1
|
Mazur DM, Artaev VB, Lebedev AT. GC × GC-HRMS with complementary ionization methods in the suspect screening analysis of fragrance allergens: overwhelming or justified? Anal Bioanal Chem 2024; 416:4987-4997. [PMID: 39001903 DOI: 10.1007/s00216-024-05436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Modern gas chromatography-mass spectrometry (GC-MS) allows for the analysis of complex samples, such as fragrances. However, identifying all the constituents in natural fragrance mixtures, especially allergens that need to be listed on product labels, is a significant challenge. This is primarily due to the high complexity of the sample and the fact that electron ionization, the most commonly used ionization method in GC-MS, produces numerous nonspecific fragment ions, often resulting in the absence or very low abundance of the molecular ion. These factors affect confidence in assigning the analyte. In this study, we demonstrate that the combination of GC × GC separation, with high mass resolution and accurate mass measurements, as well as chemical ionization in addition to traditional electron ionization, becomes an efficient tool for reliable qualitative analysis of a mixture containing 100 fragrance allergens, even when many of them are closely related species or isomers. The proposed approach expands the applicability of the comprehensive GC × GC-HRMS method, which includes complementary ionization techniques, from studies on anthropogenic priority pollutants and emerging contaminants to the analysis of natural products. Although targeted qualitative and quantitative analysis of allergens in the modern laboratories is well organized, GC × GC-HRMS, being a useful complement to routine quality control of volatile allergens in fragrances, definitely gives an additional contribution to the analytical cases when conventional 1D-GC-MS faces some problems or uncertainties.
Collapse
Affiliation(s)
- Dmitrii M Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen, 517182, China
| | | | - Albert T Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen, 517182, China.
| |
Collapse
|
2
|
García-Bellido J, Redondo-Velasco M, Freije-Carrelo L, Burnens G, Moldovan M, Bouyssiere B, Giusti P, Encinar JR. Sensitive Detection and Quantification of Oxygenated Compounds in Complex Samples Using GC-Combustion-MS. Anal Chem 2024; 96:10756-10764. [PMID: 38952275 PMCID: PMC11223096 DOI: 10.1021/acs.analchem.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
This work introduces a new element-selective gas chromatography detector for the accurate quantification of traces of volatile oxygen-containing compounds in complex samples without the need for specific standards. The key to this approach is the use of oxygen highly enriched in 18O as the oxidizing gas in a combustion unit (800 °C) that allows us to directly and unambiguously detect the natural oxygen present in the GC-separated compounds through its incorporation into the volatile species formed after their combustion and their subsequent degradation to 16O in the ion source. The unspecific signal due to the low 16O abundance in the oxidizing gas could be compensated by measuring the m/z 12 that comes as well from the CO2 degradation. Equimolarity was proved with several O-containing compounds with different sizes and functionalities. A detection limit of 28 pg of injected O was achieved, which is the lowest ever reported for any GC detector, which barely worsened to 55 and 214 pg of O when the oxygenate partially or completely coeluted with a very abundant matrix compound. Validation was attained by the analysis of a SRM to obtain accurate (99-103%) and precise (1-4% RSD) results. Robustness was tested after spiking a hydrotreated diesel with 10 O-compounds at the ppm level, which could be discriminated from the matrix crowd and quantified (mean recovery of 102 ± 9%) with a single generic standard. Finally, it was also successfully applied to easily spot and quantify the 33 oxygenates naturally present in a complex wood bio-oil sample.
Collapse
Affiliation(s)
- Javier García-Bellido
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| | | | - Laura Freije-Carrelo
- TotalEnergies
One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
| | - Gaëtan Burnens
- TotalEnergies
One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
| | - Mariella Moldovan
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| | - Brice Bouyssiere
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
- Universite
de Pau et des Pay de l’Adour, E2S UPPA CNRS, IPREM, Institut
des Sciences Analytiques et de Physico-chimie pour l’Environnement
et les Matériaux UMR5254, 64053 Pau, France
| | - Pierre Giusti
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
- TotalEnergies,
TotalEnergies Research & Technology Gonfreville, 76700 Harfleur, France
| | - Jorge Ruiz Encinar
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
3
|
Redman ZC, Robine S, Burkhead J, Tomco PL. Non-target analysis of crude oil photooxidation products at high latitudes and their biological effects. CHEMOSPHERE 2024; 356:141794. [PMID: 38579945 DOI: 10.1016/j.chemosphere.2024.141794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/22/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
With new oil and gas lease sales in high-latitude regions, there exists a need to better understand the chemical fate of spilled oil and its effects on biological life. To address this need, laboratory simulations of crude oil spills under sub-Arctic conditions were conducted using artificial seawater and exposure to solar irradiation to create Hydrocarbon Oxidation Products (HOPs). HOPs characterization and their biological effects were assessed using ultra high-performance liquid chromatography (UHPLC) with high resolution mass Orbitrap spectrometry and the aryl hydrocarbon receptor (AhR) chemically activated luciferase gene expression (CALUX) assay. Non-target UHPLC-Orbitrap mass spectrometry analysis identified 251 HOPs that were in greater abundance in light-exposed samples than dark controls. Oxidized polycyclic aromatic hydrocarbons were also detected, including phenanthrene quinone, anthraquinone, hydroxyanthraquinone, and 9-fluoreneone. The composition of HOPs were consistent with photo-products of alkylated two to four ring PAHs, primarily compounds between 1 and 3 aromatic rings and 1-3 oxygens. The HOP mixture formed during photochemical weathering of Cook Inlet crude oil induced greater AhR activity than parent petroleum products solubilized in dark controls, indicating that HOPs, as a complex mixture, may contribute to petroleum toxicity more than the parent petroleum compounds. These non-targeted approaches provide the most comprehensive analysis of hydrocarbon oxidation products to date, highlighting the diversity of the complex mixture resulting from the photooxidation of crude oil and the limitations of targeted analyses for adequately monitoring HOPs in the environment. Taken together, these data identify a critical "blind spot" in environmental monitoring and spill clean-up strategies as there is a diverse pool of HOPs that may negatively impact human and ecosystem health.
Collapse
Affiliation(s)
- Zachary C Redman
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - Sage Robine
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Jason Burkhead
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Patrick L Tomco
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| |
Collapse
|
4
|
Zito P, Sihota N, Mohler RE, Podgorski DC. The formation, reactivity, and fate of oxygen-containing organic compounds in petroleum-contaminated groundwaters: A state of the science review and future research directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170619. [PMID: 38311075 DOI: 10.1016/j.scitotenv.2024.170619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Hydrocarbon (HC) contamination in groundwater (GW) is a widespread environmental issue. Dissolved hydrocarbons in water are commonly utilized as an energy source by natural microbial communities, which can produce water soluble intermediate metabolite compounds, herein referred to as oxygen containing organic compounds (OCOCs), before achieving complete mineralization. This review aims to provide a comprehensive assessment of the literature focused on the state of the science for OCOCs detected and measured in GW samples collected from petroleum contaminated aquifers. In this review, we discuss and evaluate two hypotheses investigating OCOC formation, which are major points of contention in the freshwater oil spill community that need to be addressed. We reviewed over 150 articles compiling studies investigating OCOC formation and persistence to uncover knowledge gaps in the literature and studies that recommend quantitative and qualitative measurements of OCOCs in petroleum-contaminated aquifers. This review is essential because no consensus exists regarding specific compounds and related concerns. We highlight the knowledge gaps to progressing the discussion of hydrocarbon conversion products.
Collapse
Affiliation(s)
- Phoebe Zito
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; Department of Chemistry, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.
| | - Natasha Sihota
- Chevron Technical Center, 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Rachel E Mohler
- Chevron Technical Center, 100 Chevron Way, Richmond, CA 94801, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; Pontchartrain Institute of Environmental Science, Shea Penland Coastal Education and Research Facility, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; Department of Chemistry, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| |
Collapse
|
5
|
Wen W, Xiang H, Qiu H, Chen J, Ye X, Wu L, Chen Z, Tong S. Screening and identification of antibacterial components in Artemisia argyi essential oil by TLC-direct bioautography combined with comprehensive 2D GC × GC-TOFMS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124026. [PMID: 38277723 DOI: 10.1016/j.jchromb.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
One of the primary components that contribute to Artemisia argyi 's effectiveness is essential oil, which has an exceptional antibacterial effect that has been well documented. The actual cause of its antibacterial activity and associated mechanism, however, are still not completely understood. For the first time, comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (2D GC × GC-TOFMS) and thin-layer chromatography-direct bioautography (TLC-DB) were employed to investigate its antibacterial components. The antibacterial properties of A. argyi essential oil were investigated, and the antibacterial activity of six compounds was evaluated, using Staphylococcus aureus (S. aureus) and Escherichia coli (E. coil) as test microorganisms. TLC-direct bioautography was used to screen two bioactive clusters. Following 2D GC × GC-TOFMS identification of bioactive clusters, six compounds were evaluated for in vitro antibacterial activity verification. All the components tested displayed antibacterial action. Results showed that α-terpineol and eugenol had high potent antibacterial activity (MIC<0.62 mg/mL, IC50<2.00 mg/mL). For complex essential oils from traditional Chinese medicine, this method is efficient for quick screening and identifying antibacterial compounds.
Collapse
Affiliation(s)
- Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Jianwei Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Xuemin Ye
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China.
| | - Lin Wu
- Zhejiang ChroMass Technology Co., Ltd, 760 Binan Road, Hangzhou 310052, China
| | - Zhiqiang Chen
- Zhejiang ChroMass Technology Co., Ltd, 760 Binan Road, Hangzhou 310052, China.
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China.
| |
Collapse
|
6
|
O'Reilly KT, Patterson TJ, Zemo DA, Mohler RE. Response to Podgorski and Bekins's comments on Zemo et al. (2022). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106758. [PMID: 37951747 DOI: 10.1016/j.aquatox.2023.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Affiliation(s)
| | - Timothy J Patterson
- Chevron Technical Center (A Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583 USA.
| | - Dawn A Zemo
- Zemo & Associates, Inc., 986 Wander Way, Incline Village, NV 89451 USA
| | - Rachel E Mohler
- Chevron Technical Center (A Chevron USA, Inc. division), 100 Chevron Way 50-1271, Richmond, CA, 94801, USA
| |
Collapse
|
7
|
Zito P, Bekins BA, Martinović-Weigelt D, Harsha ML, Humpal KE, Trost J, Cozzarelli I, Mazzoleni LR, Schum SK, Podgorski DC. Photochemical mobilization of dissolved hydrocarbon oxidation products from petroleum contaminated soil into a shallow aquifer activate human nuclear receptors. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132312. [PMID: 37604033 DOI: 10.1016/j.jhazmat.2023.132312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Elevated non-volatile dissolved organic carbon (NVDOC) concentrations in groundwater (GW) monitoring wells under oil-contaminated hydrophobic soils originating from a pipeline rupture at the National Crude Oil Spill & Natural Attenuation Research Site near Bemidji, MN are documented. We hypothesized the elevated NVDOC is comprised of water-soluble photooxidation products transported from the surface to the aquifer. We use field and laboratory samples in combination with complementary analytical methods to test this hypothesis and determine the biological response to these products. Observations from optical spectroscopy and ultrahigh-resolution mass spectrometry reveal a significant correlation between the chemical composition of NVDOC leached from photochemically weathered soils and GW monitoring wells with high NVDOC concentrations measured in the aquifer beneath the contaminated soil. Conversely, the chemical composition from the uncontaminated soil photoleachate matches the NVDOC observed in the uncontaminated wells. Contaminated GW and photodissolution leachates from contaminated soil activated biological targets indicative of xenobiotic metabolism and exhibited potential for adverse effects. Newly formed hydrocarbon oxidation products (HOPs) from fresh oil could be distinguished from those downgradient. This study illustrates another pathway for dissolved HOPs to infiltrate GW and potentially affect human health and the environment.
Collapse
Affiliation(s)
- Phoebe Zito
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | - Maxwell L Harsha
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Katherine E Humpal
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Jared Trost
- US Geological Survey, Mounds View, MN 55112, USA
| | - Isabelle Cozzarelli
- US Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20191, USA
| | - Lynn R Mazzoleni
- Department of Chemistry, Chemical Advanced Resolution Methods Laboratory, Michigan Technological University, 1400, Townsend Dr., Houghton, MI 49931, USA
| | - Simeon K Schum
- Department of Chemistry, Chemical Advanced Resolution Methods Laboratory, Michigan Technological University, 1400, Townsend Dr., Houghton, MI 49931, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education Research Facility, University of New Orleans, New Orleans, LA 70148 USA
| |
Collapse
|
8
|
Gu W, Wei Y, Fu X, Gu R, Chen J, Jian J, Huang L, Yuan C, Guan W, Hao X. HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense. Foods 2023; 12:foods12112225. [PMID: 37297467 DOI: 10.3390/foods12112225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Zanthoxylum motuoense Huang, native to Tibet, China, is a newly discovered Chinese prickly ash, which, recently, has increasingly attracted the attention of researchers. In order to understand its volatile oil compositions and flavor characteristics, and to explore the flavor difference between Z. motuoense and the common Chinese prickly ash sold in the market, we analyzed the essential oils of Z. motuoense pericarp (MEO) using HS-SPME/GC×GC-TOFMS coupled with multivariate data and flavoromics analyses. The common commercial Chinese prickly ash in Asia, Zanthoxylum bungeanum (BEO), was used as a reference. A total of 212 aroma compounds from the 2 species were identified, among which alcohols, terpenoids, esters, aldehydes, and ketones were the major compounds. The predominant components detected from MEO were citronellal, (+)-citronellal, and β-phellandrene. Six components-citronellal, (E,Z)-3,6-nonadien-1-ol, allyl methallyl ether, isopulegol, 3,7-dimethyl-6-octen-1-ol acetate, and 3,7-dimethyl-(R)-6-octen-1-ol-could be used as the potential biomarkers of MEO. The flavoromics analysis showed that MEO and BEO were significantly different in aroma note types. Furthermore, the content differences of several numb taste components in two kinds of prickly ash were quantitatively analyzed using RP-HPLC. The antimicrobial activities of MEO and BEO against four bacterial strains and nine plant pathogenic fungi were determined in vitro. The results indicated that MEO had significantly higher inhibitory activities against most microbial strains than BEO. This study has revealed the fundamental data in respect of the volatile compound properties and antimicrobial activity of Z. motuoense, offering basic information on valuable natural sources that can be utilized in the condiment, perfume, and antimicrobial sectors.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yinghuan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xianjie Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ronghui Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Junlei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Junyou Jian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Wenling Guan
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650204, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
9
|
Dettman HD, Wade TL, French-McCay DP, Bejarano AC, Hollebone BP, Faksness LG, Mirnaghi FS, Yang Z, Loughery J, Pretorius T, de Jourdan B. Recommendations for the advancement of oil-in-water media and source oil characterization in aquatic toxicity test studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106582. [PMID: 37369158 DOI: 10.1016/j.aquatox.2023.106582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/29/2023]
Abstract
During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.
Collapse
Affiliation(s)
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| | | | | | - Bruce P Hollebone
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | | | - Fatemeh S Mirnaghi
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | - Zeyu Yang
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Baran N, Rosenbom AE, Kozel R, Lapworth D. Pesticides and their metabolites in European groundwater: Comparing regulations and approaches to monitoring in France, Denmark, England and Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156696. [PMID: 35714748 DOI: 10.1016/j.scitotenv.2022.156696] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticides, i.e. plant protection products (PPP), biocides and their metabolites, pose a serious threat to groundwater quality and groundwater dependent ecosystems. Across large parts of Europe these compounds are monitored in groundwater to ensure compliance with the European Water Framework Directive (WFD), the Groundwater Directive (GWD) and Drinking water Directive (DWD). European regulation concerning the placing of PPP on the market includes groundwater monitoring as a higher tier of the regulatory procedure. Nevertheless, the lists of compounds to be monitored vary from one directive to another and between countries. The implementation of monitoring strategies for these directives and other national drivers, differs across Europe. This is illustrated using case studies from France, Denmark (EU member states), England (part of the EU up to January 2020) and Switzerland (associated country). The collection of data (e.g. monitoring design and analytical approaches) and dissemination at national and European level and the scale of data reporting to EU is country-specific. Data generated by the implementation of WFD and DWD can be used for retrospective purposes in the context of PPP registration whereas the post-registration monitoring data generated by the product applicants are generally only directly available to the regulators. This lack of consistency and strategic coordination between thematic regulations is partly compensated by national regulations. This paper illustrates the benefits of a common framework for regulation in Europe but shows that divergent national approaches to monitoring and reporting on pesticides in groundwater makes the task of assessment across Europe challenging.
Collapse
Affiliation(s)
| | | | - Ronald Kozel
- Federal Office for the Environment FOEN, 3003 Bern, Switzerland
| | - Dan Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxon OX10 8BB, UK
| |
Collapse
|
11
|
Zemo DA, Patterson TJ, Kristofco L, Mohler RE, O'Reilly KT, Ahn S, Devine CE, Magaw RI, Sihota N. Complex mixture toxicology: Evaluation of toxicity to freshwater aquatic receptors from biodegradation metabolites in groundwater at a crude oil release site, recent analogous results from other authors, and implications for risk management. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106247. [PMID: 35917677 DOI: 10.1016/j.aquatox.2022.106247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Aquatic toxicity posed by the complex mixture of biodegradation metabolites and related oxygen-containing organic compounds (OCOCs) in groundwater at typical petroleum release sites is of concern to regulatory agencies; several are using results from laboratory studies in older literature that are not appropriate analogs for risk management. Recent field studies from typical sites and natural groundwater should be utilized. In this study, OCOCs downgradient of the biodegrading crude oil release at the USGS Bemidji site were tested for freshwater aquatic toxicity using unaltered whole groundwater samples. This type of testing is optimal because the entire mixture of OCOCs present is tested directly and assessment is not affected by analytical limitations. Ceriodaphnia dubia and Pimephales promelas were tested for toxicity using USEPA Methods 1002 and 1000, which estimate chronic toxicity. OCOCs in representative samples up to the maximum concentration tested of 1710 ug/L Total Petroleum Hydrocarbons (TPH) (nC10 to nC40; without silica gel cleanup) did not result in effects relative to the lab control for C. dubia survival, or for P. promelas survival or growth; and did not result in effects above background for C. dubia reproduction. This is consistent with findings using the same testing methods and species on samples from 14 biodegrading fuel release sites: OCOCs did not cause increased toxicity relative to background at a maximum tested concentration of 1800 ug/L TPH (nC10 to nC28). Based on their toxicity testing using the same species and USEPA methods on groundwater from a biodegrading diesel release site, Washington Department of Ecology recently set a freshwater screening level for OCOCs at 3000 ug/L TPH ("Weathered DRO"). These studies indicate that, in the absence of dissolved hydrocarbons, OCOCs in groundwater from typical biodegrading fuel or crude oil releases are not toxic to C. dubia or P. promelas at typical concentrations.
Collapse
Affiliation(s)
- Dawn A Zemo
- Zemo & Associates, Inc., 986 Wander Way, Incline Village, NV 89451, USA.
| | - Timothy J Patterson
- Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA.
| | - Lauren Kristofco
- Formerly Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Rachel E Mohler
- Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA.
| | | | - Sungwoo Ahn
- Exponent, 15375 SE 30th Place, Bellevue, WA 98007, USA.
| | - Catalina Espino Devine
- Formerly Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Renae I Magaw
- Formerly Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Natasha Sihota
- Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA.
| |
Collapse
|
12
|
Heshka NE, Peru KM, Xin Q, Dettman HD, Headley JV. High resolution Orbitrap mass spectrometry analysis of oxidized hydrocarbons found in freshwater following a simulated spill of crude oil. CHEMOSPHERE 2022; 292:133415. [PMID: 34953875 DOI: 10.1016/j.chemosphere.2021.133415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Negative ion electrospray Orbitrap mass spectrometry was used to analyze water samples taken from a pilot-scale spill tank test of conventional crude oil on freshwater. A 56-day spill test was performed, and water samples were taken at regular intervals throughout the test to determine what changes in water chemistry occur with time. Orbitrap mass spectrometry was used to measure oxidized species in water samples, and oxidized species are analyzed by carbon number, double bond equivalent and hydrocarbon class. Emphasis is placed on changes with time over the course of the spill test, to examine changes by weathering processes that could occur naturally in a field spill scenario. Results demonstrate that while the concentrations of polycyclic aromatic hydrocarbons decrease in the water phase over time, the concentrations of total organic carbon and oxidized species in the water increase with time, where quantities of O2 and O3 species have the highest abundance. Measurement of increasing concentrations and changing relative abundances of these oxidized compounds can be used to assess how oil behaves in a freshwater aquatic environment after a spill.
Collapse
Affiliation(s)
- Nicole E Heshka
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - Kerry M Peru
- Environment and Climate Change Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Heather D Dettman
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - John V Headley
- Environment and Climate Change Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada
| |
Collapse
|
13
|
O'Reilly KT, Sihota N, Mohler RE, Zemo DA, Ahn S, Magaw RI, Devine CE. Orbitrap ESI-MS evaluation of solvent extractable organics from a crude oil release site. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103855. [PMID: 34265523 DOI: 10.1016/j.jconhyd.2021.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.
Collapse
|
14
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|
15
|
Snyder K, Mladenov N, Richardot W, Dodder N, Nour A, Campbell C, Hoh E. Persistence and photochemical transformation of water soluble constituents from industrial crude oil and natural seep oil in seawater. MARINE POLLUTION BULLETIN 2021; 165:112049. [PMID: 33581568 DOI: 10.1016/j.marpolbul.2021.112049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The persistence and transformation of water soluble chemical constituents derived from surface oil from the 2015 Refugio Oil Spill and from a nearby natural seep were evaluated under simulated sunlight conditions. Photoirradiation resulted in enhanced oil slick dissolution, which was more pronounced in spill oil compared to seep oil. Nontargeted analysis based on GC × GC/TOF-MS revealed that photoirradiation promoted oil slick dissolution, and more water soluble compounds were released from spill oil (500 compounds) than from seep oil (180 compounds), most of them (488 in spill oil and 150 in seep oil) still persisting in solution after 67 days of photoirradiation. First-order degradation rate coefficients of humic-like water soluble constituents were found to be 0.26 day-1 and 0.29 day-1 for irradiated spill and seep samples, respectively. The decreases in humic-like fluorescence, specific UV absorbance, and aromatic compounds without corresponding decreases in DOC concentration support indirect photochemical transformation in addition to complete photomineralization.
Collapse
Affiliation(s)
- Kristen Snyder
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Natalie Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States.
| | - William Richardot
- School of Public Health, San Diego State University, San Diego, CA 92182, United States
| | - Nathan Dodder
- School of Public Health, San Diego State University, San Diego, CA 92182, United States
| | - Azin Nour
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Cari Campbell
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
16
|
Podgorski DC, Zito P, Kellerman AM, Bekins BA, Cozzarelli IM, Smith DF, Cao X, Schmidt-Rohr K, Wagner S, Stubbins A, Spencer RGM. Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123998. [PMID: 33254831 DOI: 10.1016/j.jhazmat.2020.123998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/17/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Relationships between dissolved organic matter (DOM) reactivity and chemical composition in a groundwater plume containing petroleum-derived DOM (DOMHC) were examined by quantitative and qualitative measurements to determine the source and chemical composition of the compounds that persist downgradient. Samples were collected from a transect down the core of the plume in the direction of groundwater flow. An exponential decrease in dissolved organic carbon concentration resulting from biodegradation along the transect correlated with a continuous shift in fluorescent DOMHC from shorter to longer wavelengths. Moreover, ultrahigh resolution mass spectrometry showed a shift from low molecular weight (MW) aliphatic, reduced compounds to high MW, unsaturated (alicyclic/aromatic), high oxygen compounds that are consistent with carboxyl-rich alicyclic molecules. The degree of condensed aromaticity increased downgradient, indicating that compounds with larger, conjugated aromatic core structures were less susceptible to biodegradation. Nuclear magnetic resonance spectroscopy showed a decrease in alkyl (particularly methyl) and an increase in aromatic/olefinic structural motifs. Collectively, data obtained from the combination of these complementary analytical techniques indicated that changes in the DOMHC composition of a groundwater plume are gradual, as relatively low molecular weight (MW), reduced, aliphatic compounds from the oil source were selectively degraded and high MW, alicyclic/aromatic, oxidized compounds persisted.
Collapse
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA.
| | - Phoebe Zito
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Anne M Kellerman
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | | | | | - Donald F Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Xiaoyan Cao
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | | | - Sasha Wagner
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Department of Marine and Environmental Sciences, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Aron Stubbins
- Department of Chemistry and Chemical Biology, Department of Marine and Environmental Sciences, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
17
|
Zhang X, Han J, Zhang X, Shen J, Chen Z, Chu W, Kang J, Zhao S, Zhou Y. Application of Fourier transform ion cyclotron resonance mass spectrometry to characterize natural organic matter. CHEMOSPHERE 2020; 260:127458. [PMID: 32693253 DOI: 10.1016/j.chemosphere.2020.127458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Advances in the ultra-high-resolution mass spectroscopy lead to a deep insight into the molecular characterization of natural organic matter (NOM). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been used as one of the most powerful tools to decipher NOM molecules. In FTICR-MS analysis, the matrix effects caused by the co-occurring inorganic substances in water samples greatly affect the ionization of NOM molecules. The inherent complexity of NOM may hinder its component classification and formula assignment. In this study, basic principles and recent advances for sample separation and purification approaches, ionization methods, and the evolutions in formula assignment and data exploitation of the FTICR-MS analysis were reviewed. The complementary characterization methods for FTICR-MS were also reviewed. By coupling with other developed/developing characterization methods, the statistical confidence for inferring the NOM compositions by FTICR-MS was greatly improved. Despite that the refined separation procedures and advanced data processing methods for NOM molecules have been exploited, the big challenge for interpreting NOM molecules is to give the basic structures of them. Online share of the FTICR-MS data, further optimizing the FTICR-MS technique, and coupling this technique with more characterization methods would be beneficial to improving the understanding of the composition and property of NOM.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
18
|
Bekins BA, Brennan JC, Tillitt DE, Cozzarelli IM, Illig JM, Martinović-Weigelt D. Biological Effects of Hydrocarbon Degradation Intermediates: Is the Total Petroleum Hydrocarbon Analytical Method Adequate for Risk Assessment? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11396-11404. [PMID: 32790354 DOI: 10.1021/acs.est.0c02220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In crude oil contaminant plumes, the dissolved organic carbon (DOC) is mainly hydrocarbon degradation intermediates only partly quantified by the diesel range total petroleum hydrocarbon (TPHd) method. To understand potential biological effects of degradation intermediates, we tested three fractions of DOC: (1) solid-phase extract (HLB); (2) dichloromethane (DCM-total) extract used in TPHd; and (3) DCM extract with hydrocarbons isolated by silica gel cleanup (DCM-SGC). Bioactivity of extracts from five wells spanning a range of DOC was tested using an in vitro multiplex reporter system that evaluates modulation of the activity of 46 transcription factors; extracts were evaluated at concentrations equivalent to the well water samples. The aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) transcription factors showed the greatest upregulation, with HLB exceeding DCM-total, and no upregulation in the hydrocarbon fraction (DCM-SGC). The HLB extracts were further studied with HepG2 chemically activated luciferase expression (CALUX) in vitro assays at nine concentrations ranging from 40 to 0.01 times the well water concentrations. Responses decreased with distance from the source but were still present at two wells without detectable hydrocarbons. Thus, our in vitro assay results indicate that risks associated with degradation intermediates of hydrocarbons in groundwater will be underestimated when protocols that remove these chemicals are employed.
Collapse
|