1
|
Cai Y, Li X, Yang P, Chen J, Lu J, Chovelon JM, Ji Y. Photochemical transformation of the uricosuric drug benzbromarone in aqueous solutions exposed to UV irradiation. WATER RESEARCH 2025; 281:123705. [PMID: 40305916 DOI: 10.1016/j.watres.2025.123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
As one of benzophenone-derived drugs, benzbromarone (BBM) has been widely used to reduce blood uric acid, treat gout, and gouty arthritis. Understanding the transformation and fate of BBM in natural and engineered systems is critical for its ecological risk assessment. In this study, we systematically investigated the photochemical behavior of BBM in aqueous solutions under laboratory UV254 irradiation. UV-vis spectra show that an aqueous solution of BBM is capable of absorbing UV photons at 200-400 nm. Spectroscopic titration indicates that BBM with a pKa value of 4.83 ± 0.17 is present mainly as the phenolate form under circumneutral conditions. BBM undergoes rapid direct photolysis when exposed to UV254 irradiation and the quantum yields were determined to be 0.0105 and 0.0196 mol E-1 for phenol and phenolate forms, respectively. The heavy atom effect of bromine and spin-orbit coupling effect of aromatic ketone make dibromophenol and carbonyl moieties the critical chromophores accounting for the high photoreactivity of BBM. Laser flash photolysis and electron paramagnetic resonance studies suggest that the photolysis of BBM is initiated by ultrafast photodebromination and Norrish I cleavage. The high yield of bromide determined by ion chromatograph highlights the importance of photodebromination. Due to the light screening effect of wastewater components, the photolysis of BBM in hospital wastewater is inhibited. Photo-induced modification of the dibromophenol moiety of BBM likely generates photoproducts showing toxicity to luminescent bacteria. Overall, our results reveal that photochemical reaction under UV irradiation plays an important role in the attenuation of BBM in engineered water.
Collapse
Affiliation(s)
- Yan Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoci Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizeng Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Yu P, Guo Z, Wang J, Guo Y, Wang T, Zhang L. Insight into the photodegradation of methylisothiazolinone and benzoisothiazolinone in aquatic environments. WATER RESEARCH 2024; 265:122301. [PMID: 39173356 DOI: 10.1016/j.watres.2024.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Methylisothiazolinone (MIT) and Benzisothiazolinone (BIT) are two widely used non-oxidizing biocides of isothiazolinones. Their production and usage volume have sharply increased since the pandemic of COVID-19, inevitably leading to more release into water environment. However, their photochemical behaviors in water environment are still unclear. Therefore, this study investigated photodegradation properties of MIT and BIT in natural water under simulated sunlight. The results demonstrated that direct photolysis was mainly responsible for their photodegradation which occurred through their excited singlet states rather than triplet states. The quantum yields of MIT and BIT photodegradation were 11 - 13.6 × 10-4 and 2.43 - 5.79 × 10-4, respectively. pH had almost no effect on the photodegradation of MIT, while the photodegradation of BIT was significantly promoted under alkaline condition due to abundance of BIT in its deprotonated form (BIT-N-). Cl-, NO3- and dissolved organic matter (DOM) in natural water inhibited the photodegradation of both MIT and BIT, with the light screening effect of DOM being the most significantly inhibitory factor. The addition of other isothiazolinones, which possibly coexisted with MIT and BIT in actual condition, slightly inhibited the photodegradation of MIT and BIT. The estimated half-life under natural sunlight at a 30°N latitude was estimated to be approximately 1.1 days. The photodegradation pathways of MIT and BIT are similar, primarily initiated from the ring-opening at the N-S bond, with Frontier electron densities (FED) calculations suggesting the likelihood of oxidation and ·OH addition reactions at the O, N, and S sites. While the photodegradation products exhibited significantly reduced acute toxicity compared to their parent compounds, they nonetheless posed substantial chronic toxicity. These insights are vital for assessing the ecological impacts of MIT and BIT in aquatic environments.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Tingting Wang
- RIKEN-Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Yu P, Guo Z, Wang T, Wang J, Guo Y, Zhang L. Elucidating the photodegradation mechanism of octylisothiazolinone and dichlorooctylisothiazolinone in surface water: An in-depth comprehensive analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174185. [PMID: 38909814 DOI: 10.1016/j.scitotenv.2024.174185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Octylisothiazolinone (OIT) and Dichlorooctylisothiazolinone (DCOIT), widely used antibacterial agents in coatings, have seen a sharp increase in use in response to the Coronavirus disease 2019 (Covid-19) pandemic, ultimately leading to their increase in the aquatic environment. However, their photodegradation process in surface water is still unclear. The purpose of this study is to investigate the photodegradation kinetics and mechanisms of OIT and DCOIT in natural water environments. Under simulated solar irradiation, they undergo direct photolysis in both natural freshwater and seawater mainly via their excited singlet states, while no self-sensitization photolysis was observed. The direct photolysis rate constants of OIT and DCOIT were 1.19 ± 0.07 and 0.57 ± 0.03 h-1, respectively. In addition, dissolved organic matter (DOM), NO3- and Cl- in natural waters did not contribute significantly to the photodegradation, and the light screening effect of DOM was identified as the main inhibiting factor. The photodegradation half-life of OIT was estimated to be 0.66 to 1.69 days, while the half-life of DCOIT was as high as 20.9 days during winter in surface water at 30°N latitude. Ring opening of the N-S bond and covalent bond breaking between CN are the main pathways for the photodegradation of OIT and DCOIT, which is verified by density-functional theory calculations. Ecological Structure Activity Relationships (ECOSAR) results indicate that OIT and DCOIT have "Very Toxic" biological toxicity, and the acute toxicity of their products is significantly reduced. It is noteworthy that the toxicity of the products of DCOIT is generally higher than that of OIT, and the chronic toxicity of most of the products is still above the "Toxic" level. Therefore, an in-depth understanding of the photodegradation mechanisms of OIT and DCOIT in aqueous environments is crucial for accurately assessing their ecological risks in natural water environments.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Wang L, Li X, Chen J, Lu J, Chovelon JM, Zhang C, Ji Y. Ketoprofen products induced photosensitization of sulfonamide antibiotics: The cocktail effects of pharmaceutical mixtures on their photodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123458. [PMID: 38290656 DOI: 10.1016/j.envpol.2024.123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Indirect photolysis induced by naturally occurring sensitizers constitutes an important pathway accounting for the transformation and fate of many recalcitrant micropollutants in sunlit surface waters. However, the photochemical transformation of micropollutants by photosensitizing pharmaceuticals has been less investigated. In this study, we demonstrated that the non-steroidal anti-inflammatory drug ketoprofen (KTF) and its photoproducts, 3-acetylbenzophenone (AcBP) and 3-ethylbenzophenone (EtBP), could sensitize the photodegradation of coexisting sulfonamide antibiotics, e.g., sulfamethoxazole (SMX), under artificial 365 nm ultraviolet (UV) and sunlight irradiation. Key reactive species including triplet excited state and singlet oxygen (1O2) responsible for photosensitization were identified by laser flash photolysis (LFP) and electron paramagnetic resonance (EPR) techniques, respectively. High-resolution mass spectrometry (HRMS) and structure-related reactivity analyses revealed that the sensitized photolysis of SMX occurred mainly through single electron transfer. The rate constants of sulfonamides sensitized by AcBP photolysis followed the order of sulfisoxazole (SIX)>sulfathiazole (STZ)>SMX>sulfamethizole (SMT). Exposure to sunlight also enhanced the photolysis of SMX in the presence of KTF or AcBP, and water matrix had limited impact on such process. Overall, our results reveal the feasibility and mechanistic aspects of photosensitization of coexisting contaminants by pharmaceuticals (or their photoproducts) and provide new insights into the cocktail effects of pharmaceutical mixtures on their photochemical behaviors in aqueous environment.
Collapse
Affiliation(s)
- Lixiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoci Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | | | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Liu J, Ge S, Shao P, Wang J, Liu Y, Wei W, He C, Zhang L. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China. CHEMOSPHERE 2023; 339:139644. [PMID: 37495050 DOI: 10.1016/j.chemosphere.2023.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The occurrence and removal rate of 52 typical pharmaceuticals and personal care products (PPCPs) were investigated in a wastewater treatment plant in Beijing, China. Thirty-three PPCPs were found in the influent, with caffeine (CF, 11387.0 ng L-1) being the most abundant, followed by N,N-diethyl-meta-toluamide (DEET, 9568.4 ng L-1), metoprolol (MTP, 930.2 ng L-1), and diclofenac (DF, 710.3 ng L-1). After treatment processes, the cumulative concentration of PPCPs decreased from 2.54 × 104 ng L-1 to 1.44 × 103 ng L-1, with the overall removal efficiency (RE) of 94.3%. Different treatment processes showed varying contributions in removing PPCPs. PPCPs were efficiently removed in sedimentation, anoxic, and ultraviolet units. For individual compounds, a great variation in RE (52.1-100%) was observed. Twenty-two PPCPs were removed by more than 90%. The highly detected PPCPs in the influent were almost completely removed. Aerated grit chamber removed nearly 50% of fluoroquinolone (FQs) and more than 60% of sulfonamides. Most PPCPs showed low or negative removals during anaerobic treatment, except for CF which was eliminated by 64.9%. Anoxic treatment demonstrated positive removals for most PPCPs, with the exceptions of DF, MTP, bisoprolol, carbamazepine (CBZ), and sibutramine. DEET and bezafibrate were efficiently removed during the secondary sedimentation. Denitrification biological filter and membrane filtration also showed positive effect on most PPCPs removals. The remaining compounds were oxidized by 16-100% in ozonation. DF, sulpiride, ofloxacin (OFL), trimethoprim, and phenolphthalein were not amenable to ultraviolet. After the treatment, the residue OFL, CBZ, and CF in receiving water were identified to pose high risk to aquatic organisms. Considering the complex mixtures emitted into the environment, therapeutic groups psychotropics, stimulant, and FQs were classified as high risk. These findings provide valuable insights into adopting appropriate measures for more efficient PPCPs removals, and emphasize the importance of continued monitoring specific PPCPs and mixtures thereof to safeguard the ecosystem.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Simin Ge
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Jianfeng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yanju Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Wei Wei
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Can He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
6
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Guo Z, Kodikara D, Albi LS, Hatano Y, Chen G, Yoshimura C, Wang J. Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes. WATER RESEARCH 2023; 231:118236. [PMID: 36682233 DOI: 10.1016/j.watres.2022.118236] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/17/2023]
Abstract
Photochemical reactions widely occur in the aquatic environment and play fundamental roles in aquatic ecosystems. In particular, solar-induced photodegradation is efficient for many organic micropollutants (OMPs), especially those that cannot undergo hydrolysis or biodegradation, and thus can mitigate chemical pollution. Recent reports indicate that photodegradation may play a more important role than biodegradation in many OMP transformations in the aquatic environment. Photodegradation can be influenced by the water matrix such as pH, inorganic ions, and dissolved organic matter (DOM). The effect of the water matrix such as DOM on photodegradation is complex, and new insights concerning the disparate effects of DOM have recently been reported. In addition, the photodegradation process is also influenced by physical factors such as latitude, water depth, and temporal variations in sunlight as these factors determine the light conditions. However, it remains challenging to gain an overview of the importance of photodegradation in the aquatic environment because the reactions involved are diverse and complex. Therefore, this review provides a concise summary of the importance of photodegradation and the major processes related to the photodegradation of OMPs, with particular attention given to recent progress on the major reactions of DOM. In addition, major knowledge gaps in this field of environmental photochemistry are highlighted.
Collapse
Affiliation(s)
- Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Luthfia Shofi Albi
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Guo Chen
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
8
|
Chen X, Yao J, Dong H, Hong M, Gao N, Zhang Z, Jiang W. Enhanced bezafibrate degradation and power generation via the simultaneous PMS activation in visible light photocatalytic fuel cell. WATER RESEARCH 2021; 207:117800. [PMID: 34741902 DOI: 10.1016/j.watres.2021.117800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A collaborative system including peroxymonosulfate (PMS) activation in a photocatalytic fuel cell (PFC) with an BiOI/TiO2 nanotube arrays p-n type heterojunction as photoanode under visible light (PFC(BiOI/TNA)/PMS/vis system) was established. Xenon lamp was used as the light source of visible light. A 4.6 times higher pseudo-first-order bezafibrate (BZF) degradation rate constant was achieved in this system compared with the single PFC(BiOI/TNA)/vis system. The radical quenching experiments revealed that the contribution of reactive oxidative species (ROS) followed the order of 1O2 ≈ h+ >> •OH > SO4•- >>O2•-. The EPR tests demonstrated that PMS addition enlarged the formation of 1O2, •OH and SO4•-, but suppressed O2•- yield. Interestingly, 1O2 was further proved to dominantly originated from the priority reaction between positive photoinduced holes (h+) and negatively charged PMS. Besides, N2-purging tests and density functional theory calculation indicated that PMS probably reacted with residual photoinduced electron (e-) on the more negative conduction band (CB) of BiOI to form •OH and SO4•-, but competed with dissolved oxygen. Other e- transferred to the less negative CB of TNA through p-n junction will efficiently move to cathode through the external circuit. The greatly promoted power generation of PFC system was observed after PMS addition due to extra h+ consumption and efficient e- separation and transfer. Besides, three possible pathways for BZF degradation were proposed including hydroxylation, fibrate chain substituent and amino bond fracture. This study can provide new insights into the mechanisms of PMS assisted photocatalysis and accompanying energy recovery.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Hongsen Dong
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingjian Hong
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Naiyun Gao
- State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenchao Jiang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
9
|
Zhou Y, Wu Y, Lei Y, Pan Y, Cheng S, Ouyang G, Yang X. Redox-Active Moieties in Dissolved Organic Matter Accelerate the Degradation of Nitroimidazoles in SO 4•--Based Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14844-14853. [PMID: 34674525 DOI: 10.1021/acs.est.1c04238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of dissolved organic matter (DOM) is known to inhibit the degradation of trace organic contaminants (TrOCs) in SO4•--based advanced oxidation processes (AOPs) due to filtering of the photochemically active light and radical scavenging effects. This study revealed an unexpected contribution for DOM in the degradation of nitroimidazoles (NZs) in the UV/persulfate AOP. The apparent second-order rate constants of NZs with SO4•- increased by 2.05 to 4.77 times in the presence of different DOMs. The increments were linearly related to the total electron capacity of DOM. Quinone and polyphenol moieties were found to play a dominant role. The reactive species generated from SO4•-'s oxidation of DOM, including semiquinone radical (SQ•-) and superoxide (O2•-), were found to react with NZs via Michael addition and O2•- addition. The second-order rate constants of tinidazole with SQ•- is determined to be (5.69 ± 0.59) × 106 M-1 s-1 by laser flash photolysis. Reactive species potentially generated from DOM may be considered in designing processes for the abatement of different types of TrOCs.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
- Macau Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Ping S, Lin W, Liu A, Gao Z, Lin H, Ren Y. Ultraviolet photolysis of four typical cardiovascular drugs: mechanisms, influencing factors, degradation pathways, and toxicity trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60663-60675. [PMID: 34164790 DOI: 10.1007/s11356-021-15000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The cardiovascular drugs (CDDs), such as metoprolol (MET), atenolol (ATE), bezafibrate (BZB), and atorvastatin (ATO), have been frequently detected in the water environment. They can cause potential threats to the ecological environment and human health due to their "pseudo-persistence" effect. In this study, the photolysis kinetics, degradation mechanisms, by-products, influencing factors, and acute toxicity of these four typical CDDs under polychromatic ultraviolet irradiation (200-400 nm) were investigated. The results showed that the photolysis of ATE, BZB, MET, and ATO all followed pseudo-first-order kinetics, and their average photon quantum yields of the wavelength studied were 0.14×10-2, 0.33×10-3, 0.78×10-4, and 0.24×10-4 mol einstein-1, respectively. Singlet oxygen (1O2), hydroxyl radical (·OH), and the triplet-excited state of the cardiovascular drug (3CDD*) were all involved in the photolysis while 1O2 was the dominator. The effects of NO3-, Cl-, HCO3-, and humic acid (HA) on the photolysis were the combination of light-shielding, quenching, and excitation of reactive species. Seven, four, four, and nine photolysis products of ATO, BZB, ATE, and MET were identified, respectively, and their possible degradation pathways were proposed. The acute toxicity of ATE was basically unchanged during photolysis; however, ATO, BZB, and MET toxicity all increased due to the generation of ketonization and hydroxylation products.
Collapse
Affiliation(s)
- Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Anchen Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Zhihan Gao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Ledezma-Espinoza A, Challis JK, Roa-Gutierrez F, Sánchez-Kopper A, Castellón E, Wong CS. Photolysis of the nonsteroidal anti-inflammatory drug sulindac: elucidation of kinetic behaviour and photodegradation pathways in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1405-1417. [PMID: 34553727 DOI: 10.1039/d1em00167a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-steroidal anti-inflammatory drugs are recognized widely as emerging contaminants. Sulindac has received additional attention as a prodrug in cancer treatment and because of its detection in drinking water and wastewaters. Nevertheless, there is limited knowledge about its kinetic behaviour and fate in the aquatic environment. In this work, the direct photolysis of sulindac, in which photochemical reactions were monitored and phototransformation products identified, was investigated under prolonged periods using UV-A and UV-B radiation and pH conditions (2 and 7) to evaluate the effect of the protonation state and the efficiency of the photolytic process. A novel kinetic mechanism has been proposed in which sulindac exhibits a consecutive reaction pathway, with pseudo-first order kinetics for rapid and reversible Z to E isomerization. Once photoequilibrium was reached, second-order degradation of the isomers in the presence of the new photodegradation products was observed. Photochemical transformation was faster under UV-B irradiation and lower pH, which suggests greater persistence of sulindac at more relevant environmental conditions of UV-A and pH 7. Two novel and major byproducts were identified, corresponding to the oxidative cleavage of the alkene exo to the indene system. The degradation pathway is mainly photoinduced, enhanced by acidic conditions and presumes the double bond as the most reactive site for the parent compound. This research demonstrates an approach for determining kinetics of compounds under challenging conditions, including, absorption from multiple electronic transitions, photoinduced products with unknown extinction coefficients, concentration dependence, photoinduced sensitizing intermediates, and speciation effects. Our work greatly improves our understanding of the degradation process of sulindac and will contribute to exposure assessments and treatment methodologies for this compound in impacted waters.
Collapse
Affiliation(s)
- Aura Ledezma-Espinoza
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Floria Roa-Gutierrez
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
| | - Andrés Sánchez-Kopper
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
| | - Erick Castellón
- School of Chemistry, Materials Science and Engineering Research Center (CICIMA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Charles S Wong
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| |
Collapse
|
12
|
Zhang H, Zheng Y, Wang XC, Wang Y, Dzakpasu M. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113041. [PMID: 34126535 DOI: 10.1016/j.jenvman.2021.113041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is viewed as one of the most chemically active organic substances on earth. It plays vital roles in the fate, bioavailability and toxicity of aquatic exogenous chemical species (e.g., heavy metals, organic pollutants, and nanomaterials). The characteristics of DOM such low concentrations, salt interference and complexity in aquatic environments and limitations of pretreatment for sample preparation and application of characterization techniques severely limit understanding of its nature and environmental roles. This review provides a characterization continuum of aquatic DOM, and demonstrate its biogeochemical implications, enabling in-depth insight into its nature and environmental roles. A synthesis of the effective DOM pretreatment strategies, comprising extraction and fractionation methods, and characterization techniques is presented. Additionally, the biogeochemical dynamics of aquatic DOM and its environmental implications are discussed. The findings indicate the collection of representative DOM samples from water as the first and critical step for characterizing its properties, dynamics, and environmental implications. However, various pretreatment procedures may alter DOM composition and structure, producing highly variable recoveries and even influencing its subsequent characterization. Therefore, complimentary use of various characterization techniques is highly recommended to obtain as much information on DOM as possible, as each characterization technique exhibits various advantages and limitations. Moreover, DOM could markedly change the physical and chemical properties of exogenous chemical species, influencing their transformation and mobility, and finally altering their potential bioavailability and toxicity. Several research gaps to be addressed include the impact of pretreatment on the composition and structure of aquatic DOM, molecular-level structural elucidation for DOM, and assessment of the effects of DOM dynamics on the fate, bioavailability and toxicity of exogenous chemical species.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yongkun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
13
|
Cheng F, He J, Li C, Lu Y, Zhang YN, Qu J. Photo-induced degradation and toxicity change of decabromobiphenyl ethers (BDE-209) in water: Effects of dissolved organic matter and halide ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125842. [PMID: 33866292 DOI: 10.1016/j.jhazmat.2021.125842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BDE-209 is a widely used brominated flame retardant that is ubiquitous in the aquatic environment, especially in marine water. However, photodegradation of BDE-209 in seawater is still not fully understood. In this work, the photodegradation kinetics of BDE-209 in water was studied and the effects of seawater dissolved organic matter (S-DOM) and halide ions (Cl-, Br-) were evaluated. S-DOM inhibited the degradation of BDE-209 through dynamic quenching and light shielding effect. However, with the coexistence of S-DOM, Cl- and Br-, the photodegradation of BDE-209 was significantly promoted. The promotional effect is attributed to the generation of excited triplet state S-DOM, singlet oxygen, and reactive halogen radicals. The results of density functional theory calculation showed that •Cl addition reaction on C-Br sites of BDE-209 is the main reaction pathway of BDE-209 with chlorine radical, which leads to the generation of mixed Cl/Br substituted intermediates. The acute toxicity and estrogenic effects of BDE-209 solution were enhanced during simulated sunlight irradiation. These results indicate that the environmental factors in seawater play important roles in the photodegradation of BDE-209, and contribute to the potential ecological risks of PBDEs in the marine environment.
Collapse
Affiliation(s)
- Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiale He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
14
|
Zhou Y, Cheng F, He D, Zhang YN, Qu J, Yang X, Chen J, Peijnenburg WJGM. Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter. WATER RESEARCH 2021; 192:116857. [PMID: 33517044 DOI: 10.1016/j.watres.2021.116857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is a ubiquitous component in effluents, DOM discharged with an effluent can affect the composition and properties of natural DOM in the receiving waters. As the photophysical and photochemical properties of effluent DOM can be changed by wastewater treatment processes, the effect of UV/chlorine treatment on the photophysical and photochemical properties of DOM was investigated using Suwannee River fulvic acid (SRFA) and Suwannee River natural organic matter (SRNOM) as representatives. Results showed that the absorbance of the two DOM was significantly decreased. The evolution trends of three representative photophysical parameters upon increase of chlorine dosages were observed. Also, a decrease in DOM aromaticity, molecular weight and electron-donating capacity was observed upon increasing chlorine dosage. Quantum yields of excited triplet state of DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radicals (·OH) first decreases and then increased in the UV/chlorine systems upon increasing chlorine dosages due to the different reaction pathways of the two DOM. Moreover, 3DOM* can not only be regarded as a "controller" of other reactive intermediates, but also effectively promote the photodegradation of bezafibrate, which is classified as a persistent organic contaminant. This study gives deep insights into effects of UV/chlorine on the photophysical and photochemical properties of DOM, and is helpful for understanding the dynamic roles of DOM in the photodegradation of micropollutants.
Collapse
Affiliation(s)
- Yangjian Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
15
|
Guo Z, Wang J, Chen X, Cui F, Wang T, Zhou C, Song G, Zhang S, Chen J. Photochemistry of dissolved organic matter extracted from coastal seawater: Excited triplet-states and contents of phenolic moieties. WATER RESEARCH 2021; 188:116568. [PMID: 33137523 DOI: 10.1016/j.watres.2020.116568] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Coastal seawater constitutes an important ecosystem receiving inputs of organic micropollutants (OMPs) such as sulfa antibiotics from land-based sources or mariculture activities. It is necessary to investigate photodegradation of OMPs in coastal seawaters for assessing their environmental fate and risks. However, effects of coastal seawater dissolved organic matter (S-DOM) on OMPs photodegradation are largely unknown, given that chemical compositions of S-DOM are different from those of freshwater DOM. Herein, photochemical characteristics of S-DOM extracted from Dalian coastal seawaters were investigated by simulating photochemical experiment adopting sulfachloropyridazine as a case. Results show that S-DOM accelerates the photodegradation mainly through excited triplet-state DOM (3DOM*) with an apparent rate constant (4.43 × 108 M-1 s-1) ten folds of that of freshwater DOM, which is mainly due to much lower phenol contents detected in the S-DOM (0.022 mg-Gallic acid mg-C-1). The S-DOM impacted by mariculture can photogenerate more high-energy 3DOM* than those less impacted by mariculture, further contributing to the high 3DOM* reactivity. The study shows that to accurately predict photolytic persistence of OMPs in field water bodies, it is of significance to determine the second-order reaction rate constants between 3DOM* and target OMPs using DOM extracted from relevant water bodies.
Collapse
Affiliation(s)
- Zhongyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feifei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tingting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Guobao Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
16
|
Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, Lam SS, Juan JC. Conventional and emerging technologies for removal of antibiotics from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122961. [PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Collapse
Affiliation(s)
- Bao Lee Phoon
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chong Cheen Ong
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Science, Monash University, Sunway Campus, Jalan Lagoon Selatan, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
17
|
Liu B, Zhang SG, Chang CC. Emerging pollutants-Part II: Treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1603-1617. [PMID: 32706436 DOI: 10.1002/wer.1407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Emerging pollutants (EPs) refer to a class of pollutants, which are emerging in the environment or recently attracted attention. EPs mainly include pharmaceutical and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and antibiotic resistance genes (ARGs). EPs have potential threats to human health and ecological environment. In recent years, the continuous detections of EPs in surface and ground water have brought huge challenges to water treatment and also made the treatment of EPs become an international research hotspot. This paper summarizes some research results on EPs treatment published in 2019. This paper may be helpful to understand the current situations and development trends of EP treatment technologies.
Collapse
Affiliation(s)
- Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, China
| | - Shen-Gen Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, District of Columbia
| |
Collapse
|
18
|
Li T, Huang Y, Wei G, Zhang YN, Zhao Y, Crittenden JC, Li C. Quantitative structure-activity relationship models for predicting singlet oxygen reaction rate constants of dissociating organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139498. [PMID: 32485452 DOI: 10.1016/j.scitotenv.2020.139498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
As singlet oxygen (1O2) is ubiquitous in the environment, 1O2-involved oxidation may play an important role in the transformation and fate of organic pollutants. Accordingly, the reaction rate constants (k1O2) of organic compounds with 1O2 are important to determine the environmental fate and persistence assessment of organic pollutants. However, currently there are limited k1O2 data available, especially for organic chemicals with different charged (deprotonated/protonated) forms. Herein three quantitative structure-activity relationship (QSAR) models (one comprehensive model and two models for neutral and deprotonated molecules) were created for predicting aqueous k1O2 values for diversely dissociating molecules. The models include larger datasets (180 chemicals) and have wider applicability domain than previous ones. Molecular structural characteristics (only half-wave potential is present in both models) determining the 1O2 reaction rate of neutral and deprotonated molecules vary greatly. The comparison results of predicting k1O2 values of organic compounds at certain pH conditions show that the combination of the QSAR models for neutral and deprotonated molecules has advantages over the comprehensive QSAR model. This work is the first study to predict k1O2 for a wide variety of neutral and deprotonated molecules and provides an important tool for assessing the fate of organic pollutants in aquatic environments.
Collapse
Affiliation(s)
- Tiantian Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Gaoliang Wei
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
19
|
Zhang P, Shao Y, Xu X, Huang P, Sun H. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137913. [PMID: 32251880 DOI: 10.1016/j.scitotenv.2020.137913] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) strongly influences the photodegradation of organic pollutants, varying depending on the structure of DOM. With the wide application of biochar, increasing amounts of DOM is released from biochar to the environment, which has different structural characteristics compared to natural DOM. In this study, DOM was derived from maize straw (MS) and pig manure (PM) and biochars by pyrolyzing MS and PM at 300 °C and 500 °C and the optical characteristics of DOM before and after phototransformation were explored via ultraviolet-visible spectroscopy and excitation-emission matrix fluorescence. Photodegradation of an insecticide, imidacloprid (IMI) in the presence of DOM was examined. The results showed that DOM derived from biochar obtained by pyrolyzing MS and PM mainly contained two identified fluorescent components and high pyrolysis temperature (500 °C) was associated with low molecular weight, small light-screening effects and great aromaticity of the DOM. After exposure to UV light, the aromaticity and molecular weight of the DOM declined due to phototransformation. Significant enhancement was observed in IMI photodegradation in the presence of biochar-derived DOM, and the enhancement was the greatest with DOM derived from pig manure biochar pyrolyzed at 500 °C. In addition to the light shielding effect, the 1O2 generated from DOM played an important role in the phototransformation of IMI and DOM. The loss of the nitro group and oxidation at the imidazolidine ring were the main photodegradation pathways for IMI. This study expands our understanding of the fate of biochar-derived DOM and its effects on the fate of coexisting organic pollutants.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yifei Shao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xuejing Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
20
|
Zhao J, Zhou Y, Li C, Xie Q, Chen J, Chen G, Peijnenburg WJGM, Zhang YN, Qu J. Development of a quantitative structure-activity relationship model for mechanistic interpretation and quantum yield prediction of singlet oxygen generation from dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136450. [PMID: 31931195 DOI: 10.1016/j.scitotenv.2019.136450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Singlet oxygen (1O2) is capable of degrading organic contaminants and inducing cell damage and inactivation of viruses. It is mainly generated through the interaction of dissolved oxygen with excited triplet states of dissolved organic matter (DOM) in natural waters. The present study aims at revealing the underlying mechanism of 1O2 generation and providing a potential tool for predicting the quantum yield of 1O2 (Φ1O2) generation from DOM by constructing a quantitative structure-activity relationship (QSAR) model. The determined Φ1O2 values for the selected DOM-analogs range from (0.54 ± 0.23) × 10-2 to (62.03 ± 2.97) × 10-2. A QSAR model was constructed and was proved to have satisfactory goodness-of-fit and robustness. The QSAR model was successfully used to predict the Φ1O2 of Suwannee River fulvic acid. Mechanistic interpretation of the descriptors in the model showed that hydrophobicity, molecular complexity and the presence of carbonyl groups in DOM play crucial roles in the generation of 1O2 from DOM. The presence of other heteroatoms besides O, such as N and S, also affects the generation of 1O2. The results of this study provide valuable insights into the generation of 1O2 from DOM in sunlit natural waters.
Collapse
Affiliation(s)
- Jianchen Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yangjian Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangchao Chen
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
21
|
Liu H, Qu J, Zhang T, Ren M, Zhang Z, Cheng F, He D, Zhang YN. Insights into degradation pathways and toxicity changes during electro-catalytic degradation of tetracycline hydrochloride. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113702. [PMID: 31818626 DOI: 10.1016/j.envpol.2019.113702] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The removal of antibiotics has attracted much attention due to their extremely high adverse impacts on the environment. However, the potential risks of degradation intermediates are seldom reported. In this work, the influence of different factors on the electro-catalytic degradation efficiency of tetracycline hydrochloride (TCH) by the prepared carbon nanotubes/agarose/indium tin oxide (CNTs/AG/ITO) electrode was investigated. Under optimal conditions (10 wt% CNTs dosage, pH = 7), the maximum degradation efficiency for TCH (10 mg L-1) reached up to 96% within 30 min treatment with 4 V potential. Superoxide anions (•O2-) played an important role in the electro-catalytic degradation. Totally 10 degradation intermediates were identified using HPLC-MS/MS, and the degradation pathway was proposed. Toxicities of the parent antibiotic and the identified intermediates were calculated using the ECOSAR (Ecological Structure Activity Relationship) program in EPISuite, and results showed that more toxic intermediates were generated. The maximal chronic toxicity for green algae of the intermediate increased 1439.92 times. Furthermore, antimicrobial activity was further verified by disk agar biocidal tests with Escherichia coli ATCC25922 and higher biotoxicity intermediates compared with parent compounds were confirmed to be formed. Therefore, more attention should be paid on the potential risk of degradation intermediates in the treatment of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Haiyang Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Miao Ren
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Zhaocheng Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China.
| |
Collapse
|