1
|
Li Q, Feng G, Chen H, Cai C, Mao P. Adsorption capacity and mechanism of uranium by Fusarium verticillioides HX-3 isolated from a uranium mining site. Appl Radiat Isot 2025; 222:111857. [PMID: 40262427 DOI: 10.1016/j.apradiso.2025.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/07/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Microorganisms that survive in extreme environments may possess special survival abilities. In this study, the adsorption capacity and mechanism of F. verticillioides HX-3, a fungus isolated from uranium mine wastewater, for uranium were investigated. Single factor batch experiments such as adsorption time, biomass dosage, pH, temperature, initial uranium concentration and coexisting ion were used to study the uranium adsorption capacity of biomass. The adsorption mechanism was further explored using kinetic, isothermal, thermodynamic models, and microscopic characterization techniques. The results demonstrated that under optimal experimental conditions, the biomass reached an adsorption capacity of 10.47 mg/g at a uranium concentration of 15 mg/L, with an adsorption efficiencies of 93 %. The study also revealed that the biomass adsorption process involves inhomogeneous multilayer chemisorption and exhibits spontaneous endothermic behavior. SEM-EDS analysis revealed that U(IV) primarily adsorbs onto the biomass surface. FTIR analysis showed that the functions that played the main role in the adsorption process were amino, hydroxyl, carbonyl, and acylamino groups. In summary, F. verticillioides HX-3 holds great potential for treating uranium-containing wastewater and can serve as an environmentally friendly biosorbent.
Collapse
Affiliation(s)
- Qin Li
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.
| | - Changlong Cai
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an, Shaanxi, 710032, PR China.
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| |
Collapse
|
2
|
Qiang S, Liu L, Li S, Wang S, Huang X, Yang J, Song J, Zhang Y, Huang Y, Fan Q. Prediction of the Non-Reducing Biomineralization of Nuclide-Microbial Interactions by Machine Learning: The Case of Uranium and Bacillus subtilis. TOXICS 2025; 13:305. [PMID: 40278621 PMCID: PMC12030973 DOI: 10.3390/toxics13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Bacillus subtilis exhibits a great affinity to soluble U(VI) through non-reducing biomineralization. The pH value, temperature, initial uranium concentration, bacterial concentration, and adsorption time are recognized as the five environmental sensitive factors that can regulate the degree of non-reductive biomineralization. Most of the current studies have focused on the regulatory mechanisms of these factors on uranium non-reductive mineralization. However, there are still few reports on the importance of these factors in influencing non-reductive mineralization, as well as on how to regulate these factors to increase the efficiency of non-reductive mineralization and enhance the enrichment of Bacillus subtilis on uranium. In this work, a deep learning neural network model was constructed to effectively predict the effects of changes in these five environmental sensitivity factors on the non-reducing mineralization of Bacillus subtilis to uranium. Accuracy (99.6%) and R2 (up to 0.89) confirm a high degree of agreement between the predicted output and the observed values. Sensitivity analysis shows that in this model, pH value is the most important influencing factor. However, under different pH values, temperature, initial uranium concentration, adsorption time, and bacterial concentration have different effects. When the pH value is lower than 6, the most important factor is temperature, and once the pH value is greater than 6, the initial concentration is the most important factor. The results are expected to provide a theoretical basis for regulating the enrichment degree of U(VI) by Bacillus subtilis, achieving the maximum long-term stable fixation of U(VI), and understanding the environmental chemical behavior of uranium under different conditions.
Collapse
Affiliation(s)
- Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Leijin Liu
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Siqi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinyang Huang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jiaxin Yang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jiayu Song
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yue Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongxiang Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Cai Q, Obieze CC, Pyke R, Delorme K, Maynard C, Greer CW, Khasa D. Gradient of acid mine drainage regulates microbial community assembly and the diversity of species associated with native plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125059. [PMID: 39362621 DOI: 10.1016/j.envpol.2024.125059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Acid mine drainage (AMD) is considered as one of the most important global environmental challenges. Therefore, understanding the impact of AMD on the diversity of microbial communities associated with native plants is important for phytoremediation. In this study, the community assembly and microbial diversity associated with native plants growing along an AMD impact gradient was investigated using metabarcoding and high throughput iChip technique. The study revealed that across both domains of bacteria and fungi, richness and species diversity decreased according to AMD impact. Bacterial species diversity was more stratified according to the pH gradient than fungi, and the AMD impact on the plant-associated microbial diversity decreased towards the plant roots. The microbial community composition of the undisturbed site was significantly different from the AMD impacted sites, and the communities in the AMD impacted sites were further stratified according to the degree of impact. The overall microbial diversity was mediated by the AMD impact, niche differences and plant species differences. Dispersal limitation was the most important community assembly process in the undisturbed site, while the homogenous selection of Burkholderia, Actinospica, Puia and Bradyrhizobium increased along the AMD impact gradient. Differential abundance analysis further revealed that Umbelopsis, Burkholderia and Sphingomonas were among the biomarkers of the AMD impacted sites. Several strains of some of these responsive genera were subsequently isolated using the iChip. Overall, this study presents novel insight into the ecology of plant-associated microbial communities that are relevant for environmental monitoring and for enhancing the revegetation of AMD impacted sites.
Collapse
Affiliation(s)
- Qinhong Cai
- Department of Natural Resource Sciences, McGill University, Canada.
| | - Chinedu C Obieze
- Institut de biologie intégrative et des systèmes, Université Laval, Canada.
| | - Ruby Pyke
- Department of Natural Resource Sciences, McGill University, Canada
| | - Karine Delorme
- Department of Natural Resource Sciences, McGill University, Canada
| | - Christine Maynard
- Energy, Mining and Environment Research Centre, National Research Council Canada, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Canada
| | - Damase Khasa
- Institut de biologie intégrative et des systèmes, Université Laval, Canada
| |
Collapse
|
4
|
Moreira D, Alves GS, Rodrigues JMM, Estevam BR, Sales DH, Américo-Pinheiro JHP, Vasconcelos AFD, Boina RF. Exploring the biosorption of nickel and lead by Fusarium sp. biomass: kinetic, isotherm, and thermodynamic assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59592-59609. [PMID: 39361204 DOI: 10.1007/s11356-024-35192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.
Collapse
Affiliation(s)
- Daniele Moreira
- Department of Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, 15385-000, Brazil.
| | - Gabriela Souza Alves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - João Marcos Madeira Rodrigues
- Department of Biotechnology, Faculty of Sciences and Letters, São Paulo State University (UNESP), Assis, SP, 19806-900, Brazil
| | - Bianca Ramos Estevam
- Department of Process and Product Development, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil
| | - Douglas Henrique Sales
- Department of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forestry, Soil and Environmental Science, Faculty of Agricultural Sciences, School of Technology and Sciences UNESP, Botucatu, SP, 18610-034, Brazil
| | - Ana Flora Dalberto Vasconcelos
- Department of Chemistry and Biochemistry, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Rosane Freire Boina
- Department of Planning, Urbanism and Environment, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
5
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Kumar K, Singh D. Toxicity and bioremediation of the lead: a critical review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1879-1909. [PMID: 36617394 DOI: 10.1080/09603123.2023.2165047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Lead is a naturally occurring, bluish-gray metal that is found in small quantities in the earth's crust. The existing literature demonstrates that non-biodegradable character and continuous use results in accumulation of lead concentration in the environment and causes various ill effects such as neurotoxicity, change in psychological and behavioral development of different organisms. Nowadays the most effective technique in the revival of the environment is bioremediation and it is environmentally friendly and cost-effective. Bacterial strains such as Oceanobacillus profundus and Lactobacillus acidophilus ATCC4356 have the ability to reduce lead 97% and 73.9%, respectively. Similarly some species of algae and fungal strains also showed lead removal efficiency as 74% (spirulina), 97.1% (Chlorella kessleri), 95.5% (Penicillium janthinillum) and 86% (Aspergillus flavus). Biodegradation of lead by various microbes would be the most efficient and sustainable approach. This review focuses on toxicity, fate of lead in the environment and its microbial degradation.
Collapse
Affiliation(s)
- Khushhal Kumar
- Department of Zoology, Central University of Jammu, Rahya-Suchani, Samba, Jammu and Kashmir, India
| | - Devinder Singh
- Department of Zoology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
7
|
Ighalo JO, Chen Z, Ohoro CR, Oniye M, Igwegbe CA, Elimhingbovo I, Khongthaw B, Dulta K, Yap PS, Anastopoulos I. A review of remediation technologies for uranium-contaminated water. CHEMOSPHERE 2024; 352:141322. [PMID: 38296212 DOI: 10.1016/j.chemosphere.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000 Kazakhstan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Isaiah Elimhingbovo
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostaki Campus, Arta 47100, Greece
| |
Collapse
|
8
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
9
|
Li Q, Xiong Z, Xiang P, Zhou L, Zhang T, Wu Q, Zhao C. Effects of uranium mining on soil bacterial communities and functions in the Qinghai-Tibet plateau. CHEMOSPHERE 2024; 347:140715. [PMID: 37979803 DOI: 10.1016/j.chemosphere.2023.140715] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The microecological effects of plateau uranium mining are still unknown. In this study, we used 16S rRNA high-throughput sequencing to analyze the impact of plateau uranium mining on the microbial diversity and community structure of tailings soil, tunnel soil, and soil at different depths in an open pit. The results showed that uranium mining significantly reduced soil microbial community richness and diversity indicators, including Chao1, Pielou evenness, and Shannon index (P < 0.05). Uranium mining activities significantly reduced the abundance of RB41, Vicinamidactaceae, and Nitrospira (P < 0.05). Interestingly, the abundance of Thiobacillus, Sphingomonas, and Sulfuriferula significantly increased in the soil samples from various environments and depths during uranium mining (P < 0.05). Beta diversity analysis found that uranium mining resulted in the differentiation of soil microbial communities. Functional enrichment analysis found that uranium mining resulted in the functional enrichment of DNA binding response regulator, DNA helicase, methyl-accepting chemotaxis protein, and Helicase conserved C-terminal domain, whereas cell wall synthesis, nonspecific serine/threonine protein kinase, RNA polymerase sigma-70 factor, and ATP binding cassette transporter were significantly affected by uranium mining (P < 0.05). In addition, we also found that different uranium mining environments and soil depths enriched diverse microbial populations and functions to cope with the environmental pressures that were elicited by uranium mining, including Gaiella, Gemmatimonas, Lysobacter, Pseudomonas, signal transformation histidine kinase, DNA-directed DNA polymerase, and iron complex outer membrane receptor protein functions (P < 0.05). The results have enhanced our understanding of the impact of uranium mining on plateau soil microecological stability and the mechanism of microbial response to uranium mining activities for the first time and aided us in screening microbial strains that can promote the environmental remediation of uranium mining in plateaus.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Morales-Mendoza AG, Flores-Trujillo AKI, Ramírez-Castillo JA, Gallardo-Hernández S, Rodríguez-Vázquez R. Effect of Micro-Nanobubbles on Arsenic Removal by Trichoderma atroviride for Bioscorodite Generation. J Fungi (Basel) 2023; 9:857. [PMID: 37623628 PMCID: PMC10455231 DOI: 10.3390/jof9080857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The global environmental issue of arsenic (As) contamination in drinking water is a significant problem that requires attention. Therefore, the aim of this research was to address the application of a sustainable methodology for arsenic removal through mycoremediation aerated with micro-nanobubbles (MNBs), leading to bioscorodite (FeAsO4·2H2O) generation. To achieve this, the fungus Trichoderma atroviride was cultivated in a medium amended with 1 g/L of As(III) and 8.5 g/L of Fe(II) salts at 28 °C for 5 days in a tubular reactor equipped with an air MNBs diffuser (TR-MNBs). A control was performed using shaking flasks (SF) at 120 rpm. A reaction was conducted at 92 °C for 32 h for bioscorodite synthesis, followed by further characterization of crystals through Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) analyses. At the end of the fungal growth in the TR-MNBs, the pH decreased to 2.7-3.0, and the oxidation-reduction potential (ORP) reached a value of 306 mV at 5 days. Arsenic decreased by 70%, attributed to possible adsorption through rapid complexation of oxidized As(V) with the exchangeable ferrihydrite ((Fe(III))4-5(OH,O)12), sites, and the fungal biomass. This mineral might be produced under oxidizing and acidic conditions, with a high iron concentration (As:Fe molar ratio = 0.14). The crystals produced in the reaction using the TR-MNBs culture broth and characterized by SEM, XRD, and FTIR revealed the morphology, pattern, and As-O-Fe vibration bands typical of bioscorodite and römerite (Fe(II)(Fe(III))2(SO4)4·14H2O). Arsenic reduction in SF was 30%, with slight characteristics of bioscorodite. Consequently, further research should include integrating the TR-MNBs system into a pilot plant for arsenic removal from contaminated water.
Collapse
Affiliation(s)
- Asunción Guadalupe Morales-Mendoza
- Doctoral Program in Nanosciences and Nanotechnology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico;
| | - Ana Karen Ivanna Flores-Trujillo
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico; (A.K.I.F.-T.); (J.A.R.-C.)
| | - Jesús Adriana Ramírez-Castillo
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico; (A.K.I.F.-T.); (J.A.R.-C.)
- Subdirection of Health Riks, National Center of Disasters Prevention CENAPRED, Delfin Madrigal Avenue, No. 665, Pedregal de Santo Domingo, Coyoacán, Mexico City 04360, Mexico
| | - Salvador Gallardo-Hernández
- Departament of Physics, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico;
| | - Refugio Rodríguez-Vázquez
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico; (A.K.I.F.-T.); (J.A.R.-C.)
| |
Collapse
|
11
|
Michael HSR, Subiramanian SR, Thyagarajan D, Mohammed NB, Saravanakumar VK, Govindaraj M, Maheswari KM, Karthikeyan N, Ramesh Kumar C. Melanin biopolymers from microbial world with future perspectives-a review. Arch Microbiol 2023; 205:306. [PMID: 37580645 DOI: 10.1007/s00203-023-03642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Melanin is an amorphous polymer made of heterogeneous functional groups synthesized by diverse organisms including fungi, bacteria, animals, and plants. It was widely acknowledged for its biological processes and its key role in the protection of organisms from environmental stress. Recently, melanin clutches attention in the field of nanobiotechnology, drug delivery, organic semiconductors and bioelectronics, environmental bioremediation, photoprotection, etc., Furthermore, melanin from natural sources like microbial community shows antimicrobial, fighting cancer, radical scavenging, cosmeceuticals, and many therapeutic areas as well. Though the multipotentiality nature of melanin has been put forth, real-world applications still flag fall behind, which might be anticipated to the inadequate and high price essence of natural melanin. However, current bioprocess technologies have paved for the large-scale or industrial production of microbial melanin, which could help in the replacement of synthetic melanin. Thus, this review emphasizes the various sources for melanin, i.e., types-based on its pathways and its chemical structures, functional efficiency, physical properties, and conventional and modern methods of both extraction and characterization. Moreover, an outlook on how it works in the field of medicine, bioremediation, and other related areas provides perspectives on the complete exploitation of melanin in practical applications of medicine and the environment.
Collapse
Affiliation(s)
| | - Shri Ranjani Subiramanian
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Divyavaahini Thyagarajan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Nazneen Bobby Mohammed
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur Dist, Andhra Pradesh, India
| | | | - Mageswari Govindaraj
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | | | - Naresh Karthikeyan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Charu Ramesh Kumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| |
Collapse
|
12
|
Adeola AO, Iwuozor KO, Akpomie KG, Adegoke KA, Oyedotun KO, Ighalo JO, Amaku JF, Olisah C, Conradie J. Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2663-2689. [PMID: 36097208 DOI: 10.1007/s10653-022-01378-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Several anthropogenic activities produce radioactive materials into the environment. According to reports, exposure to high concentrations of radioactive elements such as potassium (40K), uranium (238U and 235U), and thorium (232Th) poses serious health concerns. The scarcity of reviews addressing the occurrence/sources, distribution, and remedial solutions of radioactive contamination in the ecosystems has fueled data collection for this bibliometric survey. In rivers and potable water, reports show that several parts of Europe and Asia have recorded radionuclide concentrations much higher than the permissible level of 1 Bq/L. According to various investigations, activity concentrations of gamma-emitting radioactive elements discovered in soils are higher than the global average crustal values, especially around mining activities. Adsorption technique is the most prevalent remedial method for decontaminating radiochemically polluted sites. However, there is a need to investigate integrated approaches/combination techniques. Although complete radionuclide decontamination utilizing the various technologies is feasible, future research should focus on cost-effectiveness, waste minimization, sustainability, and rapid radionuclide decontamination. Radioactive materials can be harnessed as fuel for nuclear power generation to meet worldwide energy demand. However, proper infrastructure must be put in place to prevent catastrophic disasters.
Collapse
Affiliation(s)
- A O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - K O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria
| | - K G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - K A Adegoke
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - K O Oyedotun
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria, 0028, South Africa
| | - J O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | - J F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - C Olisah
- Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa
| | - J Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
13
|
Lin L, Zhang T, Xu J. Genetic and Environmental Factors Influencing the Production of Select Fungal Colorants: Challenges and Opportunities in Industrial Applications. J Fungi (Basel) 2023; 9:585. [PMID: 37233296 PMCID: PMC10219082 DOI: 10.3390/jof9050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Natural colorants, mostly of plant and fungal origins, offer advantages over chemically synthetic colorants in terms of alleviating environmental pollution and promoting human health. The market value of natural colorants has been increasing significantly across the globe. Due to the ease of artificially culturing most fungi in the laboratory and in industrial settings, fungi have emerged as the organisms of choice for producing many natural colorants. Indeed, there is a wide variety of colorful fungi and a diversity in the structure and bioactivity of fungal colorants. Such broad diversities have spurred significant research efforts in fungi to search for natural alternatives to synthetic colorants. Here, we review recent research on the genetic and environmental factors influencing the production of three major types of natural fungal colorants: carotenoids, melanins, and polyketide-derived colorants. We highlight how molecular genetic studies and environmental condition manipulations are helping to overcome some of the challenges associated with value-added and large-scale productions of these colorants. We finish by discussing potential future trends, including synthetic biology approaches, in the commercial production of fungal colorants.
Collapse
Affiliation(s)
- Lan Lin
- Key Laboratory of Developmental Genes and Human Diseases (MOE), School of Life Science and Technology, Southeast University, Nanjing 210096, China;
| | - Tong Zhang
- Department of Bioengineering, Medical School, Southeast University, Nanjing 210009, China;
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Silva NMD, Reis GF, Costa FDF, Grisolia ME, Geraldo MR, Lustosa BPR, Lima BJFDS, Weiss VA, de Souza EM, Li R, Song Y, Nascimento MMF, Robl D, Gomes RR, de Hoog GS, Vicente VA. Genome sequencing of Cladophialophora exuberans, a novel candidate for bioremediation of hydrocarbon and heavy metal polluted habitats. Fungal Biol 2023; 127:1032-1042. [PMID: 37142362 DOI: 10.1016/j.funbio.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
Cladophialophora exuberans is a filamentous fungus related to black yeasts in the order Chaetothyriales. These melanized fungi are known for their 'dual ecology', often occurring in toxic environments and also being frequently involved in human infection. Particularly Cladophialophora exuberans, C. immunda, C. psammophila, and Exophiala mesophila have been described with a pronounced ability to degrade aromatic compounds and xenobiotic volatiles, such as benzene, toluene, ethyl-benzene, and xylene, and are candidates for bioremediation applications. The objective of the present study is the sequencing, assembly, and description of the whole genome of C. exuberans focusing on genes and pathways related to carbon and toxin management, assessing the tolerance and bioremediation of lead and copper, and verifying the presence of genes for metal homeostasis. Genomic evaluations were carried out through a comparison with sibling species including clinical and environmental strains. Tolerance of metals was evaluated via a microdilution method establishing minimum inhibitory (MIC) and fungicidal concentrations (MFC), and agar diffusion assays. Heavy metal bioremediation was evaluated via graphite furnace atomic absorption spectroscopy (GFAAS). The final assembly of C. exuberans comprised 661 contigs, with genome size of 38.10 Mb, coverage of 89.9X and a GC content of 50.8%. In addition, inhibition of growth was shown at concentrations of 1250 ppm for copper and at 625 ppm for lead, using the MIC method. In the agar tests, the strain grew at 2500 ppm of copper and lead. In GFAAS tests, uptake capacities were observed of 89.2% and 95.7% for copper and lead, respectively, after 21 experimental days. This study enabled the annotation of genes involved in heavy metal homeostasis and also contributed to a better understanding of the mechanisms used in tolerance of and adaptation to extreme conditions.
Collapse
Affiliation(s)
- Nickolas Menezes da Silva
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil; Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Guilherme Fonseca Reis
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Flávia de Fátima Costa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Eduarda Grisolia
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil; Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Marlon Roger Geraldo
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bruno Paulo Rodrigues Lustosa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bruna Jacomel Favoreto de Souza Lima
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Vinicius Almir Weiss
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yinggai Song
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | | | - Diogo Robl
- Microbiology, Immunology and Parasitology Department, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Renata Rodrigues Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Vania Aparecida Vicente
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil; Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
16
|
Dusengemungu L, Gwanama C, Simuchimba G, Mubemba B. Potential of bioaugmentation of heavy metal contaminated soils in the Zambian Copperbelt using autochthonous filamentous fungi. Front Microbiol 2022; 13:1045671. [PMID: 36532421 PMCID: PMC9752026 DOI: 10.3389/fmicb.2022.1045671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2023] Open
Abstract
There is great potential to remediate heavy metal contaminated environments through bioaugmentation with filamentous fungi. However, these fungi have been poorly investigated in most developing countries, such as Zambia. Therefore, the present study aimed at isolating indigenous filamentous fungi from heavy metal contaminated soil and to explore their potential for use in bioaugmentation. The conventional streak plate method was used to isolate fungi from heavy metal-contaminated soil. Filamentous fungal isolates were identified using morphological and molecular techniques. The radial growth diameter technique was used to evaluate heavy metal tolerance of the fungi. The most abundant and highly tolerant fungi, identified as Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum species, were used to bioremediate heavy metal contaminated soil samples with uncontaminated soil sample being employed as a control. A maximum tolerance index (TI) between 0.7 and 11.0 was observed for A. transmontanensis, and G. candidum while C. cladosporioides displayed the TI between 0.2 and 1.2 in the presence of 1,000 ppm of Cu, Co, Fe, Mn, and Zn. The interspecific interaction was analyzed to determine the compatibility among isolates. Our results showed mutual intermingling between the three evaluated fungal species, which confirms their common influence in biomineralization of heavy metals in contaminated soils. Maximum bio-removal capacities after 90 days were 72% for Cu, 99.8% for Co, 60.6% for Fe, 82.2% for Mn, and 100% for both Pb and Zn. This study has demonstrated the potential of highly resistant autochthonous fungal isolates to remediate the heavy metal contamination problem.
Collapse
Affiliation(s)
- Leonce Dusengemungu
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
- Africa Centre of Excellence for Sustainable Mining, The Copperbelt University, Kitwe, Zambia
| | - Cousins Gwanama
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | - Grant Simuchimba
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | - Benjamin Mubemba
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| |
Collapse
|
17
|
Liu R, Meng X, Mo C, Wei X, Ma A. Melanin of fungi: from classification to application. World J Microbiol Biotechnol 2022; 38:228. [PMID: 36149606 DOI: 10.1007/s11274-022-03415-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Melanin is a secondary metabolite composed of complex heterogeneous polymers. Fungal melanin is considered to be a sustainable and biodegradable natural pigment and has a variety of functional properties and biological activities. On one hand, due to its own specific properties it can play the role of antioxidant, anti-radiation, adsorption, and photoprotection. On the other hand, it has good biological activities such as hepatoprotective effect, hypolipidemic effect and anti-cancer. Therefore, it is widely used in various fields of daily life, including dyeing, food, biomedical and commercial industry. It is conducive to environmental protection and human health. However, the insolubility of fungal melanin in water, acids and organic solvents has been an obstacle to its commercial applications. Thus, the chemical modification methods of fungal melanin are summarized to increase its solubility and expand the application fields. Although fungal melanin has been used in many industries, as the structure and function of fungal melanin and modified melanin are further studied, more functional properties and bioactivities are expected to be discovered for a wide range of applications in the future.
Collapse
Affiliation(s)
- Ruofan Liu
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xianfu Meng
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cuiyuan Mo
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, 430070, Wuhan, China.
| |
Collapse
|
18
|
Liu B, Cui W, Zhou J, Wang H. A Novel Triphenylamine-Based Flavonoid Fluorescent Probe with High Selectivity for Uranyl in Acid and High Water Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186987. [PMID: 36146333 PMCID: PMC9503699 DOI: 10.3390/s22186987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 05/14/2023]
Abstract
Developing a fluorescent probe for UO22+, which is resistant to interference from other ions such as Cu2+ and can be applied in acidic and high-water systems, has been a major challenge. In this study, a "turn-off" fluorescent probe for triamine-modified flavonoid derivatives, 2-triphenylamine-3-hydroxy-4H-chromen-4-one (abbreviated to HTPAF), was synthesized. In the solvent system of dimethyl sulfoxide:H2O (abbreviated to DMSO:H2O) (v/v = 5:95 pH = 4.5), the HTPAF solution was excited with 364 nm light and showed a strong fluorescence emission peak at 474 nm with a Stokes shift of 110 nm. After the addition of UO22+, the fluorescence at 474 nm was quenched. More importantly, there was no interference in the presence of metal ions (Pb2+, Cd2+, Cr3+, Fe3+, Co2+, Th4+, La3+, etc.), especially Cu2+ and Al3+. It is worth noting that the theoretical model for the binding of UO22+ to HTPAF was derived by more detailed density functional theory (DFT) calculations in this study, while the coordination mode was further verified using HRMS, FT-IR and 1HNMR, demonstrating a coordination ratio of 1:2. In addition, the corresponding photo-induced electron transfer (PET) fluorescence quenching mechanism was also proposed.
Collapse
Affiliation(s)
- Bing Liu
- Library, University of South China, Hengyang 421001, China
| | - Wenbin Cui
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jianliang Zhou
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: or
| |
Collapse
|
19
|
Talaromyces amestolkiae uses organic phosphate sources for the treatment of uranium-contaminated water. Biometals 2022; 35:335-348. [PMID: 35195804 DOI: 10.1007/s10534-022-00374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
Abstract
Fungi have received particular attention in regards to alternatives for bioremediation of heavy metal contaminated locales. Enzymes produced by filamentous fungi, such as phosphatases, can precipitate heavy metal ions in contaminated environments, forming metal phosphates (insoluble). Thus, this research aimed to analyze fungi for uranium biomineralization capacity. For this, Gongronella butleri, Penicillium piscarium, Rhodotorula sinensis and Talaromyces amestolkiae were evaluated. Phytate and glycerol 2-phosphate were used as the phosphate sources in the culture media at pH 3.5 and 5.5, with and without uranium ions. After 4 weeks of fungal growth, evaluated fungi were able to produce high concentrations of phosphates in the media. T. amestolkiae was the best phosphate producer, using phytate as an organic source. During fungal growth, there was no change in pH level of the culture medium. After 3 weeks of T. amestolkiae growth in medium supplemented with phytate, there was a reduction between 20 and 30% of uranium concentrations, with high precipitation of uranium and phosphate on the fungal biomass. The fungi analyzed in this research can use the phytic acid present in the medium and produce high concentrations of phosphate; which, in the environment, can assist in the heavy metal biomineralization processes, even in acidic environments. Such metabolic capabilities of fungi can be useful in decontaminating uranium-contaminated environments.
Collapse
|
20
|
Schaefer S, Steudtner R, Hübner R, Krawczyk-Bärsch E, Merroun ML. Effect of Temperature and Cell Viability on Uranium Biomineralization by the Uranium Mine Isolate Penicillium simplicissimum. Front Microbiol 2021; 12:802926. [PMID: 35003034 PMCID: PMC8728092 DOI: 10.3389/fmicb.2021.802926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The remediation of heavy-metal-contaminated sites represents a serious environmental problem worldwide. Currently, cost- and time-intensive chemical treatments are usually performed. Bioremediation by heavy-metal-tolerant microorganisms is considered a more eco-friendly and comparatively cheap alternative. The fungus Penicillium simplicissimum KS1, isolated from the flooding water of a former uranium (U) mine in Germany, shows promising U bioremediation potential mainly through biomineralization. The adaption of P. simplicissimum KS1 to heavy-metal-contaminated sites is indicated by an increased U removal capacity of up to 550 mg U per g dry biomass, compared to the non-heavy-metal-exposed P. simplicissimum reference strain DSM 62867 (200 mg U per g dry biomass). In addition, the effect of temperature and cell viability of P. simplicissimum KS1 on U biomineralization was investigated. While viable cells at 30°C removed U mainly extracellularly via metabolism-dependent biomineralization, a decrease in temperature to 4°C or use of dead-autoclaved cells at 30°C revealed increased occurrence of passive biosorption and bioaccumulation, as confirmed by scanning transmission electron microscopy. The precipitated U species were assigned to uranyl phosphates with a structure similar to that of autunite, via cryo-time-resolved laser fluorescence spectroscopy. The major involvement of phosphates in U precipitation by P. simplicissimum KS1 was additionally supported by the observation of increased phosphatase activity for viable cells at 30°C. Furthermore, viable cells actively secreted small molecules, most likely phosphorylated amino acids, which interacted with U in the supernatant and were not detected in experiments with dead-autoclaved cells. Our study provides new insights into the influence of temperature and cell viability on U phosphate biomineralization by fungi, and furthermore highlight the potential use of P. simplicissimum KS1 particularly for U bioremediation purposes. ![]()
Collapse
Affiliation(s)
- Sebastian Schaefer
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Sebastian Schaefer,
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Evelyn Krawczyk-Bärsch
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- *Correspondence: Evelyn Krawczyk-Bärsch,
| | | |
Collapse
|
21
|
Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, Shabnam AA, Khan SA, Yadav KK, Sharma GK, Cabral-Pinto M, Fagodiya RK, Gupta DK, Hota S, Malyan SK. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. CHEMOSPHERE 2021; 284:131325. [PMID: 34216922 DOI: 10.1016/j.chemosphere.2021.131325] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Industrialization and modernization of agricultural systems contaminated lithosphere, hydrosphere, and biosphere of the Earth. Sustainable remediation of contamination is essential for environmental sustainability. Myco-remediation is proposed to be a green, economical, and efficient technology over conventional remediation technologies to combat escalating pollution problems at a global scale. Fungi can perform remediation of pollutants through several mechanisms like biosorption, precipitation, biotransformation, and sequestration. Myco-remediation significantly removes or degrades metal metals, persistent organic pollutants, and other emerging pollutants. The current review highlights the species-specific remediation potential, influencing factors, genetic and molecular control mechanism, applicability merits to enhance the bioremediation efficiency. Structure and composition of fungal cell wall is crucial for immobilization of toxic pollutants and a subtle change on fungal cell wall structure may significantly affect the immobilization efficiency. The utilization protocol and applicability of enzyme engineering and myco-nanotechnology to enhance the bioremediation efficiency of any potential fungus was proposed. It is advocated that the association of hyper-accumulator plants with plant growth-promoting fungi could help in an effective cleanup strategy for the alleviation of persistent soil pollutants. The functions, activity, and regulation of fungal enzymes in myco-remediation practices required further research to enhance the myco-remediation potential. Study of the biotransformation mechanisms and risk assessment of the products formed are required to minimize environmental pollution. Recent advancements in molecular "Omic techniques"and biotechnological tools can further upgrade myco-remediation efficiency in polluted soils and water.
Collapse
Affiliation(s)
- Amit Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Raju Mondal
- Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textiles, Thally Road, Hosur, Tamil Nadu, 635109, India
| | - Divjot Kour
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Gangavarapu Subrahmanyam
- Central Muga Eri Research and Training Institute, Central Silk Board, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, M.P., India.
| | - Gulshan Kumar Sharma
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Dadwara Kota 324002, Rajasthan, India
| | - Marina Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ram Kishor Fagodiya
- Division of Soil and Crop Management, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Dipak Kumar Gupta
- ICAR-Indian Agriculture Research Institute, Barhi, Hazaribagh, Jharkhand, 825411, India
| | - Surabhi Hota
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Dadwara Kota 324002, Rajasthan, India
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
22
|
Cheng Y, Li F, Liu N, Lan T, Yang Y, Zhang T, Liao J, Qing R. A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater. CHEMOSPHERE 2021; 282:131084. [PMID: 34470155 DOI: 10.1016/j.chemosphere.2021.131084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
It is of great significance to develop convenient methods and low-cost materials to remove uranium from wastewater. Ankistrodesmus sp., an easy growing green alga, was employed for highly efficient removal of uranium from aqueous solution. The biosorption results under different experimental condition indicate that the alga possess outstanding uranium adsorption ability (qmax = 601.2 mg g-1). Moreover, Ankistrodesmus sp. could be effectively regenerated with hydrochloric acid solution (0.1 M) and used again for uranium adsorption. Even in simulated mine water with various coexisting ions, Ankistrodesmus sp. also exhibits high removal efficiency (95.6%) towards uranium. Furthermore, the adsorption behavior of uranium by alga could be described in the Freundlich isotherms model and the adsorption process was consistent with the pseudo-second-order kinetics model. The characteristic of Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscope and X-ray photoelectron spectroscopy reveal that -NH2, -COOH, -CONH2 and C-O groups have participated in biosorption process. Therefore, complexation, electrostatic adsorption and ions exchange are the dominated action of uranium biosorption in the algae. All findings in this work suggest that Ankistrodesmus sp. can be a promising candidate for the effective and practical application in field of disposed uranium contamination.
Collapse
Affiliation(s)
- Yanxia Cheng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ting Zhang
- Key Laboratory of Bio-Resource and Eco- Environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Renwei Qing
- Key Laboratory of Bio-Resource and Eco- Environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
23
|
Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol 2021; 203:5345-5361. [PMID: 34387704 DOI: 10.1007/s00203-021-02481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.
Collapse
|
24
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
26
|
Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J Fungi (Basel) 2021; 7:jof7060488. [PMID: 34207260 PMCID: PMC8235761 DOI: 10.3390/jof7060488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
Collapse
|
27
|
Wollenberg A, Kretzschmar J, Drobot B, Hübner R, Freitag L, Lehmann F, Günther A, Stumpf T, Raff J. Uranium(VI) bioassociation by different fungi - a comparative study into molecular processes. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125068. [PMID: 33454568 DOI: 10.1016/j.jhazmat.2021.125068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
After the Chernobyl and Fukushima incidents it has become clear that fungi can take up and accumulate large quantities of radionuclides and heavy metals, but the underlying processes are not well understood yet. For this study, the molecular interactions of uranium(VI) with the white-rot fungi, Schizophyllum commune and Pleurotus ostreatus, and the soil-living fungus, Leucoagaricus naucinus, were investigated. First, the uranium concentration in the biomass was determined by time-dependent bioassociation experiments. To characterize the molecular interactions, uranium was localized in the biomass by transmission electron microscopy analysis. Second, the formed uranyl complexes in both biomass and supernatant were determined by fluorescence spectroscopy. Additionally, possible bioligands in the supernatant were identified. The results show that the discernible interactions between metals and fungi are similar, namely biosorption, accumulation, and subsequent crystallization. But at the same time, the underlying biochemical mechanisms are different and specific to the fungal species. In addition, Schizophyllum commune was found to be the only fungus that, under the chosen experimental conditions, released tryptophan and other indole derivatives in the presence of uranium(VI) as determined by nuclear magnetic resonance spectroscopy. These released substances most likely act as messenger molecules rather than serving the direct detoxification of uranium(VI).
Collapse
Affiliation(s)
- Anne Wollenberg
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Jérôme Kretzschmar
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Leander Freitag
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Falk Lehmann
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
| | - Alix Günther
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
28
|
Enhancement of U(VI) biosorption by Trichoderma harzianum mutant obtained by a cold atmospheric plasma jet. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Pehlivan N, Gedik K, Eltem R, Terzi E. Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal(oid)s phytoextraction and bioenergy crop farming. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123609. [PMID: 32798794 DOI: 10.1016/j.jhazmat.2020.123609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Despite high pollution risk, the termination of mining practices is not in question in the current era in line with the growing needs of beings. Instead, the rehabilitation by phytoremediation restores the economic and aesthetic values of the damaged locale. Here, potentially toxic elements (PTEs) tolerant 29 Trichoderma isolates from mining sites located foothills of Turkey`s NE Black Sea coast were isolated. The highest tolerant strain (As 1400 mg L-1, Cd 1200 mg L-1, Cu 2000 mg L-1, Pb 2100 mg L-1, Zn 3000 mg L-1) was characterized with translation elongation factor1 alpha (tef-1α) barcode and deposited in the GenBank. The PTEs removal strength of novel Trichoderma harzianum TS143 was highest for Pb (58%) and the lowest for As (8.5%) in the order of Pb > Cd > Cu > Zn > As. While bioleaching capacity was highest in Cd with 30%, the lowest was for As (8%). TS143 was found remarkably effective on all the physicochemical parameters in the shoot and root tissues of maize. The increase in the carbohydrate content (33.50%) proves the potential usage of the contaminated maize plants in bioenergy production. Core sustainable agents with their mesh type robust hyphal structure enfolding PTEs such as TS143 contribute to the phytoremediation technology along with potential plant biomass management for the biodiesel industry.
Collapse
Affiliation(s)
- Necla Pehlivan
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey.
| | - Kenan Gedik
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, Rize, Turkey.
| | - Rengin Eltem
- Ege University, Department of Bioengineering, Izmir, Turkey.
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Kastamonu, Turkey.
| |
Collapse
|
30
|
Dusengemungu L, Kasali G, Gwanama C, Ouma KO. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Front Microbiol 2020; 11:582016. [PMID: 33408701 PMCID: PMC7779407 DOI: 10.3389/fmicb.2020.582016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Copper (Cu) and Cobalt (Co) are among the most toxic heavy metals from mining and other industrial activities. Both are known to pose serious environmental concerns, particularly to water resources, if not properly treated. In recent years several filamentous fungal strains have been isolated, identified and assessed for their heavy metal biosorption capacity for potential application in bioremediation of Cu and Co wastes. Despite the growing interest in heavy metal removal by filamentous fungi, their exploitation faces numerous challenges such as finding suitable candidates for biosorption. Based on current findings, various strains of filamentous fungi have high metal uptake capacity, particularly for Cu and Co. Several works indicate that Trichoderma, Penicillium, and Aspergillus species have higher Cu and Co biosorption capacity compared to other fungal species such as Geotrichum, Monilia, and Fusarium. It is believed that far more fungal species with even higher biosorption capability are yet to be isolated. Furthermore, the application of filamentous fungi for bioremediation is considered environmentally friendly, highly effective, reliable, and affordable, due to their low technology pre-requisites. In this review, we highlight the capacity of various identified filamentous fungal isolates for biosorption of copper and cobalt from various environments, as well as their future prospects.
Collapse
Affiliation(s)
- Leonce Dusengemungu
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
| | - George Kasali
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
| | - Cousins Gwanama
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | | |
Collapse
|
31
|
Announcing the Availability of a Culture Collection of Uranium-Resistant Microbial Assemblages (CURMA) Obtained from Metalliferous Soils of the Savannah River Site, USA. Microbiol Resour Announc 2020; 9:9/30/e00551-20. [PMID: 32703833 PMCID: PMC7378032 DOI: 10.1128/mra.00551-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Metagenomic assessment provides a comprehensive survey of soil microbiota; however, isolation and characterization of functionally relevant microbiota are required prior to their application(s), such as for metal remediation. Toward this end, we report the availability of a culture collection comprising uranium (U)-resistant microbial assemblages (CURMA) to the scientific community. Metagenomic assessment provides a comprehensive survey of soil microbiota; however, isolation and characterization of functionally relevant microbiota are required prior to their application(s), such as for metal remediation. Toward this end, we report the availability of a culture collection comprising uranium (U)-resistant microbial assemblages (CURMA) to the scientific community.
Collapse
|
32
|
Coelho E, Reis TA, Cotrim M, Rizzutto M, Corrêa B. Bioremediation of water contaminated with uranium using Penicillium piscarium. Biotechnol Prog 2020; 36:e30322. [PMID: 32475081 DOI: 10.1002/btpr.3032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Penicillium piscarium can be indicated as promising in the treatment of sites contaminated with uranium. Thus, this research aimed to analyze the P. piscarium dead biomass in uranium biosorption. This fungus was previously isolated from a highly contaminated uranium mine located in Brazil. Biosorption tests were carried out at pH 3.5 and 5.5 in solutions contaminated with concentrations of 1 to 100 mg/L of uranium nitrate. Our results showed that the dead biomass of P. piscarium was able to remove between 93.2 and 97.5% uranium from solutions at pH 3.5, at the end of the experiment, the pH of the solution increased to values above 5.6. Regarding the experiments carried out in solutions with pH 5.5, the dead biomass of the fungus was also able to remove between 38 and 92% uranium from the solution, at the end of the experiment, the pH of the solution increased to levels above 6.5. The analysis of electron microscopy, Energy-dispersive spectroscopy, and X-ray fluorescence demonstrated the high concentration of uranium precipitated on the surface of the fungal biomass. These results were impressive and demonstrate that the dead biomass of P. piscarium can be an important alternative to conventional processes for treating water contaminated with heavy metals, and we hope that these ecofriendly, inexpensive, and effective technologies be encouraged for the safe discharge of water from industrial activities.
Collapse
Affiliation(s)
- Ednei Coelho
- Laboratório de Micotoxinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana Alves Reis
- Laboratório de Micotoxinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marycel Cotrim
- Centro de Química e Meio Ambiente (CQMA), Instituto de Pesquisa Energéticas e Nucleares, São Paulo, Brazil
| | - Marcia Rizzutto
- Departamento de Física Nuclear, Instituto de Física da Universidade de São Paulo (IF-USP), São Paulo, Brazil
| | - Benedito Corrêa
- Laboratório de Micotoxinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|