1
|
Mallory ML, MacLean S, Baak JE, Boudreau M, Priest JM, Morrill A, Provencher JF, O'Driscoll NJ. Mercury in eastern coyotes from Nova Scotia, Canada: Effects of geography and trophic position. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179186. [PMID: 40154090 DOI: 10.1016/j.scitotenv.2025.179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Mercury (Hg) is a global environmental concern due to its wide distribution and myriad of deleterious effects on biota. We studied hepatic Hg in a widespread, top predator in the terrestrial ecosystem of Nova Scotia, Canada, the eastern coyote (Canis latrans), to determine recent concentrations, identify drivers of variation in Hg levels, and assess the utility of this species as a mercury biomonitor for this ecosystem. Coyotes feeding at higher trophic levels, and those in the south and east of the province, had higher Hg concentrations, but there was high variability within and among age-sex groupings. We conclude that coyotes may be useful biomonitors at larger regional scales (e.g., the Maritimes), but we recommend additional research on fishers (Pekania pennanti), a species which we used to compare to coyotes, and for which trophic position and Hg concentrations were surprisingly high at smaller scales within Nova Scotia.
Collapse
Affiliation(s)
- Mark L Mallory
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada.
| | - Seth MacLean
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Julia E Baak
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada; Environment and Climate Change Canada, Iqaluit, Nunavut X0A 3H0, Canada
| | - Michael Boudreau
- Nova Scotia Department of Natural Resources, 136 Exhibition St (3rd floor), Kentville, Nova Scotia B4N 4E5, Canada
| | - Jenna M Priest
- Nova Scotia Department of Natural Resources, 136 Exhibition St (3rd floor), Kentville, Nova Scotia B4N 4E5, Canada
| | - André Morrill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Nelson J O'Driscoll
- Earth and Environmental Science, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
2
|
Michel L, Renaudin M, Darnajoux R, Blasi C, Vacherand G, Le Monier P, Houle D, Bellenger JP. Evaluating the effect of moss functional traits and sampling on elemental concentrations in Pleurozium schreberi and Ptilium crista-castrensis in Eastern Canada (Québec) black spruce forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167900. [PMID: 37858833 DOI: 10.1016/j.scitotenv.2023.167900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Characterizing atmospheric depositions allows evaluating the impact of air pollution on ecosystems, human health, and the economy. It also informs decision-makers about the implementation of regulations improving environmental quality. Biomonitoring uses organisms, such as mosses, as proxies to assess the presence of atmospheric contaminants (e.g., metals). This approach is cost-efficient and does not require complicated infrastructure or scientific skills, making it suitable for large-scale monitoring initiatives and citizen-based campaigns. Therefore, precise sampling protocols are needed to limit bias. Biomonitoring data remains scarce in North America, compared to e.g., Europe, and there is a need to develop large-scale and long-term biomonitoring initiatives to record current and future atmospheric depositions. As there is no standardized international sampling protocol, this study assessed the impact of parameters known to affect the elemental concentration of mosses, using samples collected along a 1000-km transect in Eastern Canada (Quebec) from 2016 to 2022. We specifically examined the effects of species, stem color, canopy opening, time of sampling, and stem length on 18 elements. Non-parametric statistical tests indicate that these factors have significant effects on some metals, but differences are generally low (<30 %), except for stem length. These results suggest that sampling protocols can be flexible in terms of species, canopy opening, time of sampling, and stem color. However, normalizing the length of the stems analyzed is required to account for differences in growth rates between sites. Moreover, since no large-scale biomonitoring campaign using mosses has been conducted in Eastern Canada, this paper also provides the first elemental baseline for moss in the region.
Collapse
Affiliation(s)
- Laurie Michel
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 QC, Canada
| | - Marie Renaudin
- Water Science and Technology Branch, Environnement et Changement Climatique Canada, Montréal H2Y 2E7, QC, Canada
| | | | - Charlotte Blasi
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 QC, Canada
| | - Gaëlle Vacherand
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 QC, Canada
| | - Pauline Le Monier
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Daniel Houle
- Water Science and Technology Branch, Environnement et Changement Climatique Canada, Montréal H2Y 2E7, QC, Canada
| | | |
Collapse
|
3
|
Özkök EA, Çobanoğlu G. Spatial evaluation of air quality by biomonitoring of toxic element accumulation in lichens in urban green areas and nature parks on the Anatolian side of Istanbul. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:908. [PMID: 37386263 DOI: 10.1007/s10661-023-11496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
The city of Istanbul is constantly exposed to air pollution due to its high population, heavy traffic - sea and air transport - and urban industry. This study basically aims to determine the recent level of airborne heavy metals, using lichen biomonitoring method. The cosmopolitan foliose lichen Xanthoria parietina growing abundantly on trees was sampled from 16 urban green spaces in 8 districts on the Anatolian side of Istanbul. Multi-element analysis by ICP-MS was applied to measure the accumulation of 10 potentially toxic trace elements in lichen samples. Spatial distributions of element levels in the air in the sampling areas are shown by mapping. According to the analysis data, the sequence of element deposition levels in lichen samples was as follows; Al > Fe > Mn > Zn > Cr > Cu > Pb > V > Ni > As. Most of the measured atmospheric element amounts yielded results much higher than the reference material in all areas. It was detected that the highest pollution in terms of Al, Cu, Fe, Mn, and Ni elements was in Elmasburnu Nature Park area in Beykoz district, which is a touristic place by the sea. Changes in the city's air quality over the years have been evaluated by comparing element levels in these locations in a previous biomonitoring study and some differences were found. The resulting data is valuable for periodic monitoring of toxic elements in the air, for determining causes of air pollution, and for taking precautions.
Collapse
Affiliation(s)
- Elif Aysu Özkök
- Department of Biology, Institute of Pure and Applied Sciences, Marmara University, Istanbul, TR-34722, Turkey
| | - Gülşah Çobanoğlu
- Department of Biology, Faculty of Science, Marmara University, Istanbul, TR-34722, Turkey.
| |
Collapse
|
4
|
Monaci F, Ancora S, Paoli L, Loppi S, Franzaring J. Air quality in post-mining towns: tracking potentially toxic elements using tree leaves. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:843-859. [PMID: 35338402 PMCID: PMC10014763 DOI: 10.1007/s10653-022-01252-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, leaves of the evergreen holm oak Quercus ilex were used to assess airborne contamination of potentially toxic elements (PTEs) at five towns located on the slopes of the Mt. Amiata (central Italy), an area with a long history of mining and, more recently, an important district for the industrial exploitation of geothermal energy. PTE composition and covariance of washed and unwashed Q. ilex leaves of three different ages (6, 12 and 24 month-old) were used to identify atmospheric inputs of PTEs at residential areas, evaluate long-term adsorption and retention of PTEs by the leaves, thus providing an indication of potential human exposure. Moreover, the determination of foliar concentrations of major elements (C, N, S and P) allowed an assessment of the nutritional status of the investigated urban tree stands which excluded the existence of stress condition caused by air pollution or other disturbances. Results indicated that overall Pb, Cu, and Cd concentration were low in the investigated urban sites, if compared with similar studies conducted in larger Italian cities, denoting a low contribution of vehicular traffic to the atmospheric pathway. The five urban settlements were characterized by a specific profile of elements (Al, Ba, Hg and Sb) enriched in unwashed leaves, resulting from the distinct geochemical characteristics of the area and from diffuse (i.e., urban activity) and point sources of PTEs emission (i.e., brownfields, geothermal power plants). The latter sources primarily govern the distribution of Hg, whose contamination was found to be very localized close to a major abandoned mining area. Our data provided quantitative evidence of the spectrum of PTEs potentially impacting resident population and may prove useful in support of follow-up instrumental monitoring campaigns of air quality, as well as for human health and ecological risk assessments.
Collapse
Affiliation(s)
- Fabrizio Monaci
- Department of Life Sciences, University of Siena, Via Mattioli 4, Siena, Italy.
| | - Stefania Ancora
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Mattioli 4, Siena, Italy
| | - Luca Paoli
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126, Pisa, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Via Mattioli 4, Siena, Italy
| | - Jürgen Franzaring
- Institute of Landscape and Plant Ecology, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany
| |
Collapse
|
5
|
Božič D, Živković I, Hudobivnik MJ, Kotnik J, Amouroux D, Štrok M, Horvat M. Fractionation of mercury stable isotopes in lichens. CHEMOSPHERE 2022; 309:136592. [PMID: 36167212 DOI: 10.1016/j.chemosphere.2022.136592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Bio-monitoring of mercury (Hg) in air using transplanted and in-situ lichens was conducted at three locations in Slovenia: (I) the town of Idrija in the area of the former Hg mine, where Hg contamination is well known; (II) Anhovo, a settlement with a cement production plant, which is a source of Hg contamination, and (III) Pokljuka, a part of a national park. Lichens from Pokljuka were transplanted to different sites and sampled four times-once per season, from January 2020 to February 2021. Lichens were set on tree branches, fences, and under cover, allowing them to be exposed to different environmental conditions (e.g., light and rain). The in-situ lichens were sampled at the beginning and the end of the sampling period. The highest concentrations were in the Idrija area, which was consistent with previous research. Significant mass-dependent fractionation has been observed in transplanted lichens during summer period. The δ202Hg changed from -3.0‰ in winter to -1.0‰ in summer and dropped again to the same value in winter the following year. This trend was observed in all samples, except those from the most polluted Idrija sampling site, which was in the vicinity of the former Hg ore-smelting plant. This was likely due to large amounts of Hg originating from polluted soil close to the former smelting plant with a distinct isotopic fingerprint in this local area. The Δ199Hg in transplanted lichens ranged from -0.5‰ to -0.1‰ and showed no seasonal trends. These findings imply that seasonality, particularly in summer months, may affect the isotopic fractionation of Hg and should be considered in the sampling design and data interpretation. This trend was thus described in lichens for the first time. The mechanism behind such change is not yet fully understood.
Collapse
Affiliation(s)
- Dominik Božič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Street 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Street 39, Ljubljana, Slovenia
| | - Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Street 39, Ljubljana, Slovenia
| | - Marta Jagodic Hudobivnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Street 39, Ljubljana, Slovenia
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Street 39, Ljubljana, Slovenia
| | - David Amouroux
- The Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, 2 Avenue Pierre Angot, Pau Cedex 9, France
| | - Marko Štrok
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Street 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Street 39, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Street 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Street 39, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Monaci F, Ancora S, Paoli L, Loppi S, Wania F. Lichen transplants as indicators of gaseous elemental mercury concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120189. [PMID: 36116569 DOI: 10.1016/j.envpol.2022.120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Lichens play an important role in the biogeochemical cycling of mercury (Hg) and are commonly used as indicators of Hg enrichment in remote and anthropogenically impacted environments. To assess their capacity for Hg uptake and accumulation, we determined the concentration of gaseous elemental mercury (GEM) in air and the concentration of total Hg (THg) in transplanted thalli of two lichen species. Lichen transplants and passive air samplers (PASs) were concurrently deployed, side by side, at 10 sites within an abandoned mining area, characterized by large gradients in atmospheric Hg contamination. Highly variable time-weighted GEM concentrations determined by the PASs, ranging from 17 to 4,200 ng/m3, were mirrored by generally high Hg concentrations in transplanted thalli of both Xanthoria parietina (174-8,800 ng/g) and Evernia prunastri (143-5,500 ng/g). Hg concentrations in the two species co-varied linearly indicating about 60% greater Hg accumulation in X. parietina than in E. prunastri. Whereas Hg uptake in the fruticose E. prunastri increased linearly with GEM, a power law equation with a fractional exponent described the uptake in the foliose X. parietina. Extrapolating the relationships observed here to higher GEM levels yielded concentrations in lichen that agree very well with those measured in an earlier fumigation experiment performed under laboratory-controlled conditions. The uptake model of X. parietina was further verified by correctly estimating GEM concentrations from the THg measured in autochthonous thalli collected from the urban area adjacent to the mine site. Passive sampling can effectively provide time-weighted data of suitable spatial resolution to quantitatively describe GEM assimilation by lichens. Therefore, the combined use of passive sampling and lichen transplants can contribute to a more comprehensive understanding of the role of lichens, and potentially also of other cryptogams, in the deposition of atmospheric Hg to terrestrial ecosystems.
Collapse
Affiliation(s)
- Fabrizio Monaci
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy.
| | - Stefania Ancora
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Luca Paoli
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126, Pisa, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Frank Wania
- University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1065 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
7
|
Vannini A, Tedesco R, Loppi S, Di Cecco V, Di Martino L, Nascimbene J, Dallo F, Barbante C. Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149369. [PMID: 34375238 DOI: 10.1016/j.scitotenv.2021.149369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In this study we used a terricolous lichen (Cetraria islandica) as bioaccumulator of potentially toxic elements (PTEs) to explore spatial patterns of air pollutant deposition along elevational gradients in the Majella Massif (Italy). Samples of C. islandica were collected at 200 m intervals along 6 transects from 1600 to 2600 m, both along the eastern and the western slope of the Majella massif, and analyzed for their PTE content. The results supported the hypothesis that the deposition of PTEs to the Majella massif is largely influenced by elevation and slope. Two main patterns emerged connected either with local soil erosion and long-range atmospheric transport. For some PTEs, namely Al, Cr, Li, Mg, in the absence of any other data, it is supposed that the anthropogenic input is very small compared to the natural input from weathering processes. In contrast, the group of air pollutants subjected to long-range transport, as in the case of Cd, Hg, and Pb, has very limited local input and the main sources responsible for the higher concentrations on the eastern slope are probably to be searched in the Balkan area.
Collapse
Affiliation(s)
| | - Raffaello Tedesco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, via Torino 155, Venice-Mestre 30172, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Italy.
| | | | | | - Juri Nascimbene
- UBIOME Lab, Department of Biological, Geological, Environmental Sciences, Alma Mater Studiorum, University of Bologna, Italy
| | - Federico Dallo
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, via Torino 155, Venice-Mestre 30172, Italy; Institute of Polar Sciences - CNR, via Torino 155, Venice-, Mestre 30172, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, via Torino 155, Venice-Mestre 30172, Italy; Institute of Polar Sciences - CNR, via Torino 155, Venice-, Mestre 30172, Italy
| |
Collapse
|
8
|
Accumulation and Release of Mercury in the Lichen Evernia prunastri (L.) Ach. BIOLOGY 2021; 10:biology10111198. [PMID: 34827191 PMCID: PMC8614937 DOI: 10.3390/biology10111198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Lichens are among the most used and most effective biomonitors of airborne mercury (Hg); however, although the ability of lichens to take up Hg and provide accurate patterns of Hg contamination around emission sources is well documented, information on their ability to reflect the decreasing environmental availability of this element is minimal and contrasting. The aim of this study was to investigate both the accumulation and release of Hg2+ in lichens, using Evernia prunastri as a model species, and hypothesizing that 24 months is sufficient for treated samples to return to background values. The results of this study highlighted the ability of the lichen E. prunastri to reflect very quickly the available Hg concentration, as well as to indicate an ameliorated situation (e.g., the closure of an Hg source). However, we have found evidence that an acute pollution episode can influence the content of Hg in lichens for several years. Abstract This study investigated the dynamics of the accumulation and release of Hg2+ in lichens, using Evernia prunastri (L.) Ach. as a model species. Thalli were incubated with solutions containing 1, 10, and 100 µM Hg2+ and then exposed for 1, 2, 3, 6, 12, 18, and 24 months at the Botanical Garden of the University of Siena (a location free from local Hg sources). Lichen samples accumulated Hg proportionally to the exposure concentration, and after the exposure, reductions over time were evident, already starting from 1–2 months. After 24 months, samples released 72–74 (healthy thalli) to 94% (unhealthy thalli) of the accumulated Hg, but control values of untreated samples were never reached. Depending on the Hg content after the exposure, stable decreased concentrations were reached after 6–24 months. The results of this study highlight the ability of the lichen E. prunastri to reflect rapidly increasing environmental Hg concentrations, as well as to indicate an ameliorated situation (e.g., the closure of an Hg source). However, we have found evidence that an acute pollution episode can influence the content of Hg in lichens for several years.
Collapse
|
9
|
Evstafeva EV, Bogdanova AM, Evstafeva IA, Makarova AS, Meshalkin VP, Baranovskaya NV. Comprehensive Analysis of Mercury Content in Environmental Subsystems of the Crimean Peninsula. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579521040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Fantozzi L, Guerrieri N, Manca G, Orrù A, Marziali L. An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps). TOXICS 2021; 9:172. [PMID: 34357915 PMCID: PMC8309919 DOI: 10.3390/toxics9070172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m-3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g-1 at sampling sites located north of the chlor-alkali plant to 624 ng g-1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.
Collapse
Affiliation(s)
- Laura Fantozzi
- Water Research Institute-National Research Council (IRSA-CNR), Largo Tonolli 50, I-28922 Verbania Pallanza, Italy; (N.G.); (A.O.)
| | - Nicoletta Guerrieri
- Water Research Institute-National Research Council (IRSA-CNR), Largo Tonolli 50, I-28922 Verbania Pallanza, Italy; (N.G.); (A.O.)
| | - Giovanni Manca
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy;
| | - Arianna Orrù
- Water Research Institute-National Research Council (IRSA-CNR), Largo Tonolli 50, I-28922 Verbania Pallanza, Italy; (N.G.); (A.O.)
| | - Laura Marziali
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, I-20861 Brugherio, Italy;
| |
Collapse
|
11
|
Xu H, Croot P, Zhang C. Discovering hidden spatial patterns and their associations with controlling factors for potentially toxic elements in topsoil using hot spot analysis and K-means clustering analysis. ENVIRONMENT INTERNATIONAL 2021; 151:106456. [PMID: 33662887 DOI: 10.1016/j.envint.2021.106456] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The understanding of sources and controlling factors of potentially toxic elements (PTEs) in soils plays an important role in the improvement of environmental management. With the rapid growth of data volume, effective methods are required for data analytics for the large geochemical data sets. In recent years, spatial machine learning technologies have been proven to have the potential to reveal hidden spatial patterns in order to extract geochemical information. In this study, two spatial clustering techniques of Getis-Ord Gi* statistic and K-means clustering analysis were performed on 15 PTEs in 6,862 topsoil samples from the Tellus datasets of Northern Ireland to investigate the hidden spatial patterns and association with their controlling factors. The spatial clustering patterns of hot spots (high values) and cold spots (low values) for the 15 PTEs were revealed, showing clear association with geological features, especially peat and basalt. Peat was associated with high concentrations of Bi, Pb, Sb and Sn, while basalt was associated with high concentrations of Co, Cr, Cu, Mn, Ni, V and Zn. The high concentrations of As, Ba, Mo and U were associated with mixture of various lithologies, indicating the complicated influences on them. In addition, three hidden patterns in the 6,862 soil samples were revealed by K-means clustering analysis. The soil samples in the first and second clusters were overlaid on the peatland and basalt formation, respectively, while the samples in the third cluster were overlaid on the mixture of the other lithologies. These hidden patterns of soil samples were consistent with the spatial clustering patterns for PTEs, highlighting the dominant control of peat and basalt in the topsoil of Northern Ireland. This study demonstrates the power of spatial machine learning techniques in identifying hidden spatial patterns, providing evidences to extract geochemical knowledge in environmental studies.
Collapse
Affiliation(s)
- Haofan Xu
- International Network for Environment and Health (INEH), School of Geography, Archaeology & Irish Studies, National University of Ireland, Galway, Ireland.
| | - Peter Croot
- iCRAG (Irish Centre for Research in Applied Geoscience), Earth and Ocean Sciences, School of Natural Sciences and the Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Chaosheng Zhang
- International Network for Environment and Health (INEH), School of Geography, Archaeology & Irish Studies, National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
Roth E, Burgalat J, Rivière E, Zaiter M, Chakir A, Pasquet C, Gunkel-Grillon P. Nickel spreading assessment in New Caledonia by lichen biomonitoring coupled to air mass history. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6058-6067. [PMID: 32989698 DOI: 10.1007/s11356-020-10873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Lichen biomonitoring and air mass trajectories were used to study the influence of mining activities in the atmospheric dispersion of metallic elements to assess the exposure of the population to dust emitted by mining activities. A map of forward trajectory densities from open mine surfaces throughout New Caledonia was computed and allowed to identify three preferred wind directions (trade wind, bent trade winds and oceanic winds) that could arise in mining particles dispersion all over New Caledonia. Areas where an air quality monitoring would be advisable to evaluate the exposure of the population to the Nickel dusts have been identified. Lichens collected around the industrial mining site KNS and in North Provence of New Caledonia were analysed for their Ni, Co, Cr, Zn and Ti contents. Backward trajectories were simulated from the lichen sampling point using FLEXTRA fed with ECMWF meteorological data, and densities of trajectories having overflown a mine were calculated. Ratio metal/Ti was then plotted as a function of air mass trajectory densities having overflown open pits. A positive correlation between trajectory densities and titanium-normalized metal in lichen for Ni, Co, Cr was highlighted, indicating that mining is a source of dispersion of these metals. For Zn, which is a tracer of fossil fuel or biomass (wood) combustion activity, no correlation was found. Graphical abstract.
Collapse
Affiliation(s)
- Estelle Roth
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse, B.P. 1039, 51687, Reims Cedex 2, France.
| | - Jérémie Burgalat
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse, B.P. 1039, 51687, Reims Cedex 2, France
| | - Emmanuel Rivière
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse, B.P. 1039, 51687, Reims Cedex 2, France
| | - Mariam Zaiter
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse, B.P. 1039, 51687, Reims Cedex 2, France
| | - Abdelkhaleq Chakir
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse, B.P. 1039, 51687, Reims Cedex 2, France
| | - Camille Pasquet
- Institut des Sciences Exactes et Appliquées, ISEA, Université de la Nouvelle-Calédonie BPR4, 98851, Noumea Cedex, New Caledonia
| | - Peggy Gunkel-Grillon
- Institut des Sciences Exactes et Appliquées, ISEA, Université de la Nouvelle-Calédonie BPR4, 98851, Noumea Cedex, New Caledonia
| |
Collapse
|
13
|
Rimondi V, Benesperi R, Beutel MW, Chiarantini L, Costagliola P, Lattanzi P, Medas D, Morelli G. Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072353. [PMID: 32244315 PMCID: PMC7177839 DOI: 10.3390/ijerph17072353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
In the present study, mercury (Hg) concentrations were investigated in lichens (Flavoparmelia caperata (L.) Hale, Parmelia saxatilis (L.) Ach., and Xanthoria parietina (L.) Th.Fr.) collected in the surrounding of the dismissed Abbadia San Salvatore Hg mine (Monte Amiata district, Italy). Results were integrated with Hg concentrations in tree barks and literature data of gaseous Hg levels determined by passive air samplers (PASs) in the same area. The ultimate goal was to compare results obtained by the three monitoring techniques to evaluate potential mismatches. Lichens displayed 180–3600 ng/g Hg, and Hg concentrations decreased exponentially with distance from the mine. Mercury concentration was lower than in Pinus nigra barks at the same site. There was a moderate correlation between Hg in lichen and Hg in bark, suggesting similar mechanisms of Hg uptake and residence times. However, correlation with published gaseous Hg concentrations (PASs) was moderate at best (Kendall Tau = 0.4–0.5, p > 0.05). The differences occurred because a) PASs collected gaseous Hg, whereas lichens and barks also picked up particulate Hg, and b) lichens and bark had a dynamic exchange with the atmosphere. Lichen, bark, and PAS outline different and complementary aspects of airborne Hg content and efficient monitoring programs in contaminated areas would benefit from the integration of data from different techniques.
Collapse
Affiliation(s)
- Valentina Rimondi
- Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy; (L.C.); (P.C.)
- CNR-IGG, Via G. La Pira 4, 50121 Firenze, Italy; (P.L.); (G.M.)
- Correspondence: ; Tel.: +39-055-2757506
| | - Renato Benesperi
- Dipartimento di Biologia, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy;
| | - Marc W. Beutel
- University of California, Merced, 5200 Lake Road, Merced, CA 95343, USA;
| | - Laura Chiarantini
- Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy; (L.C.); (P.C.)
- Centro di Servizi di Microscopia Elettronica e Microanalisi (M.E.M.A), Università di Firenze, Via G. Capponi 3r, 50121 Firenze, Italy
| | - Pilario Costagliola
- Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy; (L.C.); (P.C.)
- CNR-IGG, Via G. La Pira 4, 50121 Firenze, Italy; (P.L.); (G.M.)
| | | | - Daniela Medas
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (CA), Italy;
| | - Guia Morelli
- CNR-IGG, Via G. La Pira 4, 50121 Firenze, Italy; (P.L.); (G.M.)
| |
Collapse
|