1
|
Andraskar J, Khan D, Yadav S, Kapley A. Metagenomic Analysis of Microbial Community Associated with Food Waste Composting. Appl Biochem Biotechnol 2025; 197:3503-3520. [PMID: 39961944 DOI: 10.1007/s12010-025-05203-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 05/11/2025]
Abstract
Food waste is an increasing cause of concern in India. Its management through composting plays a vital role in managing the biodegradable fraction of municipal solid waste. However, the existing composting process has many challenges, such as the lack of optimum microenvironment and microbiome knowledge, which limits efficient outcomes. Therefore, the present study aims to bridge the gap by applying metagenomics to study microbial community dynamicity during different stages of composting. The bacterial community analysis showed that genus Marionobacter (9.4%) and Halomonas (7.4%) were prevalent during the mesophilic stage, whereas the Bacillus (12.2%) and Cellulomonas (0.1%) were prevalent during the thermophilic and maturation stage of composting. The functional profiling of metagenome indicated the abundance of genes involved in degradation of polymeric compounds such as carbohydrates, lipids, and proteins. The relative abundance of arginine and proline metabolisms increased during the thermophilic stage. Whereas the relative abundance of genes involved in fatty acid, tryptophan, galactose, and propanoate metabolisms declined. Similarly, the CAZyme tool predicted that the genes encoding for glycoside hydrolase (GH) families were higher during the mesophilic and thermophilic stages of composting. These enzymes play an important role in degradation of complex polysaccharides such as cellulose and hemicellulose. The data obtained from the present study could be utilized for the optimization and improving the composting process.
Collapse
Affiliation(s)
- Jayanta Andraskar
- Sustainable Environmental Processes (SEP), Environmental Bioprocesses, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debishree Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Shailendra Yadav
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Atya Kapley
- Sustainable Environmental Processes (SEP), Environmental Bioprocesses, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Xie G, Chen G, Yuan M, Song Y, Xiao Y, Qu Y, Cui T, Ren Y. Mechanisms and potential applications of different stimulants enhancing benzo[a]pyrene degradation based on cellular characteristics and transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125788. [PMID: 39914567 DOI: 10.1016/j.envpol.2025.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Benzo[a]pyrene (BaP) is a highly carcinogenic persistent organic pollutant, and biostimulation is an effective strategy to enhance its degradation. This study utilized Bacillus subtilis MSC4 as a BaP-degrading bacterium to investigate the effects of two different fermentation waste liquids as stimulants on BaP degradation. The mechanisms were analyzed and compared at both the cellular and molecular levels. The results showed that the stimulation percentages of yeast Yarrowia lipolytica extracellular metabolites (YEMs) and Lactobacillus plantarum fermentation waste solution (LPS) on the biodegradation of BaP reached 52.8% and 63.4%, respectively, compared to B treatment without biostimulant. Physiological analyses showed that both stimulants repaired cell morphology, more than doubled bacterial biomass, increased EPS secretion, enhanced bacterial activity, and significantly reduced oxidative stress by lowering ROS levels to 75-78% of those in the BaP-stressed group, allowing for repair of oxidative damage. Transcriptomic analysis indicated that both stimulants upregulated pathways related to central carbon metabolism, enhancing cell proliferation and energy supply. Additionally, YEMs promoted electron transport and BaP transmembrane transport and upregulated the synthesis of various monooxygenases, while LPS induced the upregulation of genes encoding quercetin dioxygenase and played a more active role in biofilm formation and enhancing BaP bioavailability. This study reveals the shared and distinct mechanisms by which YEMs and LPS enhance BaP biodegradation, providing theoretical guidance for the application of YEMs and LPS in the bioremediation of BaP-contaminated environments.
Collapse
Affiliation(s)
- Guanghong Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuxin Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen, 518000, PR China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, PR China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen, 518000, PR China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Hentati D, Ramadan AR, Abed RMM, Abotalib N, El Nayal AM, Ismail W. Functional and structural responses of a halophilic consortium to oily sludge during biodegradation. Appl Microbiol Biotechnol 2024; 108:116. [PMID: 38229295 DOI: 10.1007/s00253-023-12896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Biotreatment of oily sludge and the involved microbial communities, particularly in saline environments, have been rarely investigated. We enriched a halophilic bacterial consortium (OS-100) from petroleum refining oily sludge, which degraded almost 86% of the aliphatic hydrocarbon (C10-C30) fraction of the oily sludge within 7 days in the presence of 100 g/L NaCl. Two halophilic hydrocarbon-degrading bacteria related to the genera Chromohalobacter and Halomonas were isolated from the OS-100 consortium. Hydrocarbon degradation by the OS-100 consortium was relatively higher compared to the isolated bacteria, indicating potential synergistic interactions among the OS-100 community members. Exclusion of FeCl2, MgCl2, CaCl2, trace elements, and vitamins from the culture medium did not significantly affect the hydrocarbon degradation efficiency of the OS-100 consortium. To the contrary, hydrocarbon biodegradation dropped from 94.1 to 54.4% and 5% when the OS-100 consortium was deprived from phosphate and nitrogen sources in the culture medium, respectively. Quantitative PCR revealed that alkB gene expression increased up to the 3rd day of incubation with 11.277-fold, consistent with the observed increments in hydrocarbon degradation. Illumina-MiSeq sequencing of 16 S rRNA gene fragments revealed that the OS-100 consortium was mainly composed of the genera Halomonas, Idiomarina, Alcanivorax and Chromohalobacter. This community structure changed depending on the culturing conditions. However, remarkable changes in the community structure were not always associated with remarkable shifts in the hydrocarbonoclastic activity and vice versa. The results show that probably synergistic interactions between community members and different subpopulations of the OS-100 consortium contributed to salinity tolerance and hydrocarbon degradation.
Collapse
Affiliation(s)
- Dorra Hentati
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ahmed R Ramadan
- Health Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Nasser Abotalib
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ashraf M El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
4
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
5
|
Zou JJ, Dai C, Hu J, Tong WK, Gao MT, Zhang Y, Leong KH, Fu R, Zhou L. A novel mycelial pellet applied to remove polycyclic aromatic hydrocarbons: High adsorption performance & its mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171201. [PMID: 38417506 DOI: 10.1016/j.scitotenv.2024.171201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.
Collapse
Affiliation(s)
- Jia Jie Zou
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
6
|
Song Y, Su X, Che Q, Dong W, Wan Y, Lyu H, Song T. Nitrate denitrification rate response to temperature gradient change during river bank infiltration. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:151. [PMID: 38578445 DOI: 10.1007/s10653-024-01941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/24/2024] [Indexed: 04/06/2024]
Abstract
Nitrate attenuation during river bank infiltration is the key process for reducing nitrogen pollution. Temperature is considered to be an important factor affecting nitrate attenuation. However, the magnitude and mechanism of its impact have not been clear for a long time. In this study, the effects of temperature and temperature gradient on the nitrate denitrification rate were investigated via static batch and dynamic soil column simulation experiments. The results showed that temperature had a significant effect on the denitrification rate. Temperature effects were first observed in denitrifying bacteria. At low temperatures, the microorganism diversity was low, resulting in a lower denitrification rate constant. The static experimental results showed that the denitrification rate at 19 °C was approximately 2.4 times that at 10 °C. The dynamic soil column experiment established an exponential positive correlation between the nitrate denitrification decay kinetic constant and temperature. The affinity of denitrifying enzymes for nitrate in the reaction substrate was ordered as follows: decreasing temperature gradient (30 °C → 10 °C) > zero temperature gradient (10 °C) > increasing temperature gradient condition (0 °C → 10 °C). This study provides a theoretical basis for the biogeochemical processes underlying river bank infiltration, which will help aid in the development and utilization of groundwater resources.
Collapse
Affiliation(s)
- Yazhi Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Xisosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Qiaohui Che
- General Prospecting Institute of China National Administration of Coal Geology, Beijing, 100039, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Tiejun Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Wang J, Zhang Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. Adaptive characteristics of indigenous microflora in an organically contaminated high salinity groundwater. CHEMOSPHERE 2024; 349:140951. [PMID: 38101485 DOI: 10.1016/j.chemosphere.2023.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Salinity, a critical factor, could directly or indirectly affect the microbial community structure and diversity. Changes in salinity levels act as environmental filters that influence the transformation of key microbial species. This study investigates the adaptive characteristics of indigenous microflora in groundwater in relation to external organic pollutants under high salinity stress. A highly mineralized shallow groundwater in Northwest China was conducted as the study area, and six representative sampling points were chosen to explore the response of groundwater hydrochemical parameters and microflora, as well as to identify the tolerance mechanisms of indigenous microflora to combined pollution. The results revealed that the dominant genera found in high salinity groundwater contaminated with organic pollutants possess the remarkable ability to degrade such pollutants even under challenging high salinity conditions, including Halomonas, Pseudomonas, Halothiobacillus, Sphingomonas, Lutibacter, Aquabacterium, Thiomicrospira, Aequorivita, etc. The hydrochemical factors, including total dissolved solids (TDS), sulfide, nitrite, nitrate, oxidation reduction potential (ORP), NH3-N, Na, Fe, benzene series, phenols, and halogenated hydrocarbons, demonstrated a significant influence on microflora. High levels of sulphate and sulfide in groundwater can exhibit dual effects on microflora. On one hand, these compounds can inhibit the growth and metabolism of microorganisms. On the other hand, they can also serve as effective electron donors/receptors during the microbial degradation of organic pollutants. Microorganisms exhibit resilience to the inhibitory effects of high salinity and organic pollutants via a series of tolerance mechanisms, such as strengthening the extracellular membrane barrier, enhancing the synthesis of relevant enzymes, initiating novel biochemical reactions, improving cellular self-healing capabilities, responding to unfavorable environmental conditions by migration, and enhancing the S cycle for the microbial metabolism of organic pollutants.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
Xu L, Wei HM, Sun YN, Wu Q, Gao XY, Shen B, Sun JQ. Halomonas rhizosphaerae sp. nov. and Halomonas kalidii sp. nov., two novel moderate halophilic phenolic acid-degrading species isolated from saline soil. Syst Appl Microbiol 2024; 47:126488. [PMID: 38278082 DOI: 10.1016/j.syapm.2024.126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Four vanillic acid-degrading bacterial strains, named LR5S13T, LR5S20, and M4R5S39T and LN1S58, were isolated from Kalidium cuspidatum rhizosphere and bulk soils, respectively. Phylogenetic analysis based on 16S rRNA gene as well as core genome revealed that LR5S13T and LR5S20 clustered closely with each other and with Halomonas ventosae Al12T, and that the two strains shared the highest similarities (both 99.3 %) with H. ventosae Al12T, in contrast, M4R5S39T and LN1S58 clustered together and with Halomonas heilongjiangensis 9-2T, and the two strains shared the highest similarities (99.4 and 99.2 %, respectively) with H. heilongjiangensis 9-2T. The average nucleotides identities based on BLAST (ANIb) and digital DNA-DNA hybridization (dDDH) values of strains LR5S13T to LR5S20, and M4R5S39T to LN1S58, were both higher than the threshold values for delineation of a species. The ANIb and dDDH values of the four strains to their closely relatives were lower than the threshold values. All four strains take phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids, Summed Feature 8, Summed Feature 3, and C16:0 as the major fatty acids. Based on the phylogenetic and phenotypic results, the four strains should be classified as two novel Halomonas species. Therefore, Halomonas rhizosphaerae sp. nov. (type strain LR5S13T = KCTC 8016T = CGMCC 1.62049T) and Halomonas kalidii (type strain M4R5S39T = KCTC 8015T = CGMCC 1.62047T) are proposed. The geographical distribution analysis based on 16S rRNA gene revealed that the two novel species are widely distributed across the globe, specifically in highly saline habits, especially in Central and Eastern Asia.
Collapse
Affiliation(s)
- Lian Xu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hua-Mei Wei
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Ye-Nan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Qi Wu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiao-Yan Gao
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Biao Shen
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
9
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
10
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
11
|
Cui C, Shen J, Zhu Y, Chen X, Liu S, Yang J. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163279. [PMID: 37019226 DOI: 10.1016/j.scitotenv.2023.163279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contaminated saline-alkali soil is commonly salinized and hardened, which leads to low self-purification efficiency, making it difficult to reuse and remediate. In this study, pot experiments were conducted to investigate remediation of PAH contaminated saline-alkali soil using biochar-immobilized Martelella sp. AD-3, and Suaeda salsa L (S. salsa). Reduction in phenanthrene concentration, PAH degradation functional genes, and the microbial community in the soil were analyzed. The soil properties and plant growth parameters were also analyzed. After a 40-day remediation, the removal rate of phenanthrene by biochar-immobilized bacteria combined with S. salsa (MBP group) was 91.67 %. Additionally, soil pH and electrical conductivity (EC) reduced by 0.15 and 1.78 ds/m, respectively. The fresh weight and leaf pigment contents increased by 1.30 and 1.35 times, respectively, which effectively alleviated the growth pressure on S. salsa in PAH-contaminated saline-alkali soil. Furthermore, this remediation resulted in abundance of PAH degradation functional genes in the soil, with a value of 2.01 × 103 copies/g. The abundance of other PAH degraders such as Halomonas, Marinobacter, and Methylophaga in soil also increased. Furthermore, the highest abundance of Martelella genus was observed after the MBP treatment, indicating that strain AD-3 has a higher survival ability in the rhizosphere of S. salsa under the protection of biochar. This study provides a green, low-cost technique for remediation of PAH-contaminated saline-alkali soils.
Collapse
Affiliation(s)
- Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiamin Shen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco-Chongming, Fudan University, Shanghai 200438, China
| | - Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
12
|
Li B, Xu D, Feng L, Liu Y, Zhang L. Ecotoxic side-effects of allelochemicals on submerged plant and its associated microfloras effectively relieved by sustained-release microspheres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161888. [PMID: 36731566 DOI: 10.1016/j.scitotenv.2023.161888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Harmful algae bloom caused by water eutrophication is a burning question worldwide. Allelochemicals sustained-release microspheres (ACs-SMs) exhibited remarkable inhibition effect on algae, however, few studies have focused on the ecotoxic side-effects of ACs-SMs on submerged plant and its associated microfloras. Herein the effects of different exposure situations including single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs on morphological indexes, chlorophyll content, lipid peroxidation, enzymatic activity, and chlorophyll fluorescence indexes of submerged plant Vallisneria natans and the richness and diversity of its associated microfloras (epibiotic microbes and sediment microbes) were studied. The results showed that pure ACs (RL-ACs and SH-ACs groups) had negative effects on plant height, mean leaf number and area of V. natans, but promoted the increase of mean leaf length. In addition, pure ACs caused lipid peroxidation, activated the antioxidant defense system, decreased chlorophyll content, and damaged photosynthetic system in leaves. Interestingly, ACs-SMs not only had barely negative effects on above indexes of V. natans, but had certain positive effects at the later experiment stage (days 50-60). Pure ACs and ACs-SMs all reduced the richness and diversity of microfloras in each group, and promoted the increase of relative abundance of dominant bacteria Pseudomonas, leading to a simpler community structure. Significantly, V. natans leaves diminished the effects of pure ACs and ACs-SMs on epibiotic microbes, and the plant rhizosphere was beneficial to the increase of dominant bacteria that promoted plant growth. Thus, sustained-release microspherification technology can effectively relieve the ecotoxic side-effects of pure ACs on submerged plant and its associated microfloras. This study fills the gap on the ecological safety knowledge of ACs-SMs and provides primary data for evaluating the feasibility and commercialization prospects of ACs-SMs as algae inhibitor in aquatic ecosystem.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Li D, Li K, Liu Y, Wang L, Liu N, Huang S. Synergistic PAH biodegradation by a mixed bacterial consortium: based on a multi-substrate enrichment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24606-24616. [PMID: 36344887 DOI: 10.1007/s11356-022-23960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in the environment involves multiple PAHs and various intermediates produced during the microbial metabolic process. A multi-substrate enrichment approach was proposed to develop a mixed bacterial community (MBC) from the activated sludge of a coking wastewater plant. The degradation performance of MBC was evaluated under different initial concentrations of PAHs (25-200 mg/L), temperature (20-35 °C), pH (5.0-9.0), salinity (0-10 g/L NaCl), and coexisting substrates (catechol, salicylic acid, and phthalic acid). The results showed that the degradation rates of phenanthrene and pyrene in all treatments were up to (99 ± 0.71)% and (99 ± 0.90)% after incubation of 5 days, respectively, indicating excellent biodegradation ability of PAHs by MBC. Furthermore, 16S rRNA gene amplicon sequencing analysis revealed that Pseudomonas was dominant, while Burkholderia had the largest proportion in acidic (pH = 5.0) and saline (10 g/L NaCl) environments. However, the proportion of dominant bacteria in MBC was markedly affected by intermediate metabolites. It was shown that MBC had a higher degradation rate of PAHs in the coexisting matrix due to the timely clearance of intermediates reducing the metabolic burden. Overall, our study provided valuable information to help design an effective strategy for the bioremediation of PAHs in complex environments.
Collapse
Affiliation(s)
- Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yanzehua Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| |
Collapse
|
14
|
Muthukumar B, Surya S, Sivakumar K, AlSalhi MS, Rao TN, Devanesan S, Arunkumar P, Rajasekar A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. CHEMOSPHERE 2023; 310:136826. [PMID: 36243087 DOI: 10.1016/j.chemosphere.2022.136826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Saravanan Surya
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Krithiga Sivakumar
- Department of Community Medicine, Government Stanley Medical College, Chennai, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, AP, 521001, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Paulraj Arunkumar
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|
15
|
Zhang X, Wang X, Li Y, Ning G, Zhang Q, Zhang X, Zheng W, Yang Z. Differences in adsorption, transmembrane transport and degradation of pyrene and benzo[a]pyrene by Bacillus sp. strain M1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114328. [PMID: 36436257 DOI: 10.1016/j.ecoenv.2022.114328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In a previous study our group identified Bacillus sp. strain M1 as an efficient decomposer of high molecular weight-polycyclic aromatic hydrocarbons (HMW-PAHs). Interestingly, its removal efficiency for benzo[a]pyrene (BaP) was nearly double that of pyrene (Pyr), which was the reverse of what is reported for most other species. Here we compared the differential steps of biosorption, transmembrane transport and biodegradation of Pyr and BaP by strain M1 in order to assist in targeted selection of dominant strains and their degradation efficiency in the remediation of these two HMW-PAHs. The overall biosorption efficiency for BaP was 19% higher than that for Pyr, and the time needed to reach BaP peak adsorption efficiency was 4 days shorter than for Pyr. Transmembrane transport of the PAHs was compared in presence of sodium azide which inhibits ATP synthesis and metabolism. This indicated that both Pyr and BaP entered the cells by the same means of passive transport. Biodegradation of Pyr and BaP did not differ in the early stage of culture, but around days 5-7, the biodegradation efficiency of BaP was significantly (30-61%) higher than that of Pyr. Key enzymes involved in these processes were identified and their activity differed, with intracellular gentisate 1,2-dioxygenase and extracellular polyphenol oxidase as likely candidates to be involved in BaP degradation, while intracellular catechol-1,2- dioxygenase and salicylate hydroxylase are more likely involved in Pyr degradation. These results provide new insights for sustainable environmental remediation of pyrene and benzo(a)pyrene by these bacteria.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Xiaomin Wang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Yan Li
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Guohui Ning
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Qian Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Xuena Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Wei Zheng
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Zhixin Yang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, PR China.
| |
Collapse
|
16
|
Bijoy G, Rajeev R, Benny L, Jose S, Varghese A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. CHEMOSPHERE 2022; 307:135759. [PMID: 35870606 DOI: 10.1016/j.chemosphere.2022.135759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Enzymes with their environment-friendly nature and versatility have become highly important 'green tools' with a wide range of applications. Enzyme immobilization has further increased the utility and efficiency of these enzymes by improving their stability, reusability, and recyclability. Biomass-derived matrices when used for enzyme immobilization offer a sustainable solution to environmental pollution and fuel depletion at low costs. Biochar and other biomass-derived carbon materials obtained are suitable for the immobilization of enzymes through different immobilization strategies. Environmental pollution has become an utmost topic of research interest due to an ever-increasing trend being observed in anthropogenic activities. This has widely contributed to the release of various toxic effluents into the environment in their native or metabolized forms. Therefore, more focus is being directed toward the utilization of immobilized enzymes in the bioremediation of water and soil, biofuel production, and other environmental applications. In this review, up-to-date literature concerning the immobilization and potential uses of enzymes immobilized on biomass-derived carbon materials has been presented.
Collapse
Affiliation(s)
- Geethanjali Bijoy
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Rijo Rajeev
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Libina Benny
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Sandra Jose
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
17
|
Butarelli ACDA, Ferreira LSDS, Riyuzo R, Dall'Agnol HMB, Piroupo CM, da Silva AM, Setubal JC, Dall'Agnol LT. Diversity assessment of photosynthesizers: comparative analysis of pre-cultivated and natural microbiome of sediments from Cerrado biome in Maranhão, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77359-77374. [PMID: 35675015 DOI: 10.1007/s11356-022-21229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microorganisms are important components of most ecosystems and have important roles regarding biogeochemical cycles and the basis of the trophic chain. However, they sometimes are present in low abundance compared to other heterotrophic organisms. The Chapada das Mesas National Park (PNCM) is a Conservation Unit in Brazilian Cerrado biome, which is considered a hotspot for biodiversity conservation and possesses important rivers, waterfalls, and springs with economical and touristic importance. The aim of this study was to perform a comparative analysis of enriched and total microbiome of sediments to understand the impact of pre-cultivation in discovery of underrepresented groups like photosynthesizers. All sediment samples were cultivated in BG-11 medium under illumination to enrich for photosynthetic microorganisms and both the raw samples and the enriched ones were submitted to DNA extraction and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene on the Ion Torrent platform. The reads were analyzed using QIIME2 software and the Phyloseq package. The enrichment allowed detection and identification of many genera of cyanobacteria in the Chapada das Mesas National Park (PNCM), which would probably not be possible without the combination of approaches. A total of 58 groups of photosynthetic microorganisms were classified in the samples from the enrichments and their relative abundance based on amplified 16S rRNA sequences were estimated, highlighting the genus Synechocystis which represented 10.10% of the abundance of the phylum Cyanobacteria and the genus Dunaliella, which represented 45.66% of the abundance of algae as the most abundant groups at the PNCM. In the enrichments, microorganisms from the phyla Proteobacteria (45.2%), Bacteroidetes (18%), and Planctomycetes (3.3%) were also identified, since there are ecological associations between the photosynthetic community and other groups of heterotrophic microorganisms. As for the functional analysis, metabolic functions associated with methanotrophy and methylotrophy, hydrocarbon degradation, phototrophy, and nitrogen fixation were predicted. The results highlight a great diversity of photosynthetic microorganisms in Cerrado and the importance of using a combination of approaches when analyzing target groups which are usually underrepresented such as cyanobacteria and microalgae.
Collapse
Affiliation(s)
- Ana Carolina de Araújo Butarelli
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, 05508-120, Brazil
| | - Lucas Salomão de Sousa Ferreira
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, 05508-120, Brazil
| | - Raquel Riyuzo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Hivana Melo Barbosa Dall'Agnol
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65080-805, Brazil
| | - Carlos Morais Piroupo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Leonardo Teixeira Dall'Agnol
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil.
| |
Collapse
|
18
|
Su X, Zheng Z, Chen Y, Wan Y, Lyu H, Dong W. Effects of carbon load on nitrate reduction during riverbank filtration: Field monitoring and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157198. [PMID: 35810902 DOI: 10.1016/j.scitotenv.2022.157198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Riverbank filtration (RBF) is a well-established technique worldwide, and is critical for the maintenance of groundwater quality and production of clean drinking water. Evaluation of the decay of exogenous nitrate (NO3-) in river water and the enrichment of ammonium (NH4+) in groundwater during RBF is important; these two processes are mainly influenced by denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) controlled by the groundwater carbon load. In this study, the effects of carbon load (organic carbon [OC]: NO3-) on the competing nitrate reduction (DNRA and DNF) were assessed during RBF using field monitoring and a laboratory batch experiment. Results show the groundwater OC: NO3- ratio did not directly affect the reaction rate of DNRA and DNF, however, it could control the competitive partitioning between the two. In the near-shore zone, the groundwater OC: NO3- ratio shows significant seasonal variations along the filtration path owing to the changing conditions of redox, OC-rich, and NO3--limited. A greater proportion of NO3- would be available for DNRA in the wet season with higher OC: NO3- ratio (> 10), resulting in a significantly NH4+-N enrichment rate (from 1.43 × 10-3 to 9.54 × 10-4 mmol L-1 d-1) in the near-shore zone where the zone of Mn (IV) oxide reduction. However, the activity of DNRA was suppressed with lower OC: NO3- ratio (< 10) in the dry season, resulting in a stable NH4+-N enrichment rate (from 3.12 × 10-4 to 1.30 × 10-4 mmol L-1 d-1). Benefiting from seasonal variation of OC-rich and NO3--limited conditions, DNRA bacteria outcompeted denitrifiers, which eventually led to seasonal differences in NO3- reduction in the near-shore zone. Overall, under the effect of DNRA induced by continuous high carbon load in RBF systems, nitrogen input is not permanently removed but rather retained in groundwater during RBF.
Collapse
Affiliation(s)
- Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Zhuyan Zheng
- College of Construction Engineering, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Yaoxuan Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China.
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|
19
|
Goveas LC, Selvaraj R, Vinayagam R, Alsaiari AA, Alharthi NS, Sajankila SP. Nitrogen dependence of rhamnolipid mediated degradation of petroleum crude oil by indigenous Pseudomonas sp. WD23 in seawater. CHEMOSPHERE 2022; 304:135235. [PMID: 35675868 DOI: 10.1016/j.chemosphere.2022.135235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Effect of oil spills on living forms demands for safe, ecofriendly and cost-effective methods to repair the damage. Pseudomonads have exceptional tolerance to xenobiotics and can grow at varied environmental conditions. This study aims at biosurfactant mediated degradation of petroleum crude oil by an indigenous Pseudomonas sp. WD23 in sea water. Pseudomonas sp. WD23 degraded 34% of petroleum crude oil (1.0% v/v) on supplementation of yeast extract (0.05 g/L) with glucose (1.0 g/L) in seawater. The strain produced a biosurfactant which was confirmed as a rhamnolipid (lipid: rhamnose 1:3.35) by FT-IR, LCMS and quantitative analysis. Produced rhamnolipid had low CMC (20.0 mg/L), emulsified petroleum oils (75-80%) and had high tolreance to varied conditions of pH, temperature and ionic strength. OFAT studies were performed to analyse the effect of petroleum crude oil, glucose, inoculum, yeast extract, pH, agitation speed and incubation time on degradation by Pseudomonas sp. WD23. Petroleum crude oil and glucose had significant effect on biodegradation, rhamnolipid production and growth, further optimized by central composite design. At optimum conditions of 3.414% v/v PCO and 6.53 g/L glucose, maximum degradation of 81.8 ± 0.67% was observed at pH 7.5, 100 RPM, 15.0% v/v inoculum in 28 days, with a 3-fold increase in biodegradation. GCMS analysis revealed degradation (86-100%) of all low and high molecular weight hydrocarbons present in petroleum crude oil. Hence, the strain Pseudomonas sp. WD23 can be effectively developed for management of oil spills in seas and oceans due to its excellent degradation abilities.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Nitte, Karnataka, 574110, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shyama Prasad Sajankila
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Nitte, Karnataka, 574110, India
| |
Collapse
|
20
|
Balu S, Bhunia S, Gachhui R, Mukherjee J. Polycyclic aromatic hydrocarbon sequestration by intertidal phototrophic biofilms cultivated in hydrophobic and hydrophilic biofilm-promoting culture vessels. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129318. [PMID: 35749894 DOI: 10.1016/j.jhazmat.2022.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Phototrophic biofilms collected from intertidal sediments of the world's largest tidal mangrove forest were cultured in two sets of a biofilm-promoting culture vessel having hydrophilic glass surface and hydrophobic polymethyl methacrylate surface wherein 16 priority polycyclic aromatic hydrocarbons (PAHs) were spiked. Biofilms from three locations of the forest were most active in sequestering 98-100% of the spiked pollutants. PAH challenge did not alter the biofilm phototrophic community composition; rather biofilm biomass production and synthesis of photosynthetic pigments and extracellular polymeric substances (EPS) were enhanced. Photosynthetic pigment and EPS synthesis were sensitive to vessel-surface property. The lowest mean residual amounts of PAHs in the liquid medium as well as inside the biofilm were recorded in the very biofilm cultivated in the hydrophobic flask where highest values of biofilm biomass, total chlorophyll, released polysaccharidic (RPS) carbohydrates, RPS uronic acids, capsular polysaccharidic (CPS) carbohydrates, CPS proteins, CPS uronic acids and EPS hydrophobicity were obtained. Ratios of released RPS proteins: polysaccharides increased during PAH sequestration whereas the ratios of CPS proteins: polysaccharides remained constant. Efficacious PAH removal by the overlying phototrophic biofilm will reduce the entry of these contaminants in the sediments underneath and this strategy could be a model for "monitored natural recovery".
Collapse
Affiliation(s)
- Saranya Balu
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Shantanu Bhunia
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Ratan Gachhui
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India.
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
21
|
Choi JS, Lim SH, Jung SR, Lingamdinne LP, Koduru JR, Kwak MY, Yang JK, Kang SH, Chang YY. Experimentally and spectroscopically evidenced mechanistic study of butyl peroxyacid oxidative degradation of benzo[a]pyrene in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115403. [PMID: 35660830 DOI: 10.1016/j.jenvman.2022.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP) is a major indicator of soil contamination and categorized as a highly persistent, carcinogenic, and mutagenic polycyclic aromatic hydrocarbon. An advanced peroxyacid oxidation process was developed to reduce soil pollution caused by BaP originating from creosote spills from railroad sleepers. The pH, organic matter, particle size distribution of soil, and concentrations of BaP and heavy metals (Cd, Cu, Zn, Pb, and As) in the BaP-contaminated soils were estimated. A batch experiment was conducted to determine the effects of organic acid type, soil particle size, stirring speed, and reaction time on the peroxyacid oxidation of BaP in the soil samples. Additionally, the effect of the organic acid concentration on the peroxyacid degradation of BaP was investigated using an oxidizing agent in spiked soil with and without hydrogen peroxide. The results of the oxidation process indicated that BaP and heavy metal residuals were below acceptable Korean standards. A significant difference in the oxidative degradation of BaP was observed between the spiked and natural soil samples. The formation of a peroxyacid intermediate was primarily responsible for the enhanced BaP oxidation. Further, butyric acid could be reused thrice without losing the efficacy (<90%). The systematic peroxyacid oxidative degradation mechanism of BaP was also discussed. A qualitative analysis of the by-products of the BaP reaction was conducted, and their corresponding toxicities were determined for possible field applications. The findings conclude that the developed peroxyacid oxidation method has potential applications in the treatment of BaP-contaminated soils.
Collapse
Affiliation(s)
- Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hwa Lim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Rak Jung
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Institute of Global Environment Kyunghee University, Seoul, 03134, Republic of Korea
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | | | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hong Kang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
22
|
Abbasi M, Kafilzadeh F, Sabokbar A, Haddadi A. Biodegradation of Phenanthrene Polluted Soil through Native Strains in the Darkhouvin Oil Field. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Maryam Abbasi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farshid Kafilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Azam Haddadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
23
|
Ramaswamy J, Solaiappan V, Albasher G, Alamri O, Alsultan N, Sathiasivan K. Process optimization of struvite recovered from slaughterhouse wastewater and its fertilizing efficacy in amendment of biofertilizer. ENVIRONMENTAL RESEARCH 2022; 211:113011. [PMID: 35288154 DOI: 10.1016/j.envres.2022.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The intensive discharge of slaughterhouse waste into water bodies increases Nitrogen (N), Phosphorus (P) in the wastewater and leads to various environmental problems. On the other hand, the increasing treatment effort after the extraction of these valuable nutrients in the commercial fertilizer reduces the dependence on scarce phosphate resources. The viable solution is to recover N, P as struvite (magnesium ammonium phosphate) from nutrient rich waste water as a small scale treatment unit application. The main parameters that have a significant impact on the process, including pH, Mg: P ratio, and precipitation time, were investigated from slaughterhouse wastewater using a central composite design and the experimental data's were statistically analysed. The results indicated that pH and Mg/P ratio level had a significant impact and thus 85% struvite precipitation efficiency was achieved at 9.6 pH and 1.5 dose mol ratio (mol Mg per mol P), in an inexpensive, stirred tank batch reactor with a retention time of 70 min. The fertilization efficiency was tested on the growth of Solanum melongena L with the obtained struvite and the integration of struvite with the Azospirullum rhizobium and Bacillus megaterium. Treatment of struvite, struvite with Azospirillum rhizobium and Bacillus megaterium increased growth parameters by 10%, 20%, and 25%, respectively, over control. The assessment of growth factors showed the most amazing number of fruits, shoots, and root length in a standard ratio of 60:40 of struvite to bio-inoculants compared to sole struvite fertilizer. Findings of this study would be beneficial to determine the feasibility of slaughterhouse waste as a phosphorus source for struvite recovery.
Collapse
Affiliation(s)
- Jeyalakshmi Ramaswamy
- Department of Chemistry, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Vishali Solaiappan
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud Alamri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, UK
| | - Kiruthika Sathiasivan
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India.
| |
Collapse
|
24
|
Muthukumar B, Al Salhi MS, Narenkumar J, Devanesan S, Kim W, Rajasekar A. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119223. [PMID: 35351596 DOI: 10.1016/j.envpol.2022.119223] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Crude oil contaminant is one of the major problem to environment and its removal process considered as most challenging tool currently across the world. In this degradation study, crude oil hydrocarbons are degraded on various pH optimization conditions (pH 2, 4,6,7,8 and 10) by using two biosurfactant producing bacterial strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4. During crude oil biodegradation, degradative enzymes alkane hydroxylase and alcohol dehydrogenase were examined and found to be higher in PP4 than PP3. Biodegradation efficiency (BE) of crude oil by both PP3 and PP4 were analysed by gas chromatography mass spectroscopy (GCMS). Based on strain PP3, the highest BE was observed in pH 2 and pH 4 were found to be 62% and 69% than pH 6, 7, 8 and 10 (47%, 47%, 49% and 45%). It reveals that PP3 was survived effectively in acidic condition and utilized the crude oil hydrocarbons. In contrast, the highest BE of PP4 was observed in pH 7 (78%) than pH4 (68%) and pH's 2, 6, 8 and 10 (52%, 52%, 43% and 53%) respectively. FTIR spectra results revealed that the presence of different functional group of hydrocarbons (OH, -CH3, CO, C-H) in crude oil. GCMS results confirmed that both strains PP3 and PP4 were survived in acidic condition and utilized the crude oil hydrocarbons as sole carbon sources. This is the first observation on biodegradation of crude oil by the novel strains of Pseudomonas aeruginosa in acidic condition with higher BE. Overall, the extracellular enzymes and surface active compounds (biosurfactant) produced by bacterial strains were played a key role in crude oil biodegradation process.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Mohamad S Al Salhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073. India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|
25
|
Bu X, Xia Z, Liu Z, Ren M, Wan C, Zhang L. Halomonas jincaotanensis sp. nov., isolated from the Pamir Plateau degrading polycyclic aromatic hydrocarbon. Arch Microbiol 2022; 204:398. [PMID: 35710957 DOI: 10.1007/s00203-022-03008-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023]
Abstract
A Gram-strain-negative, rod-shaped, aerobic bacterium, designated strain TRM 85114T, was isolated from the Jincaotan wetland in the Pamir Plateau of China. This strain grew optimally at 30 °C and pH 6.0 in the presence of 3% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain TRM 85114T was affiliated with the genus Halomonas, and shared high sequence similarity with Halomonas korlensis XK1T (97.3%) and Halomonas tibetensis pyc13T (96.4%). Strain TRM 85114T contained C16:0 and C19:0 cyclo ω8c as primary cellular fatty acids, Q-9 as predominate respiratory quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phospholipids of unknown structure containing glucosamine, unidentified aminophospholipids, unidentified lipids and three unidentified phospholipids as the major polar lipids. The complete genome of TRM 85114T comprised 3,902 putative genes with a total of 4,126,476 bp and a G + C content of 61.6%. The average nucleotide identity and digital DNA-DNA hybridization values between strain TRM 85114T and related type Halomonas strains of H. korlensis XK1T, H. tibetensis pyc13T, Chromohalobacter salexigens DSM 6768T, and Halomonas urumqiensis BZ-SZ-XJ27T were 75.4-88.9% and 22.9-39.2%, respectively. Based on phenotypic, chemotaxonomic, and molecular features, strain TRM 85114T represents a novel species of the genus Halomonas, for which the name is proposed as Halomonas jincaotanensis sp. nov.. The type strain is TRM 85114T (CCTCC AB 2021006T = LMG 32311T). The amount of 1-naphthylamine degradation by strain TRM 85114T reached up to 32.0 mg/L in 14 days.
Collapse
Affiliation(s)
- Xuying Bu
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded By Xinjiang Corps and The Ministry of Science and Technology, College of Life Sciences and Technology, Tarim University, Alaer, 843300, Xinjiang, People's Republic of China
| | - Zhanfeng Xia
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded By Xinjiang Corps and The Ministry of Science and Technology, College of Life Sciences and Technology, Tarim University, Alaer, 843300, Xinjiang, People's Republic of China
| | - Zhanwen Liu
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded By Xinjiang Corps and The Ministry of Science and Technology, College of Life Sciences and Technology, Tarim University, Alaer, 843300, Xinjiang, People's Republic of China
| | - Min Ren
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded By Xinjiang Corps and The Ministry of Science and Technology, College of Life Sciences and Technology, Tarim University, Alaer, 843300, Xinjiang, People's Republic of China.
| | - Chuanxing Wan
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded By Xinjiang Corps and The Ministry of Science and Technology, College of Life Sciences and Technology, Tarim University, Alaer, 843300, Xinjiang, People's Republic of China
| | - Lili Zhang
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded By Xinjiang Corps and The Ministry of Science and Technology, College of Life Sciences and Technology, Tarim University, Alaer, 843300, Xinjiang, People's Republic of China
| |
Collapse
|
26
|
Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: a review. Arch Microbiol 2022; 204:169. [PMID: 35157149 DOI: 10.1007/s00203-022-02767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
Collapse
Affiliation(s)
- Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
| | | | | | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
27
|
Monga D, Kaur P, Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100092. [PMID: 35005657 PMCID: PMC8717453 DOI: 10.1016/j.crmicr.2021.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental pollutants dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons. Environmental pollutants toxicity. Possible microbial biodegradation pathways of environmental pollutants.
Industrialization and human activities have led to serious effects on environment. With the progress taking place in the biodegradation field, it is important to summarize the latest advancement. In this review, we intend to provide insights on the recent progress on the biodegradation of environmental contaminants such as dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons by microorganisms. Along with the biodegradation of environmental contaminants, toxicity effects have also been discussed.
Collapse
|
28
|
Tiralerdpanich P, Nasaree S, Pinyakong O, Sonthiphand P. Variation of the mangrove sediment microbiomes and their phenanthrene biodegradation rates during the dry and wet seasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117849. [PMID: 34325096 DOI: 10.1016/j.envpol.2021.117849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Mangrove sediment is a major sink for phenanthrene in natural environments. Consequently, this study investigated the effects of seasonal variation on the biodegradation rates of low (150 mg kg-1), moderate (600 mg kg-1), and high (1200 mg kg-1) phenanthrene-contaminated mangrove sediments using a microcosm study and identified potential key phenanthrene-degrading bacteria using high throughput sequencing of 16 S rRNA gene and quantitative-PCR of the PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes. The biodegradation rates of phenanthrene in all treatments were higher in the wet-season sediments (11.58, 14.51, and 8.94 mg kg-1 sediment day-1) than in the dry-season sediments (3.51, 12.56, and 5.91 mg kg-1 sediment day-1) possibly due to higher nutrient accumulation caused by rainfall and higher diversity of potential phenanthrene-degrading bacteria. The results suggested that the mangrove sediment microbiome significantly clustered according to season. Although Gram-negative phenanthrene-degrading bacteria (i.e., Anaerolineaceae, Marinobacter, and Rhodobacteraceae) played a key role in both dry and wet seasons, distinctly different phenanthrene-degrading bacterial taxa were observed in each season. Halomonas and Porticoccus were potentially responsible for the degradation of phenanthrene in the dry and wet seasons, respectively. The knowledge gained from this study contributes to the development of effective and rationally designed microbiome innovations for oil removal.
Collapse
Affiliation(s)
- Parichaya Tiralerdpanich
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand
| | - Sirawit Nasaree
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Rachadhavi, Bangkok, 10400, Thailand
| | - Onruthai Pinyakong
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Rachadhavi, Bangkok, 10400, Thailand.
| |
Collapse
|
29
|
Zhang X, Wei D, Li C, Wei L, Zhao M. Effectiveness of sodium sulfite as an electron acceptor for bioenhanced treatment of salt-containing water produced from ASP flooding. CHEMOSPHERE 2021; 282:131002. [PMID: 34118632 DOI: 10.1016/j.chemosphere.2021.131002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The wastewater produced from alkaline-surfactant-polymer (ASP) flooding is a complex multiphase mixture that contains oil, polymers, surfactants and other pollutants and is thus a salt-containing industrial waste recalcitrant to treatments. Through laboratory tests, this study assessed the effectiveness of using sodium sulfite as an electron acceptor for a modified anaerobic baffled reactor (ABR) for removing oil, suspended solids, polymers and surfactants from salt-containing wastewater produced from ASP flooding. During the 90-day operation, the method established in this study successively removed 52.8%, 98.6%, 77.0%, 21.2% and 21.5% of the chemical oxygen demand (COD), oil, suspended solids, polymers and surfactants, respectively, from the wastewater. The changes in organic compounds in the reactor during the treatment were monitored through gas chromatography-mass spectrometry (GC-MS), and the results showed that the established method was very effective in removing alkanes, alkenes, cycloalkanes, aromatic hydrocarbons and esters, and the organic macromolecules in the wastewater were degraded to small molecules. The main bacterial species and microbial communities in the reactor were characterized using molecular biological techniques, and the results indicated that under the stress of high pH and salts, Halomonas sp. gradually dominated and played a major role in degrading hydrocarbons. The findings of this study can aid the development of a cost-effective biological system to treat the water produced from ASP flooding.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Guangzhou HKUST Fok Ying Tung Research Institute, Guang zhou, 511458, China
| | - Dong Wei
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Guangzhou HKUST Fok Ying Tung Research Institute, Guang zhou, 511458, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China.
| |
Collapse
|
30
|
Wen Y, Xu X, Wang B, He Z, Bai J, Chen X, Cui J, Xu X. PAHs biodegradation in soil washing effluent by native mixed bacteria embedded in polyvinyl alcohol-sodium alginate-nano alumina gel beads. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113415. [PMID: 34333310 DOI: 10.1016/j.jenvman.2021.113415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil washing solution containing Tween 80 was conducted using native mixed bacteria (Pseudomonas sp. Z1, Sphingobacterium sp. Z2, and Klebsiella sp. K) embedded in polyvinyl alcohol-sodium alginate-nano alumina (PVA-SA-ALNPs) gel beads. The optimal dosage of immobilized beads and embedded biomass for the biodegradation of phenanthrene (PHE), fluoranthene (FLU), and pyrene (PYR) were 10 % (v/v) and 20 % (v/v), respectively. SEM analysis showed that the porous structure of the immobilized beads was a cross-linked network with abundant pores that provided many potential adhesion sites for microorganisms. The beads with the immobilized mixed bacteria maintained a high activity during batch experiments and could even be reused for 3 cycles (90 d). Compared with the beads containing individual immobilized strain, the immobilized mixed bacteria showed a more efficient biodegradation of PHE (91.67 %), FLU (88.6 %), and PYR (88.5 %) in synthetic soil washing effluent within 30 d. The first-order kinetic model suitably described the degradation process of the three target PAHs. By adding Tween 80 to the synthetic eluent, the degradation of PHE, FLU, and PYR increased by 16.39 %, 22.25 %, and 21.29 %, respectively, indicating that Tween 80 promoted PAHs biodegradation, even though it was also rapidly degraded during the reaction cycle. These findings suggest that the developed mixed bacteria embedded in PVA-SA-ALNPs gel beads has great potential for PAHs remediation.
Collapse
Affiliation(s)
- Yan Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhimin He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaobin Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiahao Cui
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaofang Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
31
|
Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A. A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation. CHEMOSPHERE 2021; 280:130608. [PMID: 33962296 DOI: 10.1016/j.chemosphere.2021.130608] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/15/2023]
Abstract
Over the last century, contamination of polycyclic aromatic hydrocarbons (PAHs) has risen tremendously due to the intensified industrial activities like petrochemical, pharmaceutical, insecticides and fertilizers applications. PAHs are a group of organic pollutants with adverse effects on both humans and the environment. These PAHs are widely distributed in various ecosystems including air, soil, marine water and sediments. Degradation of PAHs generally occurs through processes like photolysis, adsorption, volatilization, chemical degradation and microbial degradation. Microbial degradation of PAHs is done by the utilization of diverse microorganisms like algae, bacteria, fungi which are readily compatible with biodegrading/bio transforming PAHs into H2O, CO2 under aerobic, or CH4 under anaerobic environment. The rate of PAHs degradation using microbes is mainly governed by various cultivation conditions like temperature, pH, nutrients availability, microbial population, chemical nature of PAHs, oxygen and degree of acclimation. Several microbial species including Selenastrum capricornutum, Ralstonia basilensis, Acinetobacter haemolyticus, Pseudomonas migulae, Sphingomonas yanoikuyae and Chlorella sorokiniana are known to degrade PAHs via biosorption and enzyme-mediated degradation. Numerous bacterial mediated PAHs degradation methods are studied globally. Among them, PAHs degradation by bacterial species like Pseudomonas fluorescence, Pseudomonas aeruginosa, Rhodococcus spp., Paenibacillus spp., Mycobacterium spp., and Haemophilus spp., by various degradation modes like biosurfactant, bioaugmentation, biostimulation and biofilms mediated are also investigated. In contrarily, PAHs degradation by fungal species such as Pleurotus ostreatus, Polyporus sulphureus, Fusarium oxysporum occurs using the activity of its ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase. The present review highlighted on the PAHs degradation activity by the algal, fungal, bacterial species and also focused on their mode of degradation.
Collapse
Affiliation(s)
- N Premnath
- Department of Energy Science, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Mohanrasu
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - R Guru Raj Rao
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - G H Dinesh
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - G Siva Prakash
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - V Ananthi
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Microbiology, PRIST University, Madurai, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
32
|
Elumalai P, Parthipan P, AlSalhi MS, Huang M, Devanesan S, Karthikeyan OP, Kim W, Rajasekar A. Characterization of crude oil degrading bacterial communities and their impact on biofilm formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117556. [PMID: 34438488 DOI: 10.1016/j.envpol.2021.117556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
In the present study, produced water sample collected from the Indian crude oil reservoir is used to enrich the bacterial communities. The impact of these enriched bacterial communities on the biodegradation of crude oil, biofilm formation, and biocorrosion process are elucidated. A crude oil degradation study is carried out with the minimal salt medium and 94% of crude oil was utilized by enriched bacterial communities. During the crude oil degradation many enzymes including alkane hydroxylase, alcohol dehydrogenase, and lipase are playing a key role in the biodegradation processes. The role of enriched bacterial biofilm on biocorrosion reactions are monitored by weight loss studies and electrochemical analysis. Weight loss study revealed that the biotic system has vigorous corrosion attacks compared to the abiotic system. Both AC-Impedance and Tafel analysis confirmed that the nature of the corrosion reaction take place in the biotic system. Very less charge transfer resistance and higher corrosion current are observed in the biotic system than in the abiotic system. Scanning electron microscope confirms that the dense biofilm formation favoured the pitting type of corrosion. X-ray diffraction analysis confirms that the metal oxides formed in the corrosion systems (biotic). From the metagenomic analysis of the V3-V4 region revealed that presence of diverse bacterial communities in the biofilm, and most of them are uncultured/unknown. Among the known genus, Bacillus, Halomonas, etc are dominant in the enriched bacterial biofilm sample. From this study, we conclude that the uncultured bacterial strains are found to be playing a key role in the pitting type of corrosion and they can utilize crude oil hydrocarbons, which make them succeeded in extreme oil reservoir environments.
Collapse
Affiliation(s)
- Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Punniyakotti Parthipan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, College of Science, Department of Physics and Astronomy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, College of Science, Department of Physics and Astronomy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India.
| |
Collapse
|
33
|
de Almeida FF, Freitas D, Motteran F, Fernandes BS, Gavazza S. Bioremediation of polycyclic aromatic hydrocarbons in contaminated mangroves: Understanding the historical and key parameter profiles. MARINE POLLUTION BULLETIN 2021; 169:112553. [PMID: 34091245 DOI: 10.1016/j.marpolbul.2021.112553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Sensitive biomes, such as coastal ecosystems, have become increasingly susceptible to environmental impacts caused by oil logistics and storing, which, although more efficient nowadays, still cause spills. Thus, bioremediation techniques attract attention owing to their low impact on the environment. Among petroleum-based compounds, polycyclic aromatic hydrocarbons (PAHs) are known for their potential impact and persistence in the environment. Therefore, PAH bioremediation is notably a technique capable of reducing these polluting compounds in the environment. However, there is a lack of understanding of microbial growth process conditions, leading to a less efficient choice of bioremediation methods. This article provides a review of the bioremediation processes in mangroves contaminated with oils and PAHs and an overview of some physicochemical and biological factors. Special attention was given to the lack of approach regarding experiments that have been conducted in situ and that considered the predominance of the anaerobic condition of mangroves.
Collapse
Affiliation(s)
- Felipe Filgueiras de Almeida
- Department of Civil Engineering, Federal University of Pernambuco (UFPE), Acadêmico Hélio Ramos Avenue, s/n, 50740-530 Recife, PE, Brazil
| | - Danúbia Freitas
- Department of Civil Engineering, Federal University of Pernambuco (UFPE), Acadêmico Hélio Ramos Avenue, s/n, 50740-530 Recife, PE, Brazil
| | - Fabrício Motteran
- Department of Civil Engineering, Federal University of Pernambuco (UFPE), Acadêmico Hélio Ramos Avenue, s/n, 50740-530 Recife, PE, Brazil
| | - Bruna Soares Fernandes
- Department of Civil Engineering, Federal University of Pernambuco (UFPE), Acadêmico Hélio Ramos Avenue, s/n, 50740-530 Recife, PE, Brazil
| | - Sávia Gavazza
- Department of Civil Engineering, Federal University of Pernambuco (UFPE), Acadêmico Hélio Ramos Avenue, s/n, 50740-530 Recife, PE, Brazil.
| |
Collapse
|
34
|
Devanesan S, AlSalhi MS. Effective removal of Cd 2+, Zn 2+ by immobilizing the non-absorbent active catalyst by packed bed column reactor for industrial wastewater treatment. CHEMOSPHERE 2021; 277:130230. [PMID: 34384169 DOI: 10.1016/j.chemosphere.2021.130230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium and zinc are leading heavy metal pollutants causing serious health problems when discharged into the aquatic environments. The present investigation focused on the bioaccumulation of Cd2+ and Zn2+depending on the sorption process by Bacillus amyloliquefaciens HM28. The selected bacterium was multi-metal (Zn2+, Pb2+, Cd2+, Cu2+ and Li+) and antibiotic (cefotaxime, ampicilin, nalidixic acid, ceftazidime, penicillin and kanamycin) resistance was resolved. The identified strain showed maximum resistance onCd2+ (2575 ppm) and Zn2+ (1300 ppm). The sorption of Cd2+ and Zn2+ by a dried bacterium was investigated. Biosorption of Cd2+ was maximum (98.4 ± 5.2%) at 100 mg/L concentration and maximum Zn2+ (98.3 ± 1.5%) was detected in the medium containing 150 mg/L metal ion. Bioremoval was maximum after 30 min contact time with dried biomass and the absorption rate improved. The optimum Cd2+ and Zn2+ bioremoval yield of 93 ± 4.4% and 89.8 ± 4.3% were observed, at pH 7.0 and 7.5, respectively. Despite the significant reduction in growth rate, heavy metals increased nitro-blue tetrazolium reduction from 11 ± 1.3 to 67 ± 3.3%. Dehydrogenase activity elevated due to heavy metal stress. Bacterial biomass was immobilized in a glass column (20 cm × 2 cm). Biosorption of Cd2+ and Zn2+ ions were performed in a packed bed column. The breakthrough time of Cd2+ was 210 min at 1 mL/min flow rate and it decreased 94 min at 5 mL/min flow rate, whereas 240 min at 1 mL/min, and 90 min at 5 mL/min, respectively. The absorption capacity was 4.87 ± 0.8 to 5.43 ± 0.5 mg/g for Cd2+ and 3.85 ± 0.3 to 4.53 ± 0.4 mg/g for Zn2+. The present findings revealed the potential of B. amyloliquefaciens HM28 biomass in Cd2+ and Zn2+ biosorption, with feasibility in the bioremediation of Cd2+ and Zn2+ contaminated water.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
35
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
36
|
Shaikhulova S, Fakhrullina G, Nigamatzyanova L, Akhatova F, Fakhrullin R. Worms eat oil: Alcanivorax borkumensis hydrocarbonoclastic bacteria colonise Caenorhabditis elegans nematodes intestines as a first step towards oil spills zooremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143209. [PMID: 33160671 DOI: 10.1016/j.scitotenv.2020.143209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills. Using animals for oil spills remediation is in its infancy, mostly due to the lack of efficient oil-degrading capabilities in eukaryotes. Here we show that Caenorhabditis elegans nematodes survive for extended periods (up to 22 days) on pure crude oil diet. Moreover, we report for the first time the use of Alcanivorax borkumensis hydrocarbonoclastic bacteria for colonisation of C. elegans intestines, which allows for effective digestion of crude oil by the nematodes. The worms fed and colonised by A. borkumensis demonstrated the similar or even better longevity, resistance against oxidative and thermal stress and reproductivity as those animals fed with Escherichia coli bacteria (normal food). Importantly, A. borkumensis-carrying nematodes were able to accumulate oil droplet from oil-contaminated soils. Artificial colonisation of soil invertebrates with oil-degrading bacteria will be an efficient way to distribute microorganisms in polluted soil, thus opening new avenues for oil spills zooremediation.
Collapse
Affiliation(s)
- Särbinaz Shaikhulova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gӧlnur Fakhrullina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Läysän Nigamatzyanova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
37
|
Al Farraj DA, Alkufeidy RM, Alkubaisi NA, Alshammari MK. Polynuclear aromatic anthracene biodegradation by psychrophilic Sphingomonas sp., cultivated with tween-80. CHEMOSPHERE 2021; 263:128115. [PMID: 33297108 DOI: 10.1016/j.chemosphere.2020.128115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Anthracene is a low molecular weight polynuclear aromatic hydrocarbons (PAHs) being identified as a precedence toxic contaminant in the ecosystem. Thus, the present work was designed to evaluate anthracene biodegradation efficiency by selected marine bacteria. From the marine isolates, the most effective anthracene biodegrading strain was identified as Sphingomonas sp., KSU05. Time course batch growth results indicated that the isolate KSU05 was capable of surviving up to 500 mg/L of anthracene. The influence of various nutrient sources were screened for enhanced growth and pyrene degradation, based on results glucose and tween-80 were used for further optimization studies. Batch experimental analysis showed maximum biodegradation (70.5%) of anthracene (50 mg/L) with enhanced survival of Sphingomonas sp. KSU05 was observed at 96 h of cultivation. Box-Behnken design optimization results showed that the culture conditions enhanced the anthracene biodegradation (90.0%) at pH 7.0, 0.3 mM of tween-80 concentration, and 5.5% of glucose concentration. In addition, the isolate Sphingomonas sp. KSU05 was found to rapidly degrade anthracene within 96 h. The anthracene intermediates was analyzed using Gas chromatography mass spectrophotometer (GC-MS). Overall, this research shown that the Sphingomonas sp., cultivated with suggested optimum conditions could provide an effective prospective for the degradation of anthracene from contaminated environment.
Collapse
Affiliation(s)
- Dunia A Al Farraj
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Roua M Alkufeidy
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maryam K Alshammari
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
38
|
Study on the osmoregulation of "Halomonas socia" NY-011 and the degradation of organic pollutants in the saline environment. Extremophiles 2020; 24:843-861. [PMID: 32930883 DOI: 10.1007/s00792-020-01199-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
"Halomonas socia" NY-011, a new species of moderately halophilic bacteria isolated and identified in our laboratory, can grow in high concentrations of salt ranging from 0.5 to 25%. In this study, the whole genome of NY-011 was sequenced and a detailed analysis of the genomic features was provided. Especially, a series of genes related to salt tolerance and involved in xenobiotics biodegradation were annotated by COG, GO and KEGG analyses. Subsequently, RNA-Seq-based transcriptome analysis was applied to explore the osmotic regulation of NY-011 subjected to high salt stress for different times (0 h, 1 h, 3 h, 6 h, 11 h, 15 h). And we found that the genes related to osmoregulation including excluding Na+ and accumulating K+ as well as the synthesis of compatible solutes (alanine, glutamate, ectoine, hydroxyectoine and glycine betaine) were up-regulated, while the genes involved in the degradation of organic compounds were basically down-regulated during the whole process. Specifically, the expression trend of genes related to osmoregulation increased firstly then dropped, which was almost opposite to that of degrading organic pollutants genes. With the prolongation of osmotic up-shock, NY-011 survived and gradually adapted to osmotic stress, the above-mentioned two classes of genes slowly returned to normal expression level. Then, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were also utilized to observe morphological properties of NY-011 under hypersaline stress, and our findings showed that the cell length of NY-011 became longer under osmotic stress, at the same time, polyhydroxyalkanoates (PHAs) were synthesized in the cells. Besides, physiological experiments confirmed that NY-011 could degrade organic compounds in a high salt environment. These data not only provide valuable insights into the mechanism of osmotic regulation of NY-011; but also make it possible for NY-011 to be exploited for biotechnological applications such as degrading organic pollutants in a hypersaline environment.
Collapse
|
39
|
Al Farraj DA, Hadibarata T, Yuniarto A, Alkufeidy RM, Alshammari MK, Syafiuddin A. Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess Biosyst Eng 2020; 43:2305-2314. [DOI: 10.1007/s00449-020-02415-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
|