1
|
Dissanayaka DDS, Gunawickrama SHNP, Dharmapriya TN, Gunawickrama KBS. Effects of acetaminophen exposure on behavior and erythrocyte nuclear morphology of juvenile Oreochromis niloticus. Drug Chem Toxicol 2024; 47:817-826. [PMID: 38086756 DOI: 10.1080/01480545.2023.2291983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2024]
Abstract
The occurrence of pharmaceuticals in the environment can have undesirable effects on nontarget animals, including fish. The present experiment assessed the effects of subchronic exposure to waterborne acetaminophen (N-acetyl-p-aminophenol) (APAP) on selected behavioral aspects (physical avoidance response, ventilation rate, and food detection rate) and erythrocyte nuclear abnormality (ENA) in juvenile Oreochromis niloticus. Two groups of fish were exposed to APAP dissolved in aged municipal water (T1: 2 mg/L and T2: 10 mg/L) for 8 weeks in three replicates (n = 7 fish per tank), alongside a control group (C) without APAP. APAP-exposed fish spent significantly (p < .05) longer time to detect food (T1: 32.6 ± 4.55 s and T2: 39.6 ± 4.66 s) compared to the control group (19.9 ± 2.46 s). Both APAP-exposed groups exhibited attenuated physical avoidance responses (76.7%, 68.7%, and 87.3% in T1, T2, and C, respectively) and a lower mean ventilation rate compared to the control group (194.5 ± 15.5, 179.1 ± 11.6, and 233.2 ± 19.0 per min in T1, T2, and C, respectively). The frequency occurrence of ENA types such as bi-nucleated, notched nuclei, lobed nuclei, and blebbed nuclei (except micronuclei) was significantly higher (p < .05) in APAP-exposed groups compared to the control, with more pronounced effects in the T2 group. The study concludes that APAP exposure prompts significant alterations in behavior and erythrocyte nuclear morphology, emphasizing the value of monitoring and regulating the entry of pharmaceuticals, including APAP, into aquatic environments to prevent unintended effects on non-target organisms like Oreochromis niloticus.
Collapse
Affiliation(s)
| | - S H N P Gunawickrama
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | | | - K B S Gunawickrama
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| |
Collapse
|
2
|
Chierichetti MA, Vazquez ND, Miglioranza KSB, Ramirez CL, Roman JM, Scenna LB, Lo Nostro FL. Persistent organic pollutants and chlorpyrifos in tissues of a histotrophic viviparous species, the Southern Eagle Ray Myliobatis goodei. MARINE POLLUTION BULLETIN 2024; 205:116573. [PMID: 38878415 DOI: 10.1016/j.marpolbul.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Elasmobranchs are good indicators of marine pollution as they accumulate pollutants from water and food, and occupy different trophic levels. Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and chlorpyrifos were quantified in muscle, liver, gonads, gills, and brain in both sexes and maturity stages of the Southern Eagle Ray, Myliobatis goodei, captured in Argentine coastal waters. Moreover, possible histological alterations in the liver and gonads were analyzed. Pollutant concentrations were pervasive across all tissues, with PCBs > OCPs > chlorpyrifos. Elevated pollutant levels were notably found in the liver and gills. We identified thirty-six PCB congeners in tissues, with low-chlorine congeners prevailing. Among OCPs, ∑DDT and ∑endosulfan were predominant. Females exhibited higher pollutant levels in most tissues compared to males, except in the gonads, and adults generally displayed elevated pollutant levels. Histological analysis revealed the presence of atretic follicles and melanomacrophages (MM). Continuous monitoring of pollutant levels, alongside their effects on physiological and ecological traits, is imperative for effective management and conservation efforts.
Collapse
Affiliation(s)
- Melisa A Chierichetti
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina.
| | - Nicolas D Vazquez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina; Laboratorio de Biología de Cnidarios, UNMdP-IIMyC, Mar del Plata, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Química Analítica y Modelado Molecular (QUIAMM), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), UMMdP-CONICET, Mar del Plata, Argentina
| | - Jorge M Roman
- Laboratorio de Biología de peces, UNMdP-IIMyC, Mar del Plata, Argentina
| | - Lorena B Scenna
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina
| | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Depto. de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos aires (UBA) & Instituto de Biodiversidad y Biología Experimental y Aplicada, UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Correia D, Bellot M, Prats E, Gómez-Canela C, Moro H, Raldúa D, Domingues I, Oliveira M, Faria M. Impact of environmentally relevant concentrations of fluoxetine on zebrafish larvae: From gene to behavior. CHEMOSPHERE 2023; 345:140468. [PMID: 37852383 DOI: 10.1016/j.chemosphere.2023.140468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Fluoxetine is widely prescribed for the treatment of depressive states, acting at the level of the central nervous system, consequently affecting non-target organisms. This study aimed to investigate the influence of environmentally relevant fluoxetine concentrations (1-1000 ng/L) on Danio rerio development, assessing both embryotoxicity and behavior, antioxidant defense, gene expression and neurotransmitter levels at larval stage. Exposure to fluoxetine during early development was found to be able to accelerate embryo hatching in embryos exposed to 1, 10 and 100 ng/L, reduce larval size in 1000 ng/L, and increase heart rate in 10, 100 and 1000 ng/L exposed larvae. Behavioral impairments (decreased startle response and increased larvae locomotor activity) were associated with effects on monoaminergic systems, detected through the downregulation of key genes (vmat2, mao, tph1a and th2). In addition, altered levels of neurochemicals belonging to the serotonergic and dopaminergic systems (increased levels of tryptophan and norepinephrine) highlighted the sensitivity of early life stages of zebrafish to low concentrations of fluoxetine, inducing effects that may compromise larval survival. The obtained data support the necessity to test low concentrations of SSRIs in environmental risk assessment and the use of biomarkers at different levels of biological organization for a better understanding of modes of action.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Eva Prats
- Center for Research and Development, Spanish National Research Council (CSIC), Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Hugo Moro
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Melissa Faria
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain
| |
Collapse
|
4
|
Ferreira CSS, Venâncio C, Kille P, Oliveira M. Are early and young life stages of fish affected by paroxetine? A case study with Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165706. [PMID: 37499832 DOI: 10.1016/j.scitotenv.2023.165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Shaer DFE, Halim HIAE. The Possible Ameliorating Role of Fisetin on Hepatic Changes Induced by Fluoxetine in Adult Male Albino Rats: Histological, Immunohistochemical, and Biochemical Study. J Microsc Ultrastruct 2023; 11:161-171. [PMID: 38025186 PMCID: PMC10679833 DOI: 10.4103/jmau.jmau_84_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 02/09/2023] Open
Abstract
Background Fluoxetine (FLX) is one of the selective serotonin reuptake inhibitors, it is widely used to treat neuropsychiatric disorders including depression, but high doses can cause several adverse effects. Fisetin (FIS), a bioactive flavonoid presents in vegetables and fruits, has antioxidant, anti-inflammatory, and anticancer effects. Aim To evaluate the possible ameliorating effect of FIS on the hepatic alterations induced by FLX in adult male albino rats. Materials and Methods Our study was done, for 3-weeks, on 48 rats that were divided into four groups: Group I (control), Group II received FIS orally (100 mg/kg/day), Group III received FLX orally (10 mg/kg/day), and Group IV concomitantly received FLX and FIS at the same dose and manner of groups II and III. Blood and liver samples were obtained and prepared for histological, immunohistochemical, and biochemical studies. Results FLX group revealed disturbed liver architecture, hepatocytes with vacuolated cytoplasm, inflammatory cellular infiltration, blood extravasation, and congestion of blood vessels in addition to, a significant increase in the area percentage of caspase-3, inducible nitric oxide synthase and the number of glial fibrillary acidic protein-expressing cells as well as a significant decrease in the area percentage of periodic acid-Schiff stain. Moreover, FLX significantly increased aspartate-aminotransferase and alanine-aminotransferase levels in the serum. In addition, FLX increased malondialdehyde level and decreased superoxide dismutase, glutathione (GSH) peroxidase, and reduced GSH levels in liver tissue. The concomitant administration of FIS ameliorated these alterations. Conclusions Administration of FIS ameliorated the histological, immunohistochemical, and biochemical alterations induced by FLX in the liver of adult male albino rats.
Collapse
Affiliation(s)
- Dina Fouad El Shaer
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
6
|
Ferreira CSS, Soares SC, Kille P, Oliveira M. Identifying knowledge gaps in understanding the effects of selective serotonin reuptake inhibitors (SSRIs) on fish behaviour. CHEMOSPHERE 2023; 335:139124. [PMID: 37285976 DOI: 10.1016/j.chemosphere.2023.139124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants increasingly prescribed to treat patients with clinical depression. As a result of the significant negative impact of the COVID-19 pandemic on the population's mental health, its consumption is expected to increase even more. The high consumption of these substances leads to their environmental dissemination, with evidence of their ability to compromise molecular, biochemical, physiological, and behavioural endpoints in non-target organisms. This study aimed to provide a critical review of the current knowledge regarding the effects of SSRI antidepressants on fish ecologically relevant behaviours and personality-dependent traits. A literature review shows limited data concerning the impact of fish personality on their responses to contaminants and how such responses could be influenced by SSRIs. This lack of information may be attributable to a lack of widely adopted standardized protocols for evaluating behavioural responses in fish. The existing studies examining the effects of SSRIs across various biological levels overlook the intra-specific variations in behaviour and physiology associated with different personality patterns or coping styles. Consequently, some effects may remain undetected, such as variations in coping styles and the capacity to handle environmental stressors. This oversight could potentially result in long-term effects with ecological implications. Data support the need for more studies to understand the impact of SSRIs on personality-dependent traits and how they may impair fitness-related behaviours. Given the considerable cross-species similarity in the personality dimensions, the collected data may allow new insights into the correlation between personality and animal fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra C Soares
- William James Center for Research (WJRC), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
de Mendonça Francisco C, Pavanin LA, Morelli S, Bravo JVM, Pereira BB. Using native fish in eco-genotoxic assessment of heavy metal contamination pollution arising from nearby large Brazilian rivers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:74-85. [PMID: 36628475 DOI: 10.1080/15287394.2022.2164754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Worldwide water quality has declined progressively due to continuous pollution of aquatic resources by agrochemicals in particular heavy metals. Fish genotoxicity biomarkers are vital to identify and complement chemical parameters for determining environmental risk of adverse effects. Therefore, it was of interest to examine the eco-genotoxicity attributed to water pollution over different stream sections of Brazilian rivers by using Cichlasoma paranaense (Teleostei: Cichlidae), a neotropical freshwater cichlid fish, as a biological model. Chemical analysis of water and sediments collected from different Brazilian rivers sites demonstrated contamination by metals. Cichlasoma paranaense were collected at a reference location (a permanent water preservation area), maintained in the lab under standard conditions (controlled temperature, lighting, daily feeding, and constant aeration) and exposed to environmental samples of water and sediments. Subsequently, micronucleus (MN) and nuclear abnormalities (NA) frequencies were assessed in erythrocytes obtained from the caudal and gill regions. The highest concentrations of Cu were found in samples from river sites with forest fragmentation attributed to intensive agriculture practices. Similarly, exposure of fish to samples from agricultural areas induced significantly higher number of genotoxic effects. There was no marked difference between the tissues (tail and gill) regarding the observed frequencies of MN and NA. Thus C. paranaense fish served as a reliable model for detecting genotoxic effects, especially when water samples were collected near the discharge of agrochemicals. Evidence indicates that this method be considered for other global river sites which are also exposed to agrochemicals discharges containing Cu.
Collapse
Affiliation(s)
- Carine de Mendonça Francisco
- Institute of Biotechnology, Umuarama Campus, Avenida Pará, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Luiz Alfredo Pavanin
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Sandra Morelli
- Institute of Biotechnology, Umuarama Campus, Avenida Pará, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - João Vitor M Bravo
- Institute of Geography, Santa Mônica Campus, Avenida João Naves de Ávila, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Institute of Biotechnology, Umuarama Campus, Avenida Pará, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Institute of Geography, Santa Mônica Campus, Avenida João Naves de Ávila, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
9
|
Correia D, Domingues I, Faria M, Oliveira M. Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159486. [PMID: 36257440 DOI: 10.1016/j.scitotenv.2022.159486] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Fluoxetine is one of the most studied and detected selective serotonin reuptake inhibitors in the aquatic environment, found at concentrations ranging from ng/L to μg/L. Its presence in this environment can induce effects on aquatic organisms that may compromise their fitness. Several experimental studies have demonstrated that fluoxetine can induce neurotoxicity, genetic and biochemical changes, and cause behavioral dysfunction in a wide range of fish species. However, contradictory results can be found. There is thus the need for a comprehensive review of the current state of knowledge on the effects of fluoxetine on fish at different levels of biological organization, highlighting inclusive patterns and discussing the potential causes for the contradictory results, that can be found in the available literature. This review also aims to explore and identify the main gaps in knowledge and areas for future research. We conclude that environmentally relevant concentrations of fluoxetine (e.g., from 0.00345 μg/L) produced adverse effects and often this concentration range is not addressed in conventional environmental risk assessment strategies. Its environmental persistence and ionizable properties reinforce the need for standardized testing with representative aquatic models, targeting endpoints sensitive to the specific mode of action of fluoxetine, in order to assess and rank its actual environmental risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Diaz-Camal N, Cardoso-Vera JD, Islas-Flores H, Gómez-Oliván LM, Mejía-García A. Consumption and ocurrence of antidepressants (SSRIs) in pre- and post-COVID-19 pandemic, their environmental impact and innovative removal methods: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154656. [PMID: 35318057 DOI: 10.1016/j.scitotenv.2022.154656] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are pharmaceuticals whose consumption has increased significantly. They are prescribed as first-line treatment in mental disorders such as depression, obsessive-compulsive disorder, phobias, and anxiety; also, they are indicated as adjuvants in diseases such as fibromyalgia and bulimia nervosa. In addition to being linked to the illegal market to be consumed as recreational drugs. The relevance of this review lies in the fact that worldwide consumption has increased significantly during the COVID-19 pandemic, due to the depression and anxiety that originated in the population. As a consequence of this increase in consumption, concentrations of SSRIs in the environment have increased, and these have become a relevant issue for toxicologists due to the effects that they could generate in different organisms, both aquatic and terrestrial. For this reason, the objective of this article was to do a critical evaluation of the existing data on the characteristics and physicochemical properties of SSRIs, consumption data during the COVID-19 pandemic, its occurrence in the environment and the reports of toxic effects that have been generated in different organisms; we also conclude with an updated review of different methods that have been used for their removal. With this analysis, it can be concluded that, despite SSRIs are pharmaceutical products widely studied since their launching to the market, still currently under investigation to clarify their mechanisms of action to understand the different effects on the organisms, adverse reactions, as well as possible toxicological effects on non-target organisms. On the other hand, it has been proven that although it is already possible to eliminate a significant percentage of SSRIs in the laboratory, due to their physicochemical characteristics and their behavior in complex mixtures in the environment, they have not yet been eradicated, showing a persistence in the soil, subsoil and surface waters of the entire planet that may represent a future risk.
Collapse
Affiliation(s)
- Nidya Diaz-Camal
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
11
|
Colville C, Alcaraz AJ, Green D, Park B, Xia J, Soufan O, Hruṧka P, Potěšil D, Zdráhal Z, Crump D, Basu N, Hogan N, Hecker M. Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152747. [PMID: 35026279 DOI: 10.1016/j.scitotenv.2021.152747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 05/17/2023]
Abstract
Current ecotoxicity testing programs are impeded as they predominantly rely on slow and expensive animal tests measuring adverse outcomes. Therefore, new approach methodologies (NAMs) increasingly involve short-term mechanistic assays that employ molecular endpoints to predict adverse outcomes of regulatory relevance. This study aimed to elucidate the application of NAMs in adult fathead minnows using fluoxetine (FLX) as a model compound. Fish were exposed to three FLX concentrations (measured: 2.42, 10.7, and 56.7 μgL-1) and a control. After 96 h, molecular toxicity signatures were characterized using proteomics and transcriptomics analyses in livers and brains of a sub-set of fish. The remaining fish were sampled at 21 days and assessed for liver histopathology and morphometric measurements. Fecundity was monitored throughout the study. In the livers, 56.7 μgL-1 FLX caused enrichment of PPAR signaling in the proteome and fatty acid-related pathways in the transcriptome, potential upstream responses that led to lipid-type vacuolation of hepatocytes, observed via histopathology. Upregulated genes in the brain suggested alterations in serotonin-related signaling processes and reproductive behaviour, which may explain the observed significant decrease in fecundity. While the relationships between molecular responses and adverse outcomes remain complex, this research provided important insights into the mechanistic toxicity of FLX.
Collapse
Affiliation(s)
- Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Othman Soufan
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada; Computer Science Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Pavel Hruṧka
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic; RECETOX, Masaryk University, Brno 625 00, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
12
|
Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. Neurotoxicology 2022; 90:121-129. [PMID: 35304135 DOI: 10.1016/j.neuro.2022.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
Fluoxetine (FLX) exerts its therapeutic effect by inhibiting the presynaptic reuptake of the neurotransmitter serotonin. Nonetheless, at high concentrations of this drug, adverse effects occur in the brain of exposed organisms. Bearing this into account, the objective of this study was to evaluate the neurotoxic effects of the fluoxetine through the evaluation of behavior (Novel tank test), determination of oxidative stress, and determination of acetylcholinesterase (AChE) activity in adult zebrafish Danio rerio. For this purpose, Danio rerio adults were exposed to three environmentally relevant concentrations (5, 10, 16ngL-1) of FLX for 96h. Our results demonstrate fish presented a significant disruption in their behavior, as they remained long-lasting time frozen at the top of the tank. Since we observed a significant reduction of AChE activity in the brain of fish, we believe the above described anxiety-like state is the result of this enzyme impairment. Moreover, as FLX-exposed fish showed a significant increase in the levels of oxidative damage biomarkers, we suggest this AChE disruption is associated with the oxidative stress response fish exhibited. Based on our findings, we believe the environmentally relevant concentration of FLX alters the redox status of the brain, impairing this way the behavior of fish and making them more vulnerable to predation.
Collapse
|
13
|
Chronic Effects of Fluoxetine on Danio rerio: A Biochemical and Behavioral Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluoxetine is an antidepressant widely used to treat depressive and anxiety states. Due to its mode of action in the central nervous system (selective serotonin reuptake inhibitor (SSRI)), it becomes toxic to non-target organisms, leading to changes that are harmful to their survival. In this work, the effects of fluoxetine on juvenile zebrafish (Danio rerio) were evaluated, assessing biochemical (phase II biotransformation—glutathione S-transferase (GST), neurotransmission—acetylcholinesterase (ChE), energy metabolism—lactate dehydrogenase (LDH), and oxidative stress—glutathione peroxidase (GPx)) and behavior endpoints (swimming behavior, social behavior, and thigmotaxis) after 21 days exposure to 0 (control), 0.1, 1 and 10 µg/L. Biochemically, although chronic exposure did not induce significant effects on neurotransmission and energy metabolism, GPx activity was decreased after exposure to 10 µg/L of fluoxetine. At a behavioral level, exploratory and social behavior was not affected. However, changes in the swimming pattern of exposed fish were observed in light and dark periods (decreased locomotor activity). Overall, the data show that juvenile fish chronically exposed to fluoxetine may exhibit behavioral changes, affecting their ability to respond to environmental stressors and the interaction with other fish.
Collapse
|
14
|
Alcaraz AJG, Baraniuk S, Mikulášek K, Park B, Lane T, Burbridge C, Ewald J, Potěšil D, Xia J, Zdráhal Z, Schneider D, Crump D, Basu N, Hogan N, Brinkmann M, Hecker M. Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118667. [PMID: 34896397 DOI: 10.1016/j.envpol.2021.118667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Current approaches in chemical hazard assessment face significant challenges because they rely on live animal testing, which is time-consuming, expensive, and ethically questionable. These concerns serve as an impetus to develop new approach methodologies (NAMs) that do not rely on live animal tests. This study explored a molecular benchmark dose (BMD) approach using a 7-day embryo-larval fathead minnow (FHM) assay to derive transcriptomic points-of-departure (tPODs) to predict apical BMDs of fluoxetine (FLX), a highly prescribed and potent selective serotonin reuptake inhibitor frequently detected in surface waters. Fertilized FHM embryos were exposed to graded concentrations of FLX (confirmed at < LOD, 0.19, 0.74, 3.38, 10.2, 47.5 μg/L) for 32 days. Subsets of fish were subjected to omics and locomotor analyses at 7 days post-fertilization (dpf) and to histological and biometric measurements at 32 dpf. Enrichment analyses of transcriptomics and proteomics data revealed significant perturbations in gene sets associated with serotonergic and axonal functions. BMD analysis resulted in tPOD values of 0.56 μg/L (median of the 20 most sensitive gene-level BMDs), 5.0 μg/L (tenth percentile of all gene-level BMDs), 7.51 μg/L (mode of the first peak of all gene-level BMDs), and 5.66 μg/L (pathway-level BMD). These tPODs were protective of locomotor and reduced body weight effects (LOEC of 10.2 μg/L) observed in this study and were reflective of chronic apical BMDs of FLX reported in the literature. Furthermore, the distribution of gene-level BMDs followed a bimodal pattern, revealing disruption of sensitive neurotoxic pathways at low concentrations and metabolic pathway perturbations at higher concentrations. This is one of the first studies to derive protective tPODs for FLX using a short-term embryo assay at a life stage not considered to be a live animal under current legislations.
Collapse
Affiliation(s)
| | - Shaina Baraniuk
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Taylor Lane
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Environment and Geography, University of York, Heslington, YO10 5NG, United Kingdom
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 0W9, Canada
| | - Jessica Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X 3V9, Canada
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 0W9, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada.
| |
Collapse
|
15
|
Orozco-Hernández JM, Gómez-Oliván LM, Elizalde-Velázquez GA, Heredia-García G, Cardoso-Vera JD, Dublán-García O, Islas-Flores H, SanJuan-Reyes N, Galar-Martínez M. Effects of oxidative stress induced by environmental relevant concentrations of fluoxetine on the embryonic development on Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151048. [PMID: 34673069 DOI: 10.1016/j.scitotenv.2021.151048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Fluoxetine (FLX) is a psychoactive drug that acts as an antidepressant. FLX is one of the world's best-selling prescription antidepressants. FLX is widely used for the treatment of various psychiatric disorders. For these reasons, this drug may eventually end up in the aquatic environment via municipal, industrial, and hospital discharges. Even though the occurrence of FLX in aquatic environments has been reported as ubiquitous, the toxic effects that this drug may induce, especially at environmentally relevant concentrations, on essential biological processes of aquatic organisms require more attention. In the light of this information, this work aimed to investigate the influence that fluoxetine oxidative stress-induced got over the embryonic development of Danio rerio. For this purpose, D. rerio embryos (4 h post fertilization) were exposed to environmentally relevant concentrations (5, 10, 15, 20, 25, 30, 35, and 40 ng L-1) of fluoxetine, until 96 h post fecundation. Along the exposure, survival, alterations to embryonic development, and teratogenic effects were evaluated using a stereomicroscope. Furthermore, oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation, hydroperoxide, and carbonyl content) were evaluated at 72 and 96 h post fecundation. LC50, EC50m, and teratogenic index were 30 ng L-1, 16 ng L-1, and 1.9, respectively. The main teratogenic effects induced by fluoxetine were pericardial edema, hatching retardation, spine alterations and craniofacial malformations. Concerning oxidative stress, our integrated biomarkers (IBR) analysis demonstrated that as the concentration increased, oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, fluoxetine induces an important oxidative stress response on the embryos of D. rerio. Collectively, our results allow us to concluded that FLX is a dangerous drug in the early life stages of D. rerio due to its high teratogenic potential and that FLX-oxidative stress induced may be involved in this toxic process.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
16
|
Vaclavik J, Sehonova P, Blahova J, Medkova D, Postulkova E, Maly O, Charvatova M, Stastny K, Lenz J, Mares J, Franc A, Svobodova Z. Foodborne fluoxetine impacts the immune response in rainbow trout (Oncorhynchus mykkis). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103818. [PMID: 35074562 DOI: 10.1016/j.etap.2022.103818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to reveal the effects of foodborne fluoxetine on morphological and condition profile, hematological profile, biochemical and oxidative stress indices on juvenile rainbow trout. The study was performed according to OECD Guideline No. 215. Fluoxetine was incorporated into Biomar 921 pellets at a dose of 0.047 mg/kg (environmental concentration), 0.577 mg/kg and 6.7 mg/kg. There was statistically significant change in hematological profile, including an increasing trend in neutrophil/lymphocyte ratio and a decreasing trend in the number of lymphocytes. Measurements of oxidative stress indicated decreased activity of the detoxifying enzyme glutathione-S-transferase in the liver and kidney. However, the measurement of GR, GPx, CAT, SOD activity, and TBARS showed no changes. Histopathological examination revealed damage to the proximal tubules of caudal kidney in exposed groups. This study confirms that fluoxetine has a significant effect on immune response.
Collapse
Affiliation(s)
- Josef Vaclavik
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Pavla Sehonova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic.
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic; Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Czech Republic
| | - Eva Postulkova
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Czech Republic
| | - Ondrej Maly
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Czech Republic
| | - Michaela Charvatova
- Veterinary Research Institute, Department of Infectious Diseases and Preventive Medicine, Brno, Czech Republic
| | - Kamil Stastny
- Veterinary Research Institute, Department of Infectious Diseases and Preventive Medicine, Brno, Czech Republic
| | - Jiri Lenz
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic; Department of Pathology, Znojmo Hospital, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University in Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
17
|
Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022; 14:e1536. [PMID: 35023323 PMCID: PMC9286346 DOI: 10.1002/wsbm.1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022]
Abstract
The lateral hypothalamus is critical for the control of ingestive behavior and spontaneous physical activity (SPA), as lesion or stimulation of this region alters these behaviors. Evidence points to lateral hypothalamic orexin neurons as modulators of feeding and SPA. These neurons affect a broad range of systems, and project to multiple brain regions such as the dorsal raphe nucleus, which contains serotoninergic neurons (DRN) important to energy homeostasis. Physical activity is comprised of intentional exercise and SPA. These are opposite ends of a continuum of physical activity intensity and structure. Non‐goal‐oriented behaviors, such as fidgeting, standing, and ambulating, constitute SPA in humans, and reflect a propensity for activity separate from intentional activity, such as high‐intensity voluntary exercise. In animals, SPA is activity not influenced by rewards such as food or a running wheel. Spontaneous physical activity in humans and animals burns calories and could theoretically be manipulated pharmacologically to expend calories and protect against obesity. The DRN neurons receive orexin inputs, and project heavily onto cortical and subcortical areas involved in movement, feeding and energy expenditure (EE). This review discusses the function of hypothalamic orexin in energy‐homeostasis, the interaction with DRN serotonin neurons, and the role of this orexin‐serotonin axis in regulating food intake, SPA, and EE. In addition, we discuss possible brain areas involved in orexin–serotonin cross‐talk; the role of serotonin receptors, transporters and uptake‐inhibitors in the pathogenesis and treatment of obesity; animal models of obesity with impaired serotonin‐function; single‐nucleotide polymorphisms in the serotonin system and obesity; and future directions in the orexin–serotonin field. This article is categorized under:Metabolic Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Brianna Pomonis
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.,Geriatric Research Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Vinterstare J, Brönmark C, Nilsson PA, Langerhans RB, Berglund O, Örjes J, Brodin T, Fick J, Hulthén K. Antipredator phenotype in crucian carp altered by a psychoactive drug. Ecol Evol 2021; 11:9435-9446. [PMID: 34306633 PMCID: PMC8293787 DOI: 10.1002/ece3.7762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Predator-inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat. We examined short- and long-term effects of fluoxetine and predator exposure on behavior and morphology in crucian carp. Seventeen days of exposure to a high dose of fluoxetine (100 µg/L) resulted in a shyer phenotype, regardless of the presence/absence of a pike predator, but this effect disappeared after long-term exposure. Fluoxetine effects on morphological plasticity were context-dependent as a low dose (1 µg/L) only influenced crucian carp body shape in pike presence. A high dose of fluoxetine strongly influenced body shape regardless of predator treatment. Our results highlight that environmental pollution by pharmaceuticals could disrupt physiological regulation of ecologically important inducible defenses.
Collapse
Affiliation(s)
- Jerker Vinterstare
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - Christer Brönmark
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - P. Anders Nilsson
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - R. Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Olof Berglund
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - Jennie Örjes
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural Sciences (SLU) – UmeåUmeåSweden
| | - Jerker Fick
- Department of ChemistryUmeå UniversityUmeåSweden
| | - Kaj Hulthén
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| |
Collapse
|
19
|
Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, Yang Y. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125243. [PMID: 33524730 DOI: 10.1016/j.jhazmat.2021.125243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Monobutyl phthalate (MBP) can exist in biological organisms for a long time because of its excellent fat solubility, and it has been found to have certain toxic effects. In this study, the acute effects of MBP on endoplasmic reticulum (ER) stress and metabolism in the zebrafish liver were studied. After continuous exposure to MBP (5 and 10 mg / L) for 96 h, ER damage and the appearance of apoptotic bodies and autophagosomes were found in liver. This is because MBP stimulated the ire-xbp1 pathway of ER stress, thus leading to apoptosis and autophagy. Also, through analysis of metabolic enzymes and genes, it was found that the activated ire-xbp1 pathway could promote lipid synthesis and cause the accumulation of lipid droplets. The gene pparγ related to lipid storage affected the level of insulin, which can also further affect the glucose metabolism process, that is, glycolysis and aerobic respiration were inhibited. And the pentose phosphate pathway (PPP) was activated as a compensation mechanism to alleviate glycogen accumulation. The abnormal supply of energy and the death of excessive cells will eventually severely damage the zebrafish liver. This study will enrich the knowledge about the toxic effects of MBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
20
|
Chen H, Liang X, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124974. [PMID: 33450510 DOI: 10.1016/j.jhazmat.2020.124974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 μg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Repeated fluoxetine treatment induces transient and long-term astrocytic plasticity in the medial prefrontal cortex of normal adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110252. [PMID: 33484756 DOI: 10.1016/j.pnpbp.2021.110252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Fluoxetine (Flx)-induced neuronal plasticity plays an important role in the effective treatment of depression and mood disorders. It is less understood whether repeated Flx treatment induces astrocytic plasticity that outlasts the presence of the drug in the body. We showed previously that Flx-induced neuronal plasticity in the medial prefrontal cortex (mPFC) persisted up to 20 days after the treatment. In this study, adult rats were subjected to a 15-day repeated Flx treatment at a daily dose of 20 mg/kg body weight. Astrocytic metabolites and markers were assessed in the mPFC at day 1 (d1) and day 20 (d20) after the treatment. Significant transient reductions in the concentrations of astrocytic metabolites taurine and myo-inositol and the expressions of glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) were observed in the mPFC of Flx-treated rats at d1, which recovered to the control levels at d20. Further, Flx treatment resulted in long-lasting changes in Kir4.1 expression in the mPFC, which remained downregulated at d20. The expression of 5-HT1A receptor in the mPFC of Flx-treated rats was downregulated at d1 but became upregulated at d20. In summary, repeated Flx treatment induces both transient and long-term astrocytic plasticity in the mPFC of adult rats. The changes observed at d1 are consistent with disturbed water homeostasis and astrocytic de-maturation in the mPFC. The persistent changes in the expressions of Kir4.1 and 5-HT1A at d20, presumably of the astrocytic origin, might have contributed to the long-term neurotrophic effects of repeated Flx treatment in the mPFC.
Collapse
|
22
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
23
|
Zhu S, Wu G, Gu L, Sun Y, Zhang L, Huang Y, Lyu K, Yang Z. Antidepressant sertraline impairs the induced morphological defense of Ceriodaphnia cornuta in response to Chaoborus larvae kairomone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115092. [PMID: 32650302 DOI: 10.1016/j.envpol.2020.115092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Antidepressants discharged into natural waters are likely to become a new type of endocrine pollutant, which may impact the interspecific relationship in aquatic ecosystem. Induced defense of cladocerans plays an important role in maintaining the balance of interspecific relationships between cladocerans and higher trophic levels. Here we studied the effects of antidepressant sertraline, a selective serotonin reuptake inhibitor, on the induced defensive traits of Ceriodaphnia cornuta in response to invertebrate predator Chaoborus larvae kairomone, including morphological defense and life history traits. We also conducted the predation experiments to check the selection rate of Chaoborus larvae during directly ingesting C. cornuta that were exposed to Chaoborus larvae kairomone at high concentration of sertraline. Results showed sertraline had an interference effect on the induced morphological defense of C. cornuta in response to Chaoborus larvae kairomone, i.e. the high concentration of sertraline (20 and 100 μg L-1) significantly reduced the horns induction. However, the different concentrations of sertraline generally did not affect the life history traits of C. cornuta, regardless of presence or absence of Chaoborus larvae kairomone. The predation experiment demonstrated that the inhibition of sertraline on the induced morphological defense of C. cornuta can promote the feeding selective efficiency of Chaoborus larvae, and thus cause C. cornuta easily to be predated by Chaoborus larvae. Our results suggested that sertraline at the concentrations that are not direct harmful to life history traits of C. cornuta can seriously affect the predator-prey relationship, indicating that effects of pollutants on interspecific relationships should be considered comprehensively to avoid underestimating the potential risk of pollutants to ecosystems.
Collapse
Affiliation(s)
- Shuangshuang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Guangjin Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
24
|
Hubená P, Horký P, Grabic R, Grabicová K, Slavík O, Randák T. Environmentally relevant levels of four psychoactive compounds vary in their effects on freshwater fish condition: a brain concentration evidence approach. PeerJ 2020; 8:e9356. [PMID: 32714655 PMCID: PMC7354837 DOI: 10.7717/peerj.9356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background The aquatic environment has been contaminated with various anthropogenic pollutants, including psychoactive compounds that may alter the physiology and behavior of free-living organisms. The present study focused on the condition and related mortality of the juvenile chub (Squalius cephalus). The aim of the study was to test whether the adverse effects of the antidepressants sertraline and citalopram, the analgesic tramadol and the illicit drug methamphetamine, on fish condition exist under environmentally relevant concentrations and whether these effects persist after a depuration period. Innovative analyses of the fish brain concentrations of these compounds were performed with the aim to show relationship between compound brain tissue concentration and fish condition. Methods The laboratory experiment consisted of 42 days of exposure and a subsequent 14-day depuration period with regular monitoring of the condition and mortality of exposed and control fish. Identical methodology, including individual brain concentration analyses for the tested compounds, was applied for all substances. Additional study on feeding under sertraline exposure was also conducted. The feeding was measured from the 28th day of the exposure, three times in a week, by observation of food intake during 15 minutes in social environment. Results The effects of particular psychoactive compounds on chub condition varied. While sertraline induced a lower condition and increased mortality, the effects of methamphetamine were inverse, and tramadol and citalopram had no significant effect at all. Individual brain concentrations of the tested compounds showed that the effects of sertraline and methamphetamine on fish condition were increased with brain concentration increases. Additionally, the food intake was reduced in case of sertraline. In contrast, there was no relationship between tramadol and citalopram brain tissue concentration and fish condition, suggesting that the concentration-dependent effect is strongly compound-specific. Methamphetamine was the only compound with a persistent effect after the depuration period. Our results demonstrate the suitability of the brain concentration evidence approach and suggest that changes in fish condition and other related parameters can be expected in freshwater ecosystems polluted with specific psychoactive compounds.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Kateřina Grabicová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Randák
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|