1
|
Xiao Y, Zhang Z, Lin J, Chen W, Huang J, Chen Z. Machine learning predicts selectivity of green synthesized iron nanoparticles toward typical contaminants: critical factors in synthesis conditions, material properties, and reaction process. ENVIRONMENTAL RESEARCH 2025; 277:121605. [PMID: 40228691 DOI: 10.1016/j.envres.2025.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Green synthesized iron nanoparticles (FeNPs) have gained popularity in contaminant removal due to their low cost and environmentally friendly properties. However, a gap remains in understanding how synthesis conditions (SC), material properties (MP), and reaction processes (RP) affect their removal capacities on typical contaminants. This study utilizes advanced machine learning methods to explore complex dependencies in contaminant removal, achieving high predictive accuracies with R2 rankings of XGBoost (0.9867) > RF (0.9749) > LightGBM (0.8545), and detailed SHAP analyses that elucidate the specific impacts of features. The model revealed that RP significantly influenced FeNPs' removal capacity. Both linear and SHAP analyses demonstrated that SC indirectly affected removal efficiency by influencing MP, thereby weakening their impact on FeNPs' removal capabilities due to their strong linear correlation. For all three contaminants (antibiotics, dyes and heavy metals), the removal capacity of FeNPs was primarily influenced by the C/Fe ratio and the type of plant present in the SC, as well as the pore volume of the MP. Antibiotics removal depends on antibiotic type and FeNPs' Fe content. The interaction time between Fe ions and plant extracts during SC and the specific surface area (SSA) of MP significantly influenced dyes removal, while the pore diameter in MP and the pH in RP were vital for heavy metals removal. MP impacts antibiotics removal more than SC, but SC's indirect effects are more significant for dyes and heavy metals. SHAP analysis clarified the importance and independent roles of specific features in the predictive modeling of removal efficiencies.
Collapse
Affiliation(s)
- Yiwen Xiao
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, Fujian Province, China
| | - Zhenjun Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, Fujian Province, China.
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Jianhui Huang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, Fujian Province, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| |
Collapse
|
2
|
Gül D, Arkan-Ozdemir S, Yücel O, Yıldırım E, Kalyon G, Ilhan-Sungur E, Emik S, Erol A, Kara NT. Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using In Vitro Grown Aloe vera L. Microsc Res Tech 2025; 88:1019-1033. [PMID: 39648286 DOI: 10.1002/jemt.24768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
In this study, in vitro grown Aloe vera L. tissues were used for AgNP synthesis. Adventitious root and callus tissues were grown in MS medium containing 1 mg/L IAA and 1 mg/L NAA. Using A. vera L. leaf, in vitro grown callus, and adventitious roots tissue extracts, AgNPs were synthesized. According to DLS analysis, PDI values and zeta potential values showed that AgNPs from adventitious root were more suitable in terms of size and surface charge. Characterization of adventitious root-derived AgNPs was performed by UV-Vis absorption spectrum, ICP/MS, SEM, FTIR, and XRD. According to HPLC results, catechin, gentisic acid, caffeic acid, coumaric acid, polydatin, coumarin, and ellagic acid were found in adventitious roots. Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC2 7853), MRSA (ATCC 33951) and Staphylococcus aureus (ATCC 6538) strains were used to determine the antibacterial and antibiofilm activity of AgNPs. The highest antibacterial activity was determined against P. aeruginosa. Lower concentrations of AgNPs caused changes in the structure of the biofilm formed by P. aeruginosa, which produced particularly strong biofilms, resulting in failure of biofilm maturation. Accordingly, AgNPs synthesized from Aloe vera L. adventitious roots had antibacterial and antibiofilm activity even at low concentrations against the tested bacterial strains.
Collapse
Affiliation(s)
- Damla Gül
- Istanbul University, Institute of Science, Program of Molecular Biotechnology and Genetics, Istanbul, Turkey
| | - Simge Arkan-Ozdemir
- Istanbul University, Institute of Science, Program of Fundamental and Industrial Microbiology, Istanbul, Turkey
| | - Oğuz Yücel
- Faculty of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Eren Yıldırım
- Faculty of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Göksenin Kalyon
- Faculty of Science, Department of Physics, Istanbul University, Istanbul, Turkey
| | - Esra Ilhan-Sungur
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Serkan Emik
- Faculty of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ayşe Erol
- Faculty of Science, Department of Physics, Istanbul University, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Purohit SS, Biswal A, Mohapatra P, Khamari O, Dash K, Mishra M, Biswal SB, Nayak S, Swain SK. Lysozyme/N-GQD loaded carboxymethyl cellulose hydrogels for healing of excision wounds in Drosophila and Sprague Dawley rats. Int J Biol Macromol 2025; 306:141638. [PMID: 40037441 DOI: 10.1016/j.ijbiomac.2025.141638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Delayed healing and fibrosis at the wound site present significant challenges in the wound care industry, often leading to complications such as infections, chronic wounds, and impaired tissue regeneration. Therefore, there is a critical need for advanced wound dressing materials that promote faster healing, prevent bacterial infections, and support effective tissue repair. This study aims to develop a Lysozyme (Lys)-based wound dressing with enhanced wound closure rates by incorporating nitrogen-doped graphene quantum dots (N-GQDs) as a functionalized nanofiller to strengthen its antibacterial properties. The wound dressing, formulated with a carboxymethyl cellulose (CMC) crosslinked polyvinylpyrrolidone (PVP) matrix, creates a porous structure that enhances swelling capacity and water vapor transmission rates (WVTR), while cytotoxicity studies confirm its biocompatibility, showing 100 % cell viability in HCT 116 and MCF7 cell lines. The in vivo wound healing performance of the designed nanocomposite hydrogel reflects complete wound closure in 5 h for Drosophila Melanogaster, aided by the shorter life span and faster metabolic processes in Drosophila, and 14 days in Sprague Dawley rat models. These results qualify the material as a promising candidate for wound dressing applications, bridging the gap between material science and medical science for effective wound management.
Collapse
Affiliation(s)
- Shuvendu Shuvankar Purohit
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Ojaswini Khamari
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Kalpanarani Dash
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Sashi Bhusan Biswal
- Department of Pharmacology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768018, Odisha, India
| | - Sunanda Nayak
- Department of Phathology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
4
|
Muhmood A, Cui S, Wang J, Wang D, Pugliese L, Wu S. Eco-nano solutions for rapid phosphorus recovery: Closing the loop for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178477. [PMID: 39837119 DOI: 10.1016/j.scitotenv.2025.178477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Efficient phosphorus (P) removal from agricultural drainage is crucial for making its removal and recovery economically viable and operationally feasible. This study evaluated cost-effective, green-synthesized nanoparticles (using grass extract) for rapid and efficient P adsorption. Batch experiments were conducted to assess the effect of pH, P concentration, adsorbent dosage, contact time, and temperature on P adsorption. The nanoparticles removed 20 mg/L of P in 5 min, demonstrating their significant potential for effective adsorption in short retention time. They achieved a maximum adsorption capacity of 77.5 mg g-1, outperforming their chemically synthesized counterparts. Moreover, smaller particles exhibited faster initial adsorption, while larger ones contributed more to overall adsorption over time. Modeling results revealed that rapid initial P adsorption was driven by physisorption, while chemisorption controlled the rate of adsorption in the later stages. After five regeneration cycles, the nanoparticles retained over 50 % of their adsorption capacity, demonstrating strong reusability potential. Further research is needed to optimize these nanoparticles for P removal from dynamic agricultural drainage, offering a cost-effective and sustainable solution for P management.
Collapse
Affiliation(s)
- Atif Muhmood
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark; Institute of Soil Chemistry and Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Jingyu Wang
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Deyong Wang
- Department of Materials and Production, Aalborg University, Fibigerstræde 14, 9220 Aalborg, Denmark
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark.
| |
Collapse
|
5
|
Lin M, Wang M, Wu J, Liu M, Chen Z. Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124269. [PMID: 39862825 DOI: 10.1016/j.jenvman.2025.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC. Furthermore, the rGO/Mn NPs adsorption-oxidation system (85.2%) was more effective than the adsorption process (70.9%) in removing TC (50 mg L-1). Free radical quenching experiments and EPR results elucidated that singlet oxygen (1O2) and superoxide radicals (·O2-) are the primary reactive species responsible for the degradation of TC in the oxidation system. Based on the characterization results, a mechanism of oxidative degradation of TC by rGO/Mn NPs has been proposed. To further elucidate the degradation pathway of TC, the degradation products were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS). This analysis provides a foundation for understanding how the rGO/Mn NPs composites activate PDS to degrade TC. Additionally, the ecological structure-activity relationship analysis revealed that TC is converted into intermediates with lower toxicity.
Collapse
Affiliation(s)
- Mei Lin
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Miao Wang
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Jianwang Wu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Ming Liu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
6
|
Lu J, Wu M, Luo L, Lu R, Zhu J, Li Y, Cai Y, Xiang H, Song C, Yu B. Incorporating iron oxide nanoparticles in polyvinyl alcohol/starch hydrogel membrane with biochar for enhanced slow-release properties of compound fertilizers. Carbohydr Polym 2025; 348:122834. [PMID: 39562108 DOI: 10.1016/j.carbpol.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
Biochar-based fertilizers show promise in enhancing nutrient utilization and soil health, but their slow-release performance remains a challenge. Herein, hydrogel membranes incorporating iron oxide nanoparticles within a polyvinyl alcohol and starch matrix (Fe/PVA/ST) were synthesized. These membranes were utilized to coat compound fertilizer particles, with biochar powder applied to the outer layer to form what is known as Fe/PVA/ST-BSRFs. The results revealed that Fe/PVA/ST-BSRFs exhibit markedly improved slow-release performance compared to both PVA/ST-BSRFs lacking iron nanoparticles and commercial compound fertilizers. Within a 30-day period, the cumulative leaching ratios of N, P, and K from Fe/PVA/ST-BSRFs with 0.75 % iron content were significantly lower compared to other tested fertilizers, with values of 22.87 %, 34.93 %, and 84.08 %, respectively. Furthermore, the incorporation of iron oxide nanoparticles into the PVA/ST membrane enhanced its swelling and water-retention properties without compromising its biodegradability. Mechanistic investigations revealed that the exceptional slow-release properties of Fe/PVA/ST-BSRFs stem from a combination of nutrient diffusion control outside the membrane and the loose control mechanism of the membrane. Pot tests demonstrated that Fe/PVA/ST-BSRFs effectively promoted the growth of chili plants while ensuring high utilization of N-P-K and improving the nutritional indices of chili fruits. Economic analysis further underscored the promising application prospects of Fe/PVA/ST-BSRFs.
Collapse
Affiliation(s)
- Jiawei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Mengqiao Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Linping Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Ruohui Lu
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310020, China
| | - Jie Zhu
- Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou 325000, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Hai Xiang
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Chengfang Song
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China.
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Ashrafi-Saiedlou S, Rasouli-Sadaghiani M, Fattahi M, Ghosta Y. Biosynthesis and characterization of iron oxide nanoparticles fabricated using cell-free supernatant of Pseudomonas fluorescens for antibacterial, antifungal, antioxidant, and photocatalytic applications. Sci Rep 2025; 15:1018. [PMID: 39762412 PMCID: PMC11704013 DOI: 10.1038/s41598-024-84974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the biosynthesis of iron oxide nanoparticles (Fe2O3NPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized Fe2O3NPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that Fe2O3NPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.5% of the sample composition. Imaging via SEM and TEM revealed average diameters of 20.43 ± 5.38 nm and 24.32 ± 5.03 nm, respectively. The antimicrobial effects of Fe2O3NPs were assessed against four bacterial strains and four fungal species. Inhibition zones of 8.35 ± 0.103 mm and 8.31 ± 0.128 mm were observed for Pseudomonas syringae and Staphylococcus aureus at a concentration of 400 μg mL-1 of Fe2O3NPs. Antifungal efficacy showed growth rate reductions of 90.4% for Aspergillus niger, 71.1% for Monilinia fructigena, 68.8% for Botrytis cinerea, and 84.2% for Penicillium expansum, compared to controls. The nanoparticles demonstrated photocatalytic degradation efficiencies of 89.93%, 84.81%, and 79.71% for methyl violet, methyl orange, and methylene blue, respectively. Also Fe2O3NPs exhibited significant DPPH free radical scavenger activity with an IC50 value of 8.45 ± 0.59 μg mL-1. The study's findings underscored the significant potential of Fe2O3NPs in addressing environmental pollution and combating pathogenic microorganisms.
Collapse
Affiliation(s)
| | | | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Fakhar A, Galgo SJC, Canatoy RC, Rafique M, Sarfraz R, Farooque AA, Khan MI. Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. BIOCHAR 2025; 7:8. [PMID: 39758611 PMCID: PMC11698939 DOI: 10.1007/s42773-024-00397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
Biochar is a carbon-rich material produced through the pyrolysis of various feedstocks. It can be further modified to enhance its properties and is referred to as modified biochar (MB). The research interest in MB application in soil has been on the surge over the past decade. However, the potential benefits of MB are considerable, and its efficiency can be subject to various influencing factors. For instance, unknown physicochemical characteristics, outdated analytical techniques, and a limited understanding of soil factors that could impact its effectiveness after application. This paper reviewed the recent literature pertaining to MB and its evolved physicochemical characteristics to provide a comprehensive understanding beyond synthesis techniques. These include surface area, porosity, alkalinity, pH, elemental composition, and functional groups. Furthermore, it explored innovative analytical methods for characterizing these properties and evaluating their effectiveness in soil applications. In addition to exploring the potential benefits and limitations of utilizing MB as a soil amendment, this article delved into the soil factors that influence its efficacy, along with the latest research findings and advancements in MB technology. Overall, this study will facilitate the synthesis of current knowledge and the identification of gaps in our understanding of MB. Graphical Abstract
Collapse
Affiliation(s)
- Ali Fakhar
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Snowie Jane C. Galgo
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- College of Agriculture, Sultan Kudarat State University, Lutayan Campus, 9803 Philippines
| | - Ronley C. Canatoy
- Department of Soil Science, College of Agriculture, Central Mindanao University, 8710 Maramag, Philippines
| | - Mazhar Rafique
- Department of Soil and Climate Sciences, The University of Haripur, Haripur, Khyber Pakhtunkhwa Pakistan
| | - Rubab Sarfraz
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Aitazaz Ahsan Farooque
- Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A4P3 Canada
| | - Muhammad Israr Khan
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
9
|
Aswini R, Hartati S, Jothimani K, Pothu R, Shanmugam P, Lee YY, Masimukku S, Boddula R, Selvaraj M, Al-Qahtani N. Revolutionizing microorganism inactivation: Magnetic nanomaterials in sustainable photocatalytic disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122738. [PMID: 39405884 DOI: 10.1016/j.jenvman.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
The rapid emergence of antibiotic-resistant microorganisms and the demand for sustainable water purification methods have spurred research into advanced disinfection, with photocatalysis as a promising approach. This study explores magnetic nanomaterials as catalysts in photocatalytic processes for microorganism inactivation. Magnetic nanoparticles and composites, due to their unique properties, are promising for enhancing photocatalytic disinfection. Their inherent magnetic traits enable easy separation and recyclability, reducing operational costs and environmental impact. These materials also act as efficient electron transfer mediators, enhancing overall photocatalytic efficiency. The review covers the synthesis and characterization of magnetic nanomaterials for photocatalytic applications, focusing on their structural, magnetic, and surface properties. Photocatalytic mechanisms, including reactive oxygen species (ROS) generation vital for microorganism inactivation, are discussed. The study examines combining common photocatalysts like TiO2, ZnO, and semiconductors with magnetic nanomaterials, highlighting synergistic effects. Recent advances and challenges, such as optimal nanomaterials selection and scalability for large-scale applications, are addressed. Case studies and experimental setups for microorganism inactivation underscore the potential of magnetic nanomaterials in water treatment, air purification, and medical disinfection. Finally, further research directions and research highlights the substantial potential of magnetic nanomaterials as catalysts in photocatalytic processes, offering an efficient and sustainable solution for microorganism inactivation and contributing valuable insights to environmental and public health advancement.
Collapse
Affiliation(s)
- Rangayasami Aswini
- Department of Botany, Padmavani Arts and Science College for Women, Salem, 636 011, Tamil Nadu, India
| | - Sri Hartati
- Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Kannupaiyan Jothimani
- Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Yen-Yi Lee
- Center for Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Institute of Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Srinivaas Masimukku
- Center for Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Institute of Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University, Doha, 2713, Qatar; Allied Sciences, Department of Chemistry, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Allied Sciences, Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, Doha, 2713, Qatar; Central Laboratories Unit (CLU), Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
10
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
11
|
Haider FU, Zulfiqar U, Ul Ain N, Hussain S, Maqsood MF, Ejaz M, Yong JWH, Li Y. Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116620. [PMID: 38905935 DOI: 10.1016/j.ecoenv.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Mukkaram Ejaz
- Silesian University of Technology, Institute of Physics-Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Konarskiego 22B, Gliwice 44-100, Poland.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
12
|
Jabeen S, Siddiqui VU, Bala S, Mishra N, Mishra A, Lawrence R, Bansal P, Khan AR, Khan T. Biogenic Synthesis of Copper Oxide Nanoparticles from Aloe vera: Antibacterial Activity, Molecular Docking, and Photocatalytic Dye Degradation. ACS OMEGA 2024; 9:30190-30204. [PMID: 39035949 PMCID: PMC11256313 DOI: 10.1021/acsomega.3c10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
Green synthesis methods offer a cost-effective and environmentally friendly approach to producing nanoparticles (NPs), particularly metal-based oxides. This study explores the green synthesis of copper oxide nanoparticles using Aloe vera (Aloe barbadensis Miller) leaf extract. The characterization revealed a unique sago-shaped morphology revealed by field-emission scanning electron microscopy and X-ray diffraction analysis. Distinctive metal-oxygen bonds at 521 and 601 cm-1 were confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Furthermore, UV-visible spectroscopy revealed absorbance at 248 nm, suggesting electron transitions across energy bands and varying surface conduction electrons. The band gap value indicated the presence of quantum confinement effects, which were probably caused by the distinctive morphology and surface structure of the biogenic NPs. Additionally, molecular docking studies were carried out against key proteins of Salmonella typhi and Listeria monocytogenes, namely, listeriolysin O (PDB ID: 4CDB), internalin (InlA) (PDB ID: 1O6T), Salmonella effector protein (SopB) (PDB ID: 4DID), and YfdX (PDB ID: 6A07) using AutoDock 4.2. The results revealed binding energies against S. typhi and L. monocytogenes proteins, indicating potential interactions establishing the foundation for further in-depth understanding of the molecular basis underlying the observed antibacterial effects in vitro against S. typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, and L. monocytogenes. Antibacterial activity evaluation yielded impressive results, with CuO NPs displaying significant activity against S. typhi and L. monocytogenes, exhibiting zones of inhibition values of 13 ± 0.02 and 15 ± 0.04 mm, respectively. Moreover, the CuO NPs demonstrated remarkable photocatalytic efficacy, resulting in the degradation of 77% of the methylene blue dye when exposed to UV irradiation. This study highlighted the potential of green-synthesized CuO NPs derived from A. vera with their unique morphology, interesting spectroscopic properties, and promising antibacterial and photocatalytic activities.
Collapse
Affiliation(s)
- Sabeeha Jabeen
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Vasi Uddin Siddiqui
- Advanced
Engineering Materials and Composites Research Centre (AEMC), Department
of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan 43400, Malaysia
| | - Shashi Bala
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Nidhi Mishra
- Department
of Applied Sciences, Indian Institute of
Information Technology, Allahabad 2110155, Uttar Pradesh, India
| | - Anamika Mishra
- Department
of Applied Sciences, Indian Institute of
Information Technology, Allahabad 2110155, Uttar Pradesh, India
| | - Rubina Lawrence
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture Technology and Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Pratibha Bansal
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Tahmeena Khan
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
13
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Sontakke AD, Gupta P, Banerjee SK, Purkait MK. Chitosan-grafted folic acid decorated one-dimensional GONS: A biocompatible drug cargo for targeted co-delivery of anticancer agents. Int J Biol Macromol 2024; 271:132621. [PMID: 38795890 DOI: 10.1016/j.ijbiomac.2024.132621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
In conventional chemotherapy, the cancer cells can become highly resilient due to a phenomenon known as multi-drug resistance (MDR). The co-delivery of chemotherapeutic agents assisted with novel nanocarrier-based targeted DDS may counter the MDR issues and subsequently improve their therapeutic efficacy. In line with this, the present work deals with the development of 1D graphene oxide nanoscrolls (GONS)-based nano delivery system for co-delivery of chemosensitizer along with the chemotherapeutic agent. Herein, the 1D GONS nanocarrier was initially functionalized with chitosan (CS) biopolymer and folic acid (FA) further to enhance their biocompatibility and target-specific co-delivery. The resultant GONS-CS-FA (GCF) nanocarriers were co-loaded with doxorubicin (DOX) and caffeic acid (CA) at different weight proportions with respect to nanocarrier and drug composition. The optimum loading efficiency of 51.14 ± 1.47 % (DOX) and 49.70 ± 1.19 % (CA) was observed for GCF: drug ratio of 2.5 with drug composition of 1:1. In vitro release at pH 5 yielded ~83 % DOX and 75 % CA, compared to ~71 % DOX and 61 % CA at pH 7.4 over 7 days, suggesting a higher and targeted drug release in the cancer microenvironment. Cytotoxicity tests revealed selective apoptosis in cancer cells (A549) while maintaining cytocompatibility with normal cells (HEK293).
Collapse
Affiliation(s)
- Ankush D Sontakke
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Paras Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam 781039, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam 781039, India
| | - Mihir K Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
15
|
Góral-Kowalczyk M, Grządka E, Orzeł J, Góral D, Skrzypek T, Kobus Z, Nawrocka A. Green Synthesis of Iron Nanoparticles Using an Aqueous Extract of Strawberry ( Fragaria × ananassa Duchesne) Leaf Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2515. [PMID: 38893778 PMCID: PMC11174040 DOI: 10.3390/ma17112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from -21,300 mV to -11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.
Collapse
Affiliation(s)
- Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland;
| | - Zbigniew Kobus
- Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Agnieszka Nawrocka
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| |
Collapse
|
16
|
El-Naggar NEA, Shiha AM, Mahrous H, Mohammed ABA. A sustainable green-approach for biofabrication of chitosan nanoparticles, optimization, characterization, its antifungal activity against phytopathogenic Fusarium culmorum and antitumor activity. Sci Rep 2024; 14:11336. [PMID: 38760441 PMCID: PMC11101436 DOI: 10.1038/s41598-024-59702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Chitosan is a natural non-toxic, biocompatible, biodegradable, and mucoadhesive polymer. It also has a broad spectrum of applications such as agriculture, medical fields, cosmetics and food industries. In this investigation, chitosan nanoparticles were produced by an aqueous extract of Cympopogon citratus leaves as a reducing agent. According to the SEM and TEM micrographs, CNPs had a spherical shape, and size ranging from 8.08 to 12.01 nm. CNPs have a positively charged surface with a Zeta potential of + 26 mV. The crystalline feature of CNPs is determined by X-ray diffraction. There are many functional groups, including C꞊C, CH2-OH, C-O, C-S, N-H, CN, CH and OH were detected by FTIR analysis. As shown by the thermogravimetric study, CNPs have a high thermal stability. For the optimization of the green synthesis of CNPs, a Face centered central composite design (FCCCD) with 30 trials was used. The maximum yield of CNPs (13.99 mg CNPs/mL) was produced with chitosan concentration 1.5%, pH 4.5 at 40 °C, and incubation period of 30 min. The antifungal activity of CNPs was evaluated against phytopathogenic fungus; Fusarium culmorum. A 100% rate of mycelial growth inhibition was gained by the application of 20 mg CNPs/mL. The antitumor activity of the green synthesized CNPs was examined using 6 different cell lines, the viability of the cells reduced when the concentration of green synthesized CNPs increased, the IC50 dose of the green synthesized CNPs on the examined cell lines HePG-2, MCF-7, HCT-116, PC-3, Hela and WI-38 was 36.25 ± 2.3, 31.21 ± 2.2, 67.45 ± 3.5, 56.30 ± 3.3, 44.62 ± 2.6 and 74.90 ± 3.8; respectively.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Alaa M Shiha
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Hoda Mahrous
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - A B Abeer Mohammed
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
17
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
18
|
Mullaivendhan J, Akbar I, Ahamed A, Abdulrahman Alodaini H. Synthesis rifaximin with copper (Rif-Cu) and copper oxide (Rif-CuO) nanoparticles Considerable dye decolorization: An application of aerobic oxidation of eco-friendly sustainable approach. Heliyon 2024; 10:e25285. [PMID: 38370249 PMCID: PMC10867351 DOI: 10.1016/j.heliyon.2024.e25285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024] Open
Abstract
In this study, rifaximin with copper (Cu) and copper oxide (CuO) nanoparticles (NPs) were synthesised. The resultant CuO nanoparticles were used to degrade Rhodamine B (RhB) and Coomassie Brilliant Blue (G250). Rifaximin copper and copper oxide nanoparticles were characterised using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and gas chromatography-electrochemical mass spectrometry (GC-EI-MS). An FT-IR study confirmed the formation of Cu in the 562 cm-1 peak range. Rifaximin Cu and CuO Nanoparticles displayed UV absorption peaks at 253 nm and 230 nm, respectively. Coomassie Brilliant Blue G250 was completely decolourised in Cu nanoparticles at 100 %, and Rhodamine B was also decolourised in Rifaximin CuO nanoparticles at 73 %, although Coomassie Brilliant Blue G250 Rifaximin Cu nanoparticles absorbed a high percentage of dye decolorization. The aerobic oxidation of isopropanol conversion was confirmed by GC-MS analysis. Retention time of 27.35 and 30.32 was confirmed using Cu and CuO nanoparticles as the final products of 2-propanone. It is used in the textile and pharmaceutical industries for aerobic alcohol oxidation. Rifaximin CuO nanoparticles highly active in aerobic oxidation. The novelty of this study is that, for the first time, rifaximin was used for the synthesis of copper and copper oxide nanoparticles, and it successfully achieved decolorization and aerobic oxidation.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, 621007, Tamil Nadu, India
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, 621007, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
19
|
Islam MA, Nazal MK, Angove MJ, Morton DW, Hoque KA, Reaz AH, Islam MT, Karim SMA, Chowdhury AN. Emerging iron-based mesoporous materials for adsorptive removal of pollutants: Mechanism, optimization, challenges, and future perspective. CHEMOSPHERE 2024; 349:140846. [PMID: 38043616 DOI: 10.1016/j.chemosphere.2023.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Collapse
Affiliation(s)
- Md Aminul Islam
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh.
| | - Mazen K Nazal
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia.
| | - David W Morton
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia
| | - Khondaker Afrina Hoque
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh; Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Akter Hossain Reaz
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Tajul Islam
- Department of Textile Engineering, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - S M Abdul Karim
- Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - Al-Nakib Chowdhury
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| |
Collapse
|
20
|
Mutinda ES, Zhang DJ, Muema FW, Mkala EM, Waswa EN, Odago WO, Onyango Ochieng C, Gichua MK, Muchuku JK, Kamande E, Hu GW. The genus Balanophora J. R. Forst. & G. Forst. - Its use in traditional medicine, phytochemistry, and pharmacology: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117276. [PMID: 37866464 DOI: 10.1016/j.jep.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products, particularly medicinal plants, have been utilized in traditional medicine for millennia to treat various diseases. The genus Balanophora (Balanophoraceae) consists of 23 accepted species. These species are the most controversial flowering plants, with highly reduced morphologies and are found parasitizing on the roots of their host. They have been used in traditional medicine as a remedy for stomach pain, detumescence, uterine prolapse, wounds, syphilis, gonorrhea, treating injuries from falls, and other conditions. However, there is no review of this genus on its traditional uses, phytochemistry, and pharmacology. AIM The present narrative review discusses the scientific data supporting the traditional uses of Balanophora species. The available information on its botanical properties, traditional uses, chemical contents, pharmacological activities, and toxicity was summarized to help comprehend current research and offer a foundation for future research. MATERIALS AND METHODS The materials used in combining data on the genus Balanophora comprises online sources such as Web of Science, Google Scholar, Science Direct, and Chinese National Knowledge Infrastructure (CNKI) for Chinese-related materials. World Flora online was used in validating the scientific names of this genus while ChemBio Draw Ultra Version 22.2 software was employed in drawing the phytochemical compounds. RESULTS Nine Balanophora species including B. harlandii, B. japonica, B. polyandra, B. fungosa, B. fungosa subsp. indica, B. laxiflora, B. abbreviata, B. tobiracola, and B. involucrata have been documented as vital sources of traditional medicines in different parts of Asia. A total of 159 secondary metabolites have been isolated and identified from the ten species of this genus comprising tannins, flavonoids, sterols, lignans, chalcones, terpenes, and phenylpropanoids. Among these compounds, tannins, lignans, terpenoids, chalcones and phenolic acids contribute to the pharmacological activities of the species in this genus with several biological activities both in vitro and in vivo such as anti-inflammatory, anti-oxidant, hypoglycemic activity, cytotoxicity, anti-microbial, melanin synthesis etc. CONCLUSION: This review summarizes the available literature on the traditional uses, pharmacological properties, and phytoconstituents of Balanophora species indicating that they contain fascinating chemical compounds with diverse biological activities. The traditional uses of the species in this genus have been confirmed by scientific data such as antimicrobial, hemostatic effect, gastroprotective activity and others. However, many species in this genus are yet unknown in terms of their botanical uses, chemical composition and biological activities. Thus, more research into the scientific connections between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Balanophora species is needed to determine their efficacy and therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dong-Juan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Clintone Onyango Ochieng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Moses Kirega Gichua
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - John Kamau Muchuku
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Elizabeth Kamande
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
21
|
Byeon H, Kumar Lautre H, Rajagopalan N, Sivaprakash M, Kiradoo G, Haile A, Arul Raja R, Sunil J. Facile preparation of Fe2O3 catalyst and assessment of its photodegradation performance for industrial effluent purification. RESULTS IN CHEMISTRY 2024; 7:101435. [DOI: 10.1016/j.rechem.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
|
22
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
23
|
Adabi S, Yazdanbakhsh A, Shahsavani A, Sheikhmohammadi A, Hadi M. Removal of heavy metals from the aqueous solution by nanomaterials: a review with analysing and categorizing the studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:305-318. [PMID: 37869595 PMCID: PMC10584792 DOI: 10.1007/s40201-023-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/18/2023] [Indexed: 10/24/2023]
Abstract
With the development of nanotechnology and its application in various sciences, scientists have investigated the use of nanoparticles as adsorbents to remove heavy metals from aqueous solutions all over the world. So far, the results of many of these studies have been published in reputable journals. Obviously, reviewing these articles and summarizing the results of these studies from different aspects will provide new perspectives for the development of this technology for heavy metals removal from water. So the current study was performed to review the results of the published studies between 1/January/1980 to 1/January/2022. The focus of the study is on the analysis of these studies and their classification. In addition, a more detailed investigation was carried out. Among the 5155 articles, 576 articles were included based on Cochrane protocols. Results show that most of the studies (90.8%) were conducted on a laboratory scale and used synthetic solutions. Most studies were performed for Pb, Cd and Cu, removal respectively. Compared to other countries, authors with affiliation from China and Iran have published more articles. The ranking of the use of various nanomaterials were: nanocomposites > metal oxide nanomaterials > metal-based nanomaterials > carbon-based nanomaterials > dendrimers, with the wide range of sizes from less than 10 nm to several hundreds of nanometers. The required amount of carbon-based nanoparticles to remove many heavy metals were lower than other nanoparticles. In most studies, pH ≤ 7 has been reported as optimal. Most studies have been followed pseudo second-order and pseudo first-order reactions and have been more agreement with Langmuir and Freundlich adsorption isotherms respectively. The results of studies show that the synthesis and optimization of new nanomaterials can be considered as a new and competitive technology. However, more studies are needed to investigate the removal of heavy metals in real samples and to overcome some challenges in the full-scale application.
Collapse
Affiliation(s)
- Shervin Adabi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Yazdanbakhsh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Public Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Mohapatra T, Agrawal M, Ghosh P. An overview of plant-mediated biogenic synthesis of nano-catalysts and their application in Fenton and photo-Fenton processes for wastewater remediation. CHEMICAL ENGINEERING JOURNAL 2023; 477:146941. [DOI: 10.1016/j.cej.2023.146941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Chander S, Yadav S, Gupta A, Luhach N. Sequestration of Ni (II), Pb (II), and Zn (II) utilizing biogenic synthesized Fe 3O 4/CLPC NCs and modified Fe 3O 4/CLPC@CS NCs: Process optimization, simulation modeling, and feasibility study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114056-114077. [PMID: 37858026 DOI: 10.1007/s11356-023-30318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The present study reports low-cost novel biogenic magnetite Citrus limetta peels carbon (Fe3O4/CLPC) nanocomposites and modified Fe3O4/CLPC@CS nanocomposites cross-linked with glutaraldehyde and subsequently employed in batch mode sequestration of heavy metals ions. Diverse techniques fully characterized them, and the influence of operating variables on adsorption reactions from aqueous solutions was investigated. The Brunauer, Emmett, and Teller (BET) surface areas of synthesized Fe3O4/CLPC and Fe3O4/CLPC@CS NCs were 53.91 and 32.16 m2/g, while the mesoporous diameters were 7.69 and 7.57 nm, respectively. The Langmuir isotherm and Pseudo second order kinetic were well-fitting and capable of explaining the adsorption reaction. The Langmuir-based monolayer adsorption (qmax) for Fe3O4/CLPC@CS NCs was 82.65, 95.24, and 64.10 mg/g, higher than Fe3O4/CLPC NCs, which were 70.92, 84.75, and 59.17 mg/g for Ni (II), Pb (II), and Zn (II), respectively. Each metal's pseudo second order correlation coefficient (R2 ≥ 0.99) reveals that nanocomposites surface binding functional groups controlled the adsorption rate via chemisorption. Further, thermodynamic results confirm that each studied metal ions' adsorption was spontaneous, endothermic, and characterized by an increase in randomness. In addition to magnetic separability, three ad-desorption cycles yielded exceptional adsorption efficacy and > 93% regenerability. The present study also reveals the effective utilization of Fe3O4/CLPC and Fe3O4/CLPC@CS NCs as cost-effective magnetic separable green adsorbents for heavy metals sequestration from electroplating wastewater.
Collapse
Affiliation(s)
- Subhash Chander
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India
| | - Sangita Yadav
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India
| | - Asha Gupta
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India.
| | - Neha Luhach
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India
| |
Collapse
|
26
|
De Souza APN, Sánchez DR, Alzamora M, Colaço MV, de Souza MAV, De Gois JS, Senra JD, Carvalho NMF. Outstanding adsorption capacity of iron oxide synthesized with extract of açaí berry residue: kinetic, isotherm, and thermodynamic study for dye removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109423-109437. [PMID: 37775630 DOI: 10.1007/s11356-023-29872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023]
Abstract
Contamination of water by toxic dyes is a serious environmental problem. Adsorbents prepared by an environmentally safe route have stood out for application in pollutant removal. Herein, iron oxide-based nanomaterial composed of Fe(III)-OOH and Fe(II/III) bound to proanthocyanidins, with particles in the order of 20 nm, was prepared by green synthesis assisted by extract of açaí (Euterpe oleracea Mart.) berry seeds from an agro-industrial residue. The nanomaterial was applied in the adsorption of cationic dyes. Screening tests were carried out for methylene blue (MB), resulting in an outstanding maximum adsorption capacity of 531.8 mg g-1 at 343 K, pH 10, 180 min. The kinetics followed a pseudo-second-order model and the isotherm of Fritz-Schülnder provided the best fit. Thermodynamic data show an endothermic process with entropy increase, typical of chemisorption. The proposed mechanism is based on the multilayer formation over a heterogeneous adsorbent surface, with chemical and electrostatic interactions of MB with the iron oxide nanoparticles and with the proanthocyanidins. The high adsorption efficiency was attributed to the network formed by the polymeric proanthocyanidins that entangled and protected the iron oxide nanoparticles, which allowed the reuse of the nanomaterial for seven cycles without loss of adsorption efficiency.
Collapse
Affiliation(s)
- Ana Paula Nazar De Souza
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Dalber R Sánchez
- Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/no, Gragoatá, Niterói, RJ, 24210-346, Brazil
| | - Mariella Alzamora
- Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, 19593, Santa Cruz da Serra, Duque de Caxias, RJ, 25240-005, Brazil
| | - Marcos Vinicius Colaço
- Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão João Lyra Filho, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Marcelo Augusto Vieira de Souza
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Jefferson Santos De Gois
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Jaqueline Dias Senra
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Nakédia M F Carvalho
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil.
| |
Collapse
|
27
|
Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A, Waseem M, Irfan A, Inam A, Zaki MEA. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115231. [PMID: 37429088 DOI: 10.1016/j.ecoenv.2023.115231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Sana Sattar
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan; Research and Knowledge Transfer, INTI International University, Putra Nilai 71800, Malaysia
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Attaullah Bukhari
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Aqil Inam
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54000, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
28
|
Sadiq MU, Shah A, Haleem A, Shah SM, Shah I. Eucalyptus globulus Mediated Green Synthesis of Environmentally Benign Metal Based Nanostructures: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2019. [PMID: 37446535 DOI: 10.3390/nano13132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The progress in nanotechnology has effectively tackled and overcome numerous global issues, including climate change, environmental contamination, and various lethal diseases. The nanostructures being a vital part of nanotechnology have been synthesized employing different physicochemical methods. However, these methods are expensive, polluting, eco-unfriendly, and produce toxic byproducts. Green chemistry having exceptional attributes, such as cost-effectiveness, non-toxicity, higher stability, environment friendliness, ability to control size and shape, and superior performance, has emerged as a promising alternative to address the drawbacks of conventional approaches. Plant extracts are recognized as the best option for the biosynthesis of nanoparticles due to adherence to the environmentally benign route and sustainability agenda 2030 of the United Nations. In recent decades, phytosynthesized nanoparticles have gained much attention for different scientific applications. Eucalyptus globulus (blue gum) is an evergreen plant belonging to the family Myrtaceae, which is the targeted point of this review article. Herein, we mainly focus on the fabrication of nanoparticles, such as zinc oxide, copper oxide, iron oxide, lanthanum oxide, titanium dioxide, magnesium oxide, lead oxide, nickel oxide, gold, silver, and zirconium oxide, by utilizing Eucalyptus globulus extract and its essential oils. This review article aims to provide an overview of the synthesis, characterization results, and biomedical applications of nanoparticles synthesized using Eucalyptus globulus. The present study will be a better contribution to the readers and the students of environmental research.
Collapse
Affiliation(s)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Mujtaba Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
29
|
Zhang N, Reguyal F, Praneeth S, Sarmah AK. A green approach of biochar-supported magnetic nanocomposites from white tea waste: Production, characterization and plausible synthesis mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163923. [PMID: 37156378 DOI: 10.1016/j.scitotenv.2023.163923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Green synthesized magnetic nanoparticles were impregnated into biochar matrix (EWTWB) to produce biochar-supported magnetic nanocomposite (GSMB). Instead of chemicals, organic matters in white tea waste extract were used as reductant, surfactant and functional capping materials. Magnetic biochar produced from traditional methods of pyrolysis (PMB) and co-precipitation (Co-PreMB) were prepared to compare their properties with GSMB. Xray Diffraction confirmed the main component of green synthesized particles is Fe3O4. When compared with PMB and Co-PreMB, the Fe3O4 produced by co-precipitation method has higher purity while the products from green synthesis method are complex and contain a small portion of other iron-containing compounds. As a consequence, Co-PreMB has higher saturation magnetisation value than GSMB, which are 31.3 and 11.5 Am2/kg, respectively. GSMB was also found to be less stable in acidic conditions (pH ≤ 4) than Co-PreMB. However, the SEM results exhibited that spherical magnetic nanoparticles (20-50 nm) were successfully formed and distributed on the surface of biochar via green synthesis method while serious aggregation happened on the surface of Co-PreMB. According to the result of BET, the surface area of GSMB increased dramatically from 0.2 m2/g to 59.7 m2/g. Fourier Transform Infrared spectroscopy and Xray photoelectron spectroscopy results showed the presence of rich oxygen-containing functional groups on the GSMB The high surface area and rich functional groups making the green synthesis method a very promising greener way to prepare magnetic biochar for the purpose of wastewater treatment.
Collapse
Affiliation(s)
- Na Zhang
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Febelyn Reguyal
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sai Praneeth
- Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, University of Western Australia, 35 Stirling Highway Perth, WA 6009, Australia.
| |
Collapse
|
30
|
Wu J, Weng X, Owens G, Chen Z. Enhanced activity of Fe/Mn nanoparticles using a response surface methodology and mechanism for removing oxytetracycline and copper ion. CHEMOSPHERE 2023; 319:138057. [PMID: 36739986 DOI: 10.1016/j.chemosphere.2023.138057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As feed additives, oxytetracycline (OTC) and copper ion (Cu(II)) are often detected in livestock and poultry farming wastewater. To address this issue, firstly, the synthesis conditions of Fe/Mn nanoparticles (Fe/Mn NPs) were initially optimized using a response surface methodology (RSM) to yield highly active Fe/Mn NPs, where the application of RSM significantly increased the Fe/Mn NPs' efficiency in removing co-contamination OTC and Cu(II),respectively, from 45.8 to 86.2% and 14.9-67.2%. Secondly, scanning electron microscope and Nitrogen adsorption-desorption isotherms results showed that Fe/Mn NPs were composed of elliptic particles between 20 and 40 nm, a specific surface area of 59.5 m2 g-1, and a mean pore diameter of 5.27 nm. Fourier infrared spectrometer and X-ray photoelectron spectroscopy analysis revealed that amino, carboxyl and hydroxyl functional groups existed on the surface. Zeta potential indicated that Fe/Mn NPs maintained a high negative charge density between pH 1 and 11. These surface properties possessed by the green synthesized Fe/Mn NPs resulted in high adsorption efficiency for co-contamination OTC and Cu(II). Based on this, a removal mechanism based on a combination of complex-bridging effect, pore-filling, hydrogen bonding, surface complexation, ion exchange and electrostatic attraction was proposed. Finally, the assessment of Fe/Mn NPs used in swine wastewater demonstrated that both 99.9% OTC and 55.6% Cu(II) were removed.
Collapse
Affiliation(s)
- Jing Wu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiulan Weng
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
31
|
Ding H, Zhang Y, Mao Y, Li Y, Shen Y, Sheng J, Gu N. Modulation of macrophage polarization by iron-based nanoparticles. MEDICAL REVIEW (2021) 2023; 3:105-122. [PMID: 37724082 PMCID: PMC10471121 DOI: 10.1515/mr-2023-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Macrophage polarization is an essential process involved in immune regulation. In response to different microenvironmental stimulation, macrophages polarize into cells with different phenotypes and functions, most typically M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. Iron-based nanoparticles have been widely explored and reported to regulate macrophage polarization for various biomedical applications. However, the influence factors and modulation mechanisms behind are complicated and not clear. In this review, we systemically summarized different iron-based nanoparticles that regulate macrophage polarization and function and discussed the influence factors and mechanisms underlying the modulation process. This review aims to deepen the understanding of the modulation of macrophage polarization by iron-based nanoparticles and expects to provide evidence and guidance for subsequent design and application of iron-based nanoparticles with specific macrophage modulation functions.
Collapse
Affiliation(s)
- He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yu Mao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
- Medical School, Nanjing University, Nanjing210093, China
| |
Collapse
|
32
|
Sharma B, Tiwari S, Kumawat KC, Cardinale M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160476. [PMID: 36436627 DOI: 10.1016/j.scitotenv.2022.160476] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persistent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, including chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contamination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characterization of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.
Collapse
Affiliation(s)
- Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Shalini Tiwari
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh 211007, India.
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, SP6 Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
33
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
34
|
Panić S, Petronijević M, Vukmirović J, Grba N, Savić S. Green Synthesis of Nanoscale Zero-Valent Iron Aggregates for Catalytic Degradation of Textile Dyes. Catal Letters 2023. [DOI: 10.1007/s10562-022-04257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Kandemir H, Cavas L. Green synthesis of silver nanoparticles through green caviar Caulerpa lentillifera and its phytotoxicity on Allium ascolanicum. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hacer Kandemir
- Department of Biotechnology, The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Levent Cavas
- Department of Biotechnology, The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Türkiye
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, İzmir, Türkiye
| |
Collapse
|
36
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
37
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
38
|
Monje DS, Mercado DF, Mesa GAP, Valencia GC. Carbon dots decorated magnetite nanocomposite obtained using yerba mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest-part 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3070-3087. [PMID: 35941506 DOI: 10.1007/s11356-022-22405-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Two carbon dots (CD) with diameters of 4.9 ± 1.5 and 4.1 ± 1.2 nm were successfully synthesized through an acid ablation route with HNO3 or H2SO4, respectively, using Ilex paraguariensis as raw material. The CD were used to produce magnetite-containing nanocomposites through two different routes: hydrothermal and in situ. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), dynamic light scattering (DLS), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) indicates that all nanomaterials have spherical-like morphology with a core-shell structure. The composition of this structure depends on the route used: with the hydrothermal route, the shell is composed of the CD, but with the in situ process, the CD act as nucleation centers, and so the iron oxide domains are in the shell. Regarding the photocatalytic mechanism for the degradation of methyl orange, the interaction between the CD and the magnetite plays an important role in the photo-Fenton reaction at pH 6.2, in which ligand-to-metal charge transfer processes (LTMCT) allow Fe2+ regeneration. All materials (100 ppm) showed catalytic activity in the elimination of methyl orange (8.5 ppm), achieving discoloration of up to 98% under visible irradiation over 400 nm in 7 h. This opens very interesting possibilities for the use of agro-industrial residues for sustainable synthesis of catalytic nanomaterials, and the role of the interaction of iron-based catalysts with organic matter in heterogeneous Fenton-based processes.
Collapse
Affiliation(s)
- Dany S Monje
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - D Fabio Mercado
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia.
- LMGP, Grenoble INP, CNRS, University Grenoble Alpes, 38000, Grenoble, France.
| | - Gustavo A Peñuela Mesa
- Grupo de Diagnóstico Y Control de La Contaminación (GDCON), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Cl. 62 #52-59, Medellín, Colombia
| | - Gloria Cristina Valencia
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| |
Collapse
|
39
|
Nitrate adsorption using green iron oxide nanoparticles synthesized by Eucalyptus leaf extracts: Kinetics and effects of pH, KCl salt, and anions competition. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Du C, Chen H, Gao W, Sun W, Peng L, Xu N. Green Synthesis of Nano-Zero Valence Iron with Green Tea and It's Implication in Lead Removal. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:10. [PMID: 36512068 DOI: 10.1007/s00128-022-03649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
The nano-zero valence iron (nZVI) via green synthesis for heavy metal remediation has attracted many attentions due to its low-cost, environmental-safety, relative reproductivity, and high stability. However, influence of synthesis conditions on the physiochemical properties of nZVI via green tea extracts and the responding suspensibility, which is required for high reactivity, has not been fully elucidated. In this study, we investigated the zeta potentials, sedimentation and lead (Pb2+) removal capacity of various nZVIs synthesized using green tea extracts. The results showed that the tea extracts extracted at 80oC presented an excellent activity, which contributed to the outstanding suspensibility and reaction activity of nZVI synthesized in a volume ratio of 1:1 (tea extraction versus Fe2+ solution). Thus, the optimized nZVI was successfully prepared with a Pb2+ removal capacity (377.3 mg/g), which was seven times stronger than 50.31 mg/g of traditional chemical synthesized nZVI.
Collapse
Affiliation(s)
- Changsheng Du
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Haijun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Weidong Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Wu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Lei Peng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China.
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, 215009, Suzhou, China.
| |
Collapse
|
41
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Du C, Xu N, Yao Z, Bai X, Gao Y, Peng L, Gu B, Zhao J. Mechanistic insights into sulfate and phosphate-mediated hexavalent chromium removal by tea polyphenols wrapped nano-zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157996. [PMID: 35964743 DOI: 10.1016/j.scitotenv.2022.157996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Nano zero-valent iron via green synthesis (g-nZVI) has great potential in removing toxic hexavalent Cr(VI) from industrial wastewater. Sulfate and phosphate in wastewater can influence Cr(VI) removal by g-nZVI. In this study, the Cr(VI) removal kinetics by different g-nZVI materials were investigated with the existence of sulfate and/or phosphate, and the corresponding mechanisms were first revealed using multiple characterizations, including X-ray absorption near-edge spectra (XANES) and X-ray photoelectron spectroscopy (XPS). The results showed that Cr(OH)3 was the dominant species initially formed on the surface of g-nZVI particles before transforming to Cr2O3 during the reaction of g-nZVI with Cr(VI). Sulfate in wastewater can promote the reduction from Cr(VI) to Cr(OH)3 by g-nZVI, because sulfate triggers the release of Fe(II) and tea polyphenols (from tea extracts) from the g-nZVI surface due to the corrosion of Fe0 core, which is in line with an obvious increase in pseudo-second-order rate constant (k2) and subtle change in Cr(VI) removal capacity (qe). However, phosphate impedes the g-nZVI corrosion and inhibits qe because of the inner-sphere complexation of phosphate onto g-nZVI decreasing the released Fe(II) for Cr2O3 production. When sulfate and phosphate coexisted in contaminated water, the inhibition effect of phosphate in Cr(VI) removal by g-nZVI was stronger than the promotion of sulfate. Accordingly, qe value of g-nZVI declined from 93.4 mg g-1 to 77.5 mg g-1, while k2 remained constant as the molar ratio of phosphate/sulfate increased from 0.1 to 10 in water. This study provides new insights into applying g-nZVI in efficient Cr(VI) removal from contaminated water with enrichment of sulphates and phosphates.
Collapse
Affiliation(s)
- Changsheng Du
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zihan Yao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Peng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
43
|
Bhutto AA, Baig JA, Sirajuddin, Kazi TG, Sierra-Alvarez R, Akhtar K, Hussain S, Afridi HI, Hol A, Samejo S. Biosynthesis and Analytical Characterization of Iron Oxide Nanobiocomposite for In-Depth Adsorption Strategy for the Removal of Toxic Metals from Drinking Water. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:7411-7424. [PMID: 36466582 PMCID: PMC9685060 DOI: 10.1007/s13369-022-07477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of the iron oxide nanoparticles was done using Ixoro coccinea leaf extract, followed by the fabrication of iron oxide nanobiocomposites (I-Fe3O4-NBC) using chitosan biopolymer. Furthermore, the synthesized I-Fe3O4-NPs and I-Fe3O4-NBC were characterized, and I-Fe3O4-NBC was applied to remove toxic metals (TMs: Cd, Ni, and Pb) from water. The characterization study confirmed that the nanostructure, porous, rough, crystalline structure, and different functional groups of chitosan and I-Fe3O4-NPs in I-Fe3O4-NBCs showed their feasibility for the application as excellent adsorbents for quantitative removal of TMs. The batch mode strategy as feasibility testing was done to optimize different adsorption parameters (pH, concentrations of TMs, dose of I-Fe3O4-NBC, contact time, and temperature) for maximum removal of TMs from water by Fe3O4-NBC. The maximum adsorption capacities using nanocomposites for Cd, Ni, and Pb were 66.0, 60.0, and 66.4 mg g-1, respectively. The adsorption process follows the Freundlich isotherm model by I-Fe3O4-NBC to remove Cd and Ni, while the Pb may be adsorption followed by multilayer surface coverage. The proposed adsorption process was best fitted to follow pseudo-second-order kinetics and showed an exothermic, favorable, and spontaneous nature. In addition, the I-Fe3O4-NBC was applied to adsorption TMs from surface water (%recovery > 95%). Thus, it can be concluded that the proposed nanocomposite is most efficient in removing TMs from drinking water up to recommended permissible limit.
Collapse
Affiliation(s)
- Ashfaque Ali Bhutto
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Jameel Ahmed Baig
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Sirajuddin
- ICCBS, HEJ, University of Karachi, Karachi, 75270 Pakistan
| | - Tasneem Gul Kazi
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721-0011 USA
| | - Khalil Akhtar
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Sajjad Hussain
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, 05422 Pakistan
| | - Hassan Imran Afridi
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Aysen Hol
- Chemistry Department, Pamukkale University, 20017 Denizli, Turkey
| | - Suraya Samejo
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
- Chemistry Department, Pamukkale University, 20017 Denizli, Turkey
| |
Collapse
|
44
|
Vera-Reyes I, Altamirano-Hernández J, Reyes-de la Cruz H, Granados-Echegoyen CA, Loera-Alvarado G, López-López A, Garcia-Cerda LA, Loera-Alvarado E. Inhibition of Phytopathogenic and Beneficial Fungi Applying Silver Nanoparticles In Vitro. Molecules 2022; 27:molecules27238147. [PMID: 36500239 PMCID: PMC9738576 DOI: 10.3390/molecules27238147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
In the current research, our work measured the effect of silver nanoparticles (AgNP) synthesized from Larrea tridentata (Sessé and Moc. ex DC.) on the mycelial growth and morphological changes in mycelia from different phytopathogenic and beneficial fungi. The assessment was conducted in Petri dishes, with Potato-Dextrose-Agar (PDA) as the culture medium; the AgNP concentrations used were 0, 60, 90, and 120 ppm. Alternaria solani and Botrytis cinerea showed the maximum growth inhibition at 60 ppm (70.76% and 51.75%). Likewise, Macrophomina spp. required 120 ppm of AgNP to achieve 65.43%, while Fusarium oxisporum was less susceptible, reaching an inhibition of 39.04% at the same concentration. The effect of silver nanoparticles was inconspicuous in Pestalotia spp., Colletotrichum gloesporoides, Phytophthora cinnamomi, Beauveria bassiana, Metarhizium anisopliae, and Trichoderma viridae fungi. The changes observed in the morphology of the fungi treated with nanoparticles were loss of definition, turgidity, and constriction sites that cause aggregations of mycelium, dispersion of spores, and reduced mycelium growth. AgNP could be a sustainable alternative to managing diseases caused by Alternaria solani and Macrophomina spp.
Collapse
Affiliation(s)
- Ileana Vera-Reyes
- CONACYT-Centro de Investigación en Química Aplicada, Depto. de Biociencias y Agrotecnología. Blvd, Enrique Reyna H. 140, Saltillo C.P. 25294, Coahuila, Mexico
| | - Josué Altamirano-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
| | - Homero Reyes-de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
| | - Carlos A. Granados-Echegoyen
- CONACYT-Universidad Autónoma de Campeche, Centro de Estudios en Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), Av. Agustín Melgar, Colonia Buenavista, San Francisco de Campeche C.P. 24039, Campeche, Mexico
| | - Gerardo Loera-Alvarado
- Colegio de Postgraduados, Campus San Luis Potosí, Innovación en Manejo de Recursos Naturales, Iturbide 73, Salinas de Hidalgo C.P. 78600, San Luis Potosí, Mexico
| | - Abimael López-López
- Tecnológico Nacional de México, Campus Instituto Tecnológico de la Zona Maya, Carretera Chetumal-Escárcena, Km. 21.5, Ejido Juan Sarabia C.P. 77965, Quintana Roo, Mexico
| | - Luis A. Garcia-Cerda
- Centro de Investigación en Química Aplicada, Depto. Materiales Avanzados. Blvd, Enrique Reyna H. 140, San José de los Cerritos, Saltillo C.P. 25294, Coahuila, Mexico
| | - Esperanza Loera-Alvarado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
- CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico
- Correspondence:
| |
Collapse
|
45
|
Le TP, Nguyen NH, Le VK, Pham PQ, Duong TBN, Le QNN, Nguyen TCT, Ung TDT, Pham ATT, Nguyen LHT, Mai NXD, Nguyen LTM, Pham NK. Enhancement of antibacterial activities of green synthesized-CuO/ZnO nanocomposites using Boehmeria nivea leaf extract. Biointerphases 2022; 19:061001. [PMID: 39508635 DOI: 10.1116/6.0003858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
This study investigated CuO and ZnO nanoparticles and CuO/ZnO nanocomposites in a friendly environment with a low-cost and renewable biosynthesis method. This approach involved using Boehmeria nivea leaf extract to facilitate the growth and formation of nanocomposites with performance-enhancing phytochemicals released during the co-precipitation process. All nanoparticles/nanocomposites explored the microstructure, morphology, and point defects using FTIR, XRD, SEM, and PL characterization techniques. The synthesized CuO and ZnO nanoparticles and CuO/ZnO nanocomposites were evaluated for their antibacterial ability against both bacteria Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Combining different copper and zinc salt ratios creates different arrangements and morphologies between the CuO sheets and the spherical ZnO nanoparticles. The heterojunction of CuO/ZnO samples enhances the antibacterial effects of nanocomposites compared to pure CuO and ZnO nanoparticles. The maximum antibacterial performance was achieved at 250 ppm against E. coli and 500 ppm against S. aureus in CuO50/ZnO50 nanocomposites. This study shows that a green synthesis of CuO/ZnO nanocomposites promises great potential for environmental treatment and biochemical applications.
Collapse
Affiliation(s)
- Truong Phi Le
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Hong Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Vien Ky Le
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Phu-Quan Pham
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Trung Bao Ngoc Duong
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Quy Ngoc Nguyen Le
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Tien Cam Thi Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Thuy Dieu Thi Ung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 700000, Vietnam
| | - Anh Tuan Thanh Pham
- Laboratory of Advanced Materials, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Linh Ho Thuy Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Vietnam
| | - Ngoc Xuan Dat Mai
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Vietnam
| | - Lan Thi My Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Kim Pham
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
46
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Aravind J, Kamaraj M, Govarthanan M. Polymeric biomolecules based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. CHEMOSPHERE 2022; 307:136008. [PMID: 35985386 DOI: 10.1016/j.chemosphere.2022.136008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The ever-exploding global population coupled with its anthropogenic impact has imparted unparalleled detrimental effects on the environment and mitigating them has emerged as the prime challenge and focus of the current century. The niche of nanotechnology empowered by composites of biopolymers in the handling of xenobiotics and environmental clean-up has an unlimited scope. The appositeness of biopolymer-nanoparticles (Bp-NPs) for environmental contaminant mitigation has received unique consideration due to its exclusive combination of physicochemical characteristics and other attributes. The current review furnishes exhaustive scrutiny of the current accomplishments in the development of Bp-NPs and biopolymer nanomaterials (Bp-NMs) from various polymeric biomolecules. Special attention was provided for polymeric biomolecules such as cellulose, lignin, starch, chitin, and chitosan, whereas limited consideration on gelatin, alginate, and gum for the development of Bp-NPs and Bp-NMs; together with coverage of literature. Promising applications of tailored biopolymer hybrids such as Bp-NPs and Bp-NMs on environmentally hazardous xenobiotics handling and pollution management are discussed as to their notable environmental applications.
Collapse
Affiliation(s)
- P Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, TamilNadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
47
|
Toward green nano adsorbents and catalysts: Highly active Fe/Mn nanoparticles for enhanced oxidation of oxytetracycline and levofloxacin. J Colloid Interface Sci 2022; 632:299-310. [DOI: 10.1016/j.jcis.2022.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
|
48
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
49
|
Sohail MT, Chen S. A systematic PLS-SEM approach on assessment of indigenous knowledge in adapting to floods; A way forward to sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:990785. [PMID: 36092446 PMCID: PMC9453246 DOI: 10.3389/fpls.2022.990785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The present study was conducted in one of the major agriculture areas to check farmers indigenous knowledge about the impacts of floods on their farming lives, food security, sustainable development, and risk assessment. In the current study, primary data was used to analyze the situation. A semi-structured questionnaire was distributed among farmers. We have collected a cross-sectional dataset and applied the PLS-SEM dual-stage hybrid model to test the proposed hypotheses and rank the social, economic, and technological factors according to their normalized importance. Results revealed that farmers' knowledge associated with adaption strategies, food security, risk assessment, and livelihood assets are the most significant predictors. Farmers need to have sufficient knowledge about floods, and it can help them to adopt proper measurements. A PLS-SEM dual-stage hybrid model was used to check the relationship among all variables, which showed a significant relationship among DV, IV, and control variables. PLS-SEM direct path analysis revealed that AS (b = -0.155; p 0.001), FS (b = 0.343; p 0.001), LA (b = 0.273; p 0.001), RA (b = 0.147; p 0.006), and for FKF have statistically significant values of beta, while SD (b = -0.079NS) is not significant. These results offer support to hypotheses H1 through H4 and H5 being rejected. On the other hand, age does not have any relationship with farmers' knowledge of floods. Our study results have important policy suggestions for governments and other stakeholders to consider in order to make useful policies for the ecosystem. The study will aid in the implementation of effective monitoring and public policies to promote integrated and sustainable development, as well as how to minimize the impacts of floods on farmers' lives and save the ecosystem and food.
Collapse
Affiliation(s)
- Muhammad Tayyab Sohail
- School of Public Administration, Xiangtan University, Xiangtan, Hunan, China
- South Asia Research Center, School of Public Administration, Xiangtan University, Xiangtan, Hunan, China
| | - Shaoming Chen
- International Business School, Guangzhou City University of Technology, Guangzhou, China
| |
Collapse
|
50
|
Monje DS, Ruiz OS, Valencia GC, Mercado DF. Iron oxide nanoparticles embedded in organic microparticles from Yerba Mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest - Part 1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57127-57146. [PMID: 35344143 DOI: 10.1007/s11356-022-19744-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Seven composites of iron oxide nanoparticles embedded in organic microparticles mediated by Cu(II) were synthesized using yerba mate (Ilex paraguariensis) dry leaf extract as precipitant, capping agent, and dispersant medium, using different Cu/Fe molar ratios. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis-mass spectrometry (TGA-MS), Fourier transform infrared spectrometer (FTIR), and atomic absorption-spectrometry (AA) indicates that all materials have spheric-like morphology with nanoparticles composed by metal oxide phases embedded into organic microparticles. Interestingly, this organic matter is proposed to play an important role in the solids' photocatalytic activity in a photo-Fenton reaction, in which iron photo-leaching was elucidated, and a mechanism through ligand-to-metal charge transfer processes was proposed. All materials showed catalytic activity in the methyl orange elimination, achieving discolorations up to 96% in 2 h under UV irradiation at 375 nm. An experimental correlation between all samples' UV/Vis spectra and their performances for methyl orange discoloration was observed. This process opens a landscape very interesting for the use of agroindustrial residues for green synthesis of metal oxide nanomaterials and their use and understanding of organo-metallic systems participation in Fenton-based processes.
Collapse
Affiliation(s)
- Dany Santiago Monje
- Grupo de Investigación en Aplicaciones Fotoquímicas (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - Orlando Simón Ruiz
- Facultad de Ciencias, Departamento de Geociencias, Universidad Nacional de Colombia-Sede Medellín Medellín, Medellín, Colombia
| | - Gloria Cristina Valencia
- Grupo de Investigación en Aplicaciones Fotoquímicas (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - D Fabio Mercado
- Grupo de Investigación en Aplicaciones Fotoquímicas (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia.
| |
Collapse
|