, but also the genes encoding proteins involved in stress tolerance. This work could promote the estrogen-biodegrading mechanism study and provide insights into the bioremediation application.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|