1
|
Berríos-Rolón PJ, Cotto MC, Márquez F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. TOXICS 2025; 13:321. [PMID: 40278637 PMCID: PMC12031217 DOI: 10.3390/toxics13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This comprehensive review offers new perspectives on the distribution, sources, and ecotoxicological impacts of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems. Unlike previous reviews, this work integrates recent findings on PAH dynamics within environmental matrices and emphasizes spatiotemporal variability across geographic regions. It critically examines both anthropogenic and natural sources, as well as the physical, chemical, and biological mechanisms driving PAH transport and fate. Special attention is given to the ecotoxicological effects of PAHs on freshwater organisms, including bioaccumulation, endocrine disruption, and genotoxicity. Notably, this review identifies key knowledge gaps and proposes an interdisciplinary framework to assess ecological risk and guide effective monitoring and management strategies for the protection of freshwater ecosystems.
Collapse
Affiliation(s)
| | - María C. Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| |
Collapse
|
2
|
Klein M, Reibold M, Reinders P, Itzel F, Jaehne M, Gehrmann L, Klaßen MD, Schmidt TC, Türk J. Effect-based analysis of endocrine effects in surface and ground water with focus on progestagenicity using Arxula yeast-based reporter gene assays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:220-231. [PMID: 39837804 DOI: 10.1093/etojnl/vgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 01/23/2025]
Abstract
The use of effect-based methods in water monitoring for identifying risks to aquatic organisms and human health is important for aiding regulatory decisions. In the past decades, the database on monitoring, especially in surface waters, has grown as this aquatic environment is openly exposed to various contamination sources. With regard to endocrine disruption, estrogenic and androgenic effects have been primarily investigated. Here, yeast-based bioassays emerged as potent tools, offering sensitivity to environmentally relevant concentrations and high robustness. The objectives of this study were to investigate further endocrine endpoints and extend the monitoring to ground waters. The inclusion of progestagenic effects is crucial due to their multifaceted roles in various functions of organisms. Hence, three different Arxula-yeast hormone screens (estrogen, androgen, and progesterone receptors) were applied, revealing simultaneous exposure to diverse endocrine effects in surface and ground water matrices. Although effect profiles in surface waters showed mainly activation of hormone receptors, in-ground water samples inhibitory effects clearly predominate. Although toxicological thresholds are not yet legally binding, they are essential for effective regulatory measures and risk management to ensure the good ecological status of aquatic ecosystems. The results were compared with effect-based trigger values for ecological as well as human risk assessment depending on the sample matrix, none of which were exceeded.
Collapse
Affiliation(s)
- Michelle Klein
- Instrumentelle Analytische Chemie (IAC), Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Melissa Reibold
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
| | - Petra Reinders
- Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Kamp-Lintfort, Germany
| | - Fabian Itzel
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
- Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Kamp-Lintfort, Germany
| | | | - Linda Gehrmann
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Martin Daniel Klaßen
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
| | - Torsten Claus Schmidt
- Instrumentelle Analytische Chemie (IAC), Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Jochen Türk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Lori G, Coppola L, Casella M, Tinari A, Masciola I, Tait S. Chlorpyrifos induces autophagy by suppressing the mTOR pathway in immortalized GnRH neurons. CHEMOSPHERE 2024; 362:142723. [PMID: 38945228 DOI: 10.1016/j.chemosphere.2024.142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Chlorpyrifos (CPF) is a widely used pesticide inducing adverse neurodevelopmental and reproductive effects. However, knowledge of the underlying mechanisms is limited, particularly in the hypothalamus. We investigated the mode of action of CPF at human relevant concentrations (1 nM-100 nM) in immortalized mouse hypothalamic GnRH neurons (GT1-7), an elective model for studying disruption of the hypothalamus-pituitary-gonads (HPG) axis. We firstly examined cell vitality, proliferation, and apoptosis/necrosis. At not-cytotoxic concentrations, we evaluated neuron functionality, gene expression, Transmission Electron Microscopy (TEM) and proteomics profiles, validating results by immunofluorescence and western blotting (WB). CPF decreased cell vitality with a dose-response but did not affect cell proliferation. At 100 nM, CPF inhibited gene expression and secretion of GnRH; in addition, CPF reduced the immunoreactivity of the neuronal marker Map2 in a dose-dependent manner. The gene expression of Estrogen Receptor α and β (Erα, Erβ), Androgen Receptor (Ar), aromatase and oxytocin receptor was induced by CPF with different trends. Functional analysis of differentially expressed proteins identified Autophagy, mTOR signaling and Neutrophil extracellular traps (NETs) formation as significant pathways affected at all concentrations. This finding was phenotypically supported by the TEM analysis, showing marked autophagy and damage of mitochondria, as well as by protein analysis demonstrating a dose-dependent decrease of mTOR and its direct target pUlk1 (Ser 757). The bioinformatics network analysis identified a core module of interacting proteins, including Erα, Ar, mTOR and Sirt1, whose down-regulation was confirmed by WB analysis. Overall, our results demonstrate that CPF is an inhibitor of the mTOR pathway leading to autophagy in GnRH neurons; a possible involvement of the Erα/Ar signaling is also suggested. The evidence for adverse effects of CPF in the hypothalamus in the nanomolar range, as occurs in human exposure, increases concern on potential adverse outcomes induced by this pesticide on the HPG axis.
Collapse
Affiliation(s)
- Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Irene Masciola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Kim K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int J Mol Sci 2024; 25:3818. [PMID: 38612627 PMCID: PMC11012155 DOI: 10.3390/ijms25073818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas Medical Sciences, Little Rock, AR 72225, USA
| |
Collapse
|
5
|
Liu S, Liu J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. TOXICS 2024; 12:247. [PMID: 38668470 PMCID: PMC11054029 DOI: 10.3390/toxics12040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
The safety of drinking water is a significant environmental issue of great concern for human health since numerous contaminants are often detected in drinking water and its sources. Boiling is a common household method used to produce relatively high-quality drinking water in some countries and regions. In this study, with the aid of an integrated approach of in vitro bioassays and non-target analysis based on high-resolution mass spectrometry coupled with liquid chromatography, alterations in endocrine-disrupting activities in tap water samples without and with boiling were revealed, as well as the potential endocrine-disrupting chemicals (EDCs) contributing to these alterations were identified. The organic extracts of tap water had no significant (ant)agonistic activities against an estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) at enrichment concentrations of ≤10 times, posing no immediate or acute health risk to humans. However, the presence of agonistic activities against PR and MR and antagonistic activities against ER, PR, GR, and MR in OEs of tap water at relatively higher enrichment concentrations still raise potential health concerns. Boiling effectively reduced antagonistic activities against these steroid hormone receptors (SHRs) but increased estrogenic and glucocorticoid activities in drinking water. Four novel potential EDCs, including one UV filter (phenylbenzimidazole sulfonic acid, PBSA) and three natural metabolites of organisms (beta-hydroxymyristic acid, 12-hydroxyoctadecanoic acid, and isorosmanol) were identified in drinking water samples, each of which showed (ant)agonistic activities against different SHRs. Given the widespread use of UV filters in sunscreens to prevent skin cancer, the health risks posed by PBSA as an identified novel EDC are of concern. Although boiling has been thought to reduce the health risk of drinking water contamination, our findings suggest that boiling may have a more complex effect on the endocrine-disrupting activities of drinking water and, therefore, a more comprehensive assessment is needed.
Collapse
Affiliation(s)
- Siyuan Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Tseng CY, Custer CM, Custer TW, Dummer PM, Karouna-Renier N, Matson CW. Multi-omics responses in tree swallow (Tachycineta bicolor) nestlings from the Maumee Area of Concern, Maumee River, Ohio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159130. [PMID: 36183771 DOI: 10.1016/j.scitotenv.2022.159130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A multi-omics approach was utilized to identify altered biological responses and functions, and to prioritize contaminants to assess the risks of chemical mixtures in the Maumee Area of Concern (AOC), Maumee River, OH, USA. The Maumee AOC is designated by the United States Environmental Protection Agency as having significant beneficial use impairments, including degradation of fish and wildlife populations, bird or animal deformities or reproduction problems, and loss of fish and wildlife habitat. Tree swallow (Tachycineta bicolor) nestlings were collected at five sites along the Maumee River, which included wastewater treatment plants (WWTPs) and industrial land-use sites. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo p dioxins and furans (PCDD/Fs), and chlorinated pesticide concentrations were elevated in Maumee tree swallows, relative to a remote reference site, Star Lake, WI, USA. Liver tissue was utilized for non-targeted transcriptome and targeted metabolome evaluation. A significantly differentially expressed gene cluster related to a downregulation in cell growth and cell cycle regulation was identified when comparing all Maumee River sites with the reference site. There was an upregulation of lipogenesis genes, such as PPAR signaling (HMGCS2, SLC22A5), biosynthesis of unsaturated fatty acids (FASN, SCD, ELOVL2, and FADS2), and higher lipogenesis related metabolites, such as docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) at two industrial land-use sites, Ironhead and Maumee, relative to WWTP sites (Perrysburg and SideCut), and the reference site. Toledo Water, in the vicinity of the other two industrial sites and also adjacent to a WWTP, showed a mix of signals between industrial land-use and WWTP land-use. PAHs, oxychlordane, and PBDEs were determined to be the most likely causes of the differentiation in biological responses, including de novo lipogenesis and biosynthesis of unsaturated fatty acids.
Collapse
Affiliation(s)
- Chi Yen Tseng
- Department of Environmental Science, The Institute of Ecological, Earth, and Environmental Sciences (TIE3S), the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States
| | - Christine M Custer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI 54603, United States
| | - Thomas W Custer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI 54603, United States
| | - Paul M Dummer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI 54603, United States
| | - Natalie Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center (EESC) at Patuxent, Beltsville, MD 20705, United States
| | - Cole W Matson
- Department of Environmental Science, The Institute of Ecological, Earth, and Environmental Sciences (TIE3S), the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
7
|
Li Z, Gao X, Li M, Yan Q, Zhang N, Yu B, Zhang B, Zhang S, Helal MH, Abu Ali OA, Nassan MA, Qyyum MA, Asif S, Bokhari A. Steroid hormone-inducible biosensor based on EGFP-tagged and environmental application. ENVIRONMENTAL RESEARCH 2022; 215:114303. [PMID: 36116500 DOI: 10.1016/j.envres.2022.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Steroid hormones as a class of emerging organic pollutant and high concern, due to their potential risks for human and environmental. Accurate analytical methods of steroid hormones are necessary in quantifying and monitoring. Biosensor is a promising technique. In this study, though part of 3α-HSD DNA to construct a regulatory plasmid and with the EGFP reporter gene to generate a reporter plasmid. Separately transformed into Escherichia coli strain BL21 and extracted the cell lysates as novel biosensor reagents. Analyzed the total amounts of steroid hormones in water, sediment, and soil samples using biosensor reagents, and compared these results with those obtained by HPLC. In summary, detection method using an EGFP reporter that can detect trace amounts of steroid hormones to reached fg/L. The optimal reaction time range and temperature were 30 min and 30 °C, respectively, while the most suitable organic solvent for the steroid hormone was 100% ethanol, up to 96-well plate format. This method is very suitable for high-throughput detection of environmental steroid hormone pollutants.
Collapse
Affiliation(s)
- Zhonghe Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xingai Gao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Ming Li
- Jilin Jianzhu University, Changchun, 130118, China
| | - Qiuliang Yan
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Nan Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Boyang Yu
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Bimi Zhang
- Economic Management Institute of Jilin Province, Changchun, 130012, China
| | - Shuying Zhang
- Animal Disease Prevention and Control Center of Jilin Province, China.
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Abdul Qyyum
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, 54000, Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. TOXICS 2022; 10:toxics10060287. [PMID: 35736896 PMCID: PMC9229358 DOI: 10.3390/toxics10060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and S (BPS), have previously shown in vitro obesogenic activity. This study was designed to investigate their combined effect on the adipogenic differentiation of human adipose-derived stem cells (hASCs). Cells were exposed for 14 days to an equimolar mixture of bisphenols (MIX) (range 10 nM–10 µM). Oil Red staining was used to measure intracellular lipid accumulation, quantitative real-time polymerase chain reaction (qRT-PCR) to study gene expression of adipogenic markers (PPARγ, C/EBPα, LPL, and FABP4), and Western Blot to determine their corresponding proteins. The MIX promoted intracellular lipid accumulation in a dose-dependent manner with a maximal response at 10 µM. Co-incubation with pure antiestrogen (ICI 182,780) inhibited lipid accumulation, suggesting that the effect was mediated by the estrogen receptor. The MIX also significantly altered the expression of PPARγ, C/EBPα, LPL, and FABP4 markers, observing a non-monotonic (U-shaped) dose-response, with maximal gene expression at 10 nM and 10 µM and lesser expression at 1 µM. This pattern was not observed when bisphenols were tested individually. Exposure to MIX (1–10 µM) also increased all encoded proteins except for FABP4, which showed no changes. Evaluation of the combined effect of relevant chemical mixtures is needed rather than single chemical testing.
Collapse
|
10
|
Coppola L, Tait S, Fabbrizi E, Perugini M, La Rocca C. Comparison of the Toxicological Effects of Pesticides in Non-Tumorigenic MCF-12A and Tumorigenic MCF-7 Human Breast Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4453. [PMID: 35457321 PMCID: PMC9030493 DOI: 10.3390/ijerph19084453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Humans are exposed to residues of organophosphate and neonicotinoid pesticides, commonly used in agriculture. Children are particularly vulnerable and, among possible adverse outcomes, the increased incidence of premature mammary gland development (thelarche) has raised concern. We evaluated the toxicological effects of chlorpyrifos (CPF), imidacloprid (IMI) and glyphosate (GLY) at exposure concentrations occurring in children on the tumorigenic MCF-7 and non-tumorigenic MCF-12A breast cell lines, as representative of the target organ model, assessing cytotoxicity, apoptosis, necrosis, intracellular reactive oxygen species (ROS) and ATP levels, 17β-estradiol secretion and gene expression of nuclear receptors involved in mammary gland development. The pesticides decreased cell vitality in MCF-7 and cell proliferation in MCF-12A cells. ATP levels were decreased in MCF-7 cells by pesticides and apoptosis was increased in MCF-12A cells only by GLY (2.3 nM). ROS production was decreased by pesticides in both cell lines, except IMI (1.6 nM) in MCF-7 cells. Endocrine disrupting activity was highlighted by induction of 17β-estradiol secretion and modulation of the gene expression of estrogen alpha and beta, progesterone, androgen, and aryl hydrocarbon receptors in both cell lines. The use of MCF-7 and MCF-12A cells highlighted dissimilar modes of action of each pesticide at low human relevant concentrations.
Collapse
Affiliation(s)
- Lucia Coppola
- Center for Gender-Specific Medicine, Italian National Institute of Health, 00161 Rome, Italy; (L.C.); (S.T.)
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, 00185 Rome, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Italian National Institute of Health, 00161 Rome, Italy; (L.C.); (S.T.)
| | - Enrica Fabbrizi
- Pediatric Departmental Simple Operative Unit, Civitanova Marche Hospital, ASUR Marche Area Vasta n. 3, 62100 Macerata, Italy;
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Cinzia La Rocca
- Center for Gender-Specific Medicine, Italian National Institute of Health, 00161 Rome, Italy; (L.C.); (S.T.)
| |
Collapse
|
11
|
Lasagna M, Ventura C, Hielpos MS, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. ENVIRONMENTAL RESEARCH 2022; 204:111989. [PMID: 34506784 DOI: 10.1016/j.envres.2021.111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus chlorpyrifos (CPF) is currently considered an endocrine disruptor (ED), as it can imitate hormone actions both in vitro and in vivo. We recently reported that CPF induces migration and invasion in 2D cultures and changes the expression of key molecular markers involved in epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cell lines. In this study, we investigated whether CPF could behave as a predisposing factor for tumors to become more metastatic and aggressive using 3D culture models. In MCF-7 cells, 0.05 μM CPF induced an increase in the number and size of mammospheres via estrogen receptor alpha (ERα) and c-SRC. Furthermore, 0.05 μM CPF increased the area of spheroids generated from MCF-7 cells, induced invasion using both Matrigel® and type 1 collagen matrices, and increased cell migration capacity via ERα in this 3D model. In turn, 50 μM CPF increased cell migration capacity and invasion using type 1 collagen matrix. In monolayers, CPF increased the phosphorylation and membrane translocation of c-SRC at both concentrations assayed. CPF at 0.05 μM boosted p-AKT, p-GSK-3β and p-P38. While p-AKT rose in a ERα-dependent way, p-GSK-3β was dependent on ERα- and c-SRC, and p-P38 was only dependent on c-SRC. On the other hand, the increase in p-AKT and p-P38 induced by 50 μM CPF was dependent on the c-SRC pathway. We also observed that 0.05 μM CPF increased IGF-1R and IRS-1 expression and that 50 μM CPF induced IGF-1Rβ phosphorylation. In the MDA-MB-231 cell line, 0.05 and 50 μM CPF increased p-c-SRC. Finally, p-AKT and p-GSK-3β were also induced by CPF at 0.05 and 50 μM, and an increase in p-P38 was observed at 50 μM. Taken together, these data provide support for the notion that CPF may represent a risk factor for breast cancer development and progression.
Collapse
Affiliation(s)
- M Lasagna
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad Nacional de La Plata-CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - M S Hielpos
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - M N Mardirosian
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - G Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - N Miret
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - A Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - M Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Cocca
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
13
|
Woo SJ. Effects of benzo[a]pyrene exposure on black rockfish (Sebastes schlegelii): EROD activity, CYP1A protein, and immunohistochemical and histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4033-4043. [PMID: 34402013 DOI: 10.1007/s11356-021-15949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 1A (CYP1A) is the major phase I of metabolic enzyme that plays essential roles in the detoxification of drugs and biotransformation of environmental pollutants. This study investigated CYP1A enzyme induction using EROD activity, CYP1A protein levels, and immunohistochemistry, along with histopathology of the liver, gills, kidneys, and intestine from the black rockfish, Sebastes schlegelii, exposed to benzo[a]pyrene (B[a]P). S. schlegelii has high risks of ingestion of sediment and absorption of heavy crude oil after accidental oil spills in Korea. This study thus exposed fish to B[a]P at 2, 20, and 200 μg/g body weight. EROD activity and CYP1A protein levels in hepatic microsomes had a positive correlation with the concentration of B[a]P (2-200 μg/g); in particular, exposure to 200 μg/g of B[a]P resulted in a 4- and 6-fold increase in hepatic EROD activity and CYP1A protein level, respectively. Hyperplasia of primary lamellar epithelium and atrophy of renal tubules were observed in the gills and kidney, respectively, following exposure to B[a]P at 200 μg/g. In contrast, severe histological alteration was not seen in intestinal tissues. Immunohistochemical analysis of the distribution of cellular CYP1A in four tissues showed strong immunostaining in the cytoplasm and nuclear membranes of the liver against B[a]P at 200 μg/g. Polycyclic aromatic hydrocarbons (PAHs), such as B[a]P, cause adverse histological changes in tissues of fish and provide evidence that PAH metabolism is inducible in fish liver, leading to increased CYP1A induction. Furthermore, the CYP1A induction in specific tissues might assist in monitoring and field assessment of marine ecosystems.
Collapse
Affiliation(s)
- Soo Ji Woo
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Korea.
- Pathology Research Division, National Institute of Fisheries Science, 46083, Busan, Korea.
| |
Collapse
|
14
|
Stanic B, Samardzija Nenadov D, Fa S, Pogrmic-Majkic K, Andric N. Integration of data from the cell-based ERK1/2 ELISA and the Comparative Toxicogenomics Database deciphers the potential mode of action of bisphenol A and benzo[a]pyrene in lung neoplasm. CHEMOSPHERE 2021; 285:131527. [PMID: 34329126 DOI: 10.1016/j.chemosphere.2021.131527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Chemicals can activate a variety of signaling pathways, initiating changes in gene expression and cellular functions. Here, we combined experimental data on the chemical-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation with the Comparative Toxicogenomics Database (CTD) to connect signaling, genes, and phenotypes to reveal the potential chemical's mode of action (MOA) responsible for the disease state. Experimental data on ERK1/2 activation were derived from the cell-based phospho-ERK1/2 ELISA on human alveolar epithelial cells A549. A549 cells were exposed to bisphenol A (BPA), benzo[a]pyrene (BaP), tributyltin (TBT), and ibuprofen from 10-12 M to 10-5 M. Results show that BPA, BaP, and TBT can activate ERK1/2 in A549 cells. We selected BPA and BaP to elucidate the molecular events connecting chemical exposure, ERK1/2 signaling, phenotypes, and lung neoplasm (LN) using CTD. CTD analysis showed that BPA and BaP share 26 mitogen-activated protein kinase 1/3 (MAPK1/3) signaling genes associated with LN. Phenotype prioritization revealed 37 BPA, 10 BaP, and 11 shared key phenotypes associated with LN. Alignment of MAPK1/3 signaling genes and phenotypes showed that ERK1/2 and oxidative stress, EGFR gene, and positive regulation of cell proliferation and migration could be the shared key events (KE) for BPA and BaP. This analysis also identified protein kinase B and ERK1/2 signaling, FGF9, FGFR1 and FGFR2 genes, positive regulation of cell proliferation and angiogenesis as KE in MOA for BPA, whereas ERK1/2 signaling, IL6 and DAB2IP genes, negative regulation of cell proliferation and inflammatory response were identified as KE in MOA for BaP.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
15
|
Young TM, Black GP, Wong L, Bloszies CS, Fiehn O, He G, Denison MS, Vogel CFA, Durbin-Johnson B. Identifying Toxicologically Significant Compounds in Urban Wildfire Ash Using In Vitro Bioassays and High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3657-3667. [PMID: 33647203 PMCID: PMC8351470 DOI: 10.1021/acs.est.0c06712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Urban wildfires may generate numerous unidentified chemicals of toxicity concern. Ash samples were collected from burned residences and from an undeveloped upwind reference site, following the Tubbs fire in Sonoma County, California. The solvent extracts of ash samples were analyzed using GC- and LC-high-resolution mass spectrometry (HRMS) and using a suite of in vitro bioassays for their bioactivity toward nuclear receptors [aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR)], their influence on the expression of genetic markers of stress and inflammation [interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2)], and xenobiotic metabolism [cytochrome P4501A1 (CYP1A1)]. Genetic markers (CYP1A1, IL-8, and COX-2) and AhR activity were significantly higher with wildfire samples than in solvent controls, whereas AR and ER activities generally were unaffected or reduced. The bioassay responses of samples from residential areas were not significantly different from the samples from the reference site despite differing chemical compositions. Suspect and nontarget screening was conducted to identify the chemicals responsible for elevated bioactivity using the multiple streams of HRMS data and open-source data analysis workflows. For the bioassay endpoint with the largest available database of pure compound results (AhR), nontarget features statistically related to whole sample bioassay response using Spearman's rank-order correlation coefficients or elastic net regression were significantly more likely (by 10 and 15 times, respectively) to be known AhR agonists than the overall population of compounds tentatively identified by nontarget analysis. The findings suggest that a combination of nontarget analysis, in vitro bioassays, and statistical analysis can identify bioactive compounds in complex mixtures.
Collapse
Affiliation(s)
- Thomas M Young
- Department of Civil & Environmental Engineering, University of California, Davis, Davis, California 95616, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Gabrielle P Black
- Department of Civil & Environmental Engineering, University of California, Davis, Davis, California 95616, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Luann Wong
- Department of Civil & Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Clayton S Bloszies
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United States
| | - Oliver Fiehn
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United States
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
16
|
Lasagna M, Hielpos MS, Ventura C, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111312. [PMID: 32956863 DOI: 10.1016/j.ecoenv.2020.111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF) is one of the most frequently used pesticide in extensive agriculture around the world and can be incorporated by humans and animals with possible consequences on health. The effects of this pesticide on carcinogenesis are not clear and there is no consensus concerning the risks of this compound. In previous work, we demonstrated that CPF induces proliferation of breast cancer cells both in vivo and in vitro. In this work we investigate whether CPF promotes the epithelial-mesenchymal transition (EMT) in breast cancer cells. Herein, we demonstrate that 50 μM CFP induces invasion in MCF-7 and MDA-MB-231 cells. In addition, 0.05 and 50 μM CPF increases migration in both cell lines. In MCF-7 cells, 0.05 and 50 μM CPF increase the metalloprotease MMP2 expression and decrease E-Cadherin and β-Catenin expression diminishing their membrane location. Furthermore, 50 μM CPF induces Vimentin expression and Slug nuclear translocation in MCF-7 cells. 0.05 and 50 μM CPF increase MMP2 gelatinolytic activity and expression, decrease β-Catenin expression and increase Vimentin expression in MDA-MB-231 cells. Inhibition of the oncoprotein c-Src reverses all the effects induced by CPF in MDA-MB-231 but not in MCF-7 indicating that c-Src is a kinase with a crucial role in the cells which grow in an estrogen-independent way. In MCF-7 cells both c-Src and estrogen receptor alpha must be blocked to completly inhibit the CPF-mediated effects. Our results show for the first time that the exposure to subthreshold concentrations of CPF promotes the modulation of EMT-molecular markers and pathways. These results, together with the ubiquitous distribution of the pesticide CPF, make it of utmost importance to take measures to minimize the risk of exposure to this compound.
Collapse
Affiliation(s)
- M Lasagna
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M S Hielpos
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Ventura
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP) CONICET-UNLP, La Plata, Argentina
| | - M N Mardirosian
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina
| | - G Martín
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N Miret
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Núñez
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Cocca
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|