1
|
Xia S, Cai D, Liu Y, Zhong S, Yu H, Zhao W, Zou D. Functional group modulation of Fe-1,3,5-benzenetricarboxylic acid materials: Enhancing peroxymonosulfate activation while preserving synthetic simplicity. J Colloid Interface Sci 2025; 695:137842. [PMID: 40347650 DOI: 10.1016/j.jcis.2025.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
This work aims to design peroxymonosulfate (PMS) catalytic materials that exhibit both high catalytic activity and ease of preparation. Fe-1,3,5-benzenetricarboxylic acid (Fe-BTC), known for its environmentally friendly and convenient synthesis, was selected as the template. A series of derived materials were developed under green and mild conditions using a functional group modulation strategy, in which one -COOH group in BTC was substituted with -NO2, -NH2, pyridine nitrogen, or -H. Among these, the amino-modified Fe-BTC (Fe-IPA-NH2), derived via -NH2 substitution, demonstrated a significant improvement in catalytic performance compared to Fe-BTC. Fe-IPA-NH2 effectively activated PMS to degrade 99 % of metronidazole (MNZ) within 60 min. Through comprehensive characterization of the physicochemical properties of the synthesized materials, the influence of functional group modulation on the catalyst's structure-activity relationship was elucidated. The substitution of -COOH with -NH2 enhanced PMS activation by promoting both mass transfer and electron transfer processes. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the degradation pathways of MNZ, which included hydroxyethyl cleavage, methyl oxidation, N-denitration, and ring-opening reactions. Toxicity assessment indicated that the Fe-IPA-NH2/PMS system holds promise for MNZ detoxification. Electron paramagnetic resonance spectroscopy and quenching experiments identified singlet oxygen (1O2) as the dominant reactive species in the Fe-IPA-NH2/PMS system, and a possible catalytic mechanism was proposed. Additionally, Fe-IPA-NH2 retained the key advantage of Fe-BTC-its facile and eco-friendly synthesis. When Fe-IPA-NH2 was incorporated into a ceramic membrane via an in situ assembly process, the resulting membrane catalytic reactor exhibited effective performance in water treatment. This study offers a compelling strategy for the development of iron-based metal-organic complexes that integrate eco-friendly synthesis, enhanced PMS catalytic activity, and versatile application potential.
Collapse
Affiliation(s)
- Shuai Xia
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Dandi Cai
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Yuzhi Liu
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Shuang Zhong
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Haiyang Yu
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Wenbin Zhao
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Donglei Zou
- Key Lab of Groundwater Resources and Environment (Ministry of Education), Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
2
|
Zhao X, Zhang Z. Heterogeneous Peroxymonosulfate-Based Advanced Oxidation Mechanisms: New Wine in Old Bottles? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5913-5924. [PMID: 40101212 DOI: 10.1021/acs.est.4c11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Heterogeneous persulfate-based advanced oxidation processes (PS-AOPs) have been gaining significant attention in water/wastewater treatment; however, the elucidation of mechanisms in PS-AOPs has become increasingly complex as the understanding of potential reactive pathways expands and the rigor of corresponding characterizations intensifies. As such, accurately illustrating system mechanisms with a robust and convincing methodology is crucial, while the influence of substrates must not be overlooked. In this Perspective, established techniques and critical issues are systematically compiled to serve as practical guidelines. Additionally, a newly proposed pathway, the direct oxidation transfer process (DOTP), is discussed in comparison to conventional mineralization processes by reactive oxidative species (ROS) in PS-AOPs. Overall, the investigation of PS-AOP mechanisms across various heterogeneous systems remains contentious and calls for standardization, for which this work aims to serve as a valuable reference.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Dai L, Liu L, Yan J, Jiang S, Tang H, Guo R. Bimetallic-nitrogen-carbon aerogel Co/Ni-N-C derived from 2D ordered nanosheet arrays activate PMS-AOPs for effective antibiotic removal: performance, mechanism, and toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7989-8009. [PMID: 40048064 DOI: 10.1007/s11356-025-36116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
In recent years, peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) have garnered increasing attention for their efficacy in eliminating persistent organic pollutants. Metal-nitrogen-carbon (M-N-C) materials are frequently employed as efficient catalysts for the activation of PMS, leading to the effective production of various reactive species. In this study, a novel 3D porous cobalt/nickel bimetallic-nitrogen-carbon aerogel (Co/Ni-N-C) with well-dispersed CoNi-nanosheets that enhance electron transfer and provide a large active surface area was prepared through an in situ growth and a straightforward pyrolysis procedure of 2D cobalt/nickel metal-organic framework (CoNi-MOF) which was contained by a bamboo cellulose aerogel as a precursor. Rapid tetracycline (TC) removal (efficiency of 99.83% and mineralization rate of 69.8%) was achieved via PMS activation, facilitated by a synergistic enhancement effect of well-dispersion CoNi-nanosheet array. The evenly dispersed Co/Ni-N active sites and high Co:Ni ratio (PCo:Ni = 0.21) producing multiple reactive oxygen species (ROS) were essential in accelerating removal of contaminant. The toxicity assessment results of the intermediates further confirmed that the catalytic degradation in the Co/Ni-N-C-800/PMS system reduced the ecological toxicity of TC through dehydroxylation, demethylation, ring-opening, and deamidation. Furthermore, the Co/Ni-N-C-800/PMS system demonstrated exceptional degradation efficiency for various aromatic compounds with diverse substituents and showed good cyclic stability. These findings offer insights into the development of highly effective bimetallic-nitrogen-carbon catalytic materials.
Collapse
Affiliation(s)
- Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, NanChang, China
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, 215123, China
| | - Li Liu
- College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Jiatong Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tang
- Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, NanChang, China.
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Zhao Z, Zhang L, Qian F, Zang Z, Zhu Y, Xue Y, Li X, Zhang C. Co 3O 4 with the Enhancement of Peroxymonosulfate Adsorption Capacity by Rare Earth Europium-Doping for High-Efficiency Organic Dye Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1024-1036. [PMID: 39757493 DOI: 10.1021/acs.langmuir.4c04333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cobalt-based metal-organic framework (MOFs)-derived catalysts are acknowledged for their effectiveness in activating peroxymonosulfate (PMS) for the treatment of persistent pollutants. However, the limited adsorption of PMS on the catalyst surface markedly reduces its degradation efficiency. To overcome this limitation, nanoflower-like Eu2O3/Co3O4-0.3 catalysts were successfully fabricated by incorporating europium (Eu) into cobalt-based MOF via the hydrothermal and calcination techniques. The doping of Eu not only enhances the adsorption of more PMS on the catalyst's surface but also serves as an electron transfer mediator to regulate the Co2+/Co3+ redox cycle and promote the generation of oxygen vacancies (OV). The catalyst Eu2O3/Co3O4-0.3 was used to activate PMS for the degradation of rhodamine B (RhB), and it was found that the degradation rate constant (k) of the Eu2O3/Co3O4-0.3/PMS system was approximately 8 times higher than that of the Co3O4/PMS system, achieving complete degradation within 20 min. Furthermore, Eu2O3/Co3O4-0.3 exhibited excellent mineralization capacity, stability, and recyclability. Trapping experiments indicated that singlet oxygen (1O2) is the primary active species, suggesting that this material is applicable in complex aqueous environments. Density Functional Theory (DFT) calculations revealed that the adsorption energy (Eads) of PMS on the Eu2O3 surface is -4.05 eV, which is much greater than that on Co3O4 (Eads = -0.32 eV). This study provides a new method for designing nonhomogeneous catalysts to activate PMS for efficient degradation of pollutants.
Collapse
Affiliation(s)
- Zhongli Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Fengyu Qian
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Zhiyong Zang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Yanan Zhu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Yanjin Xue
- National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xingang Li
- Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chun Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| |
Collapse
|
5
|
Zhang YR, Liang YB, Jian D, Wu JZ, Ou YC. New cobalt-based metal-organic frameworks for catalysing sulfite in the degradation of reactive brilliant red. Dalton Trans 2025; 54:1222-1230. [PMID: 39611816 DOI: 10.1039/d4dt03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Advanced oxidation processes utilizing metal-organic frameworks (MOFs) to enhance the catalytic degradation efficiency of synthetic dyes in wastewater require a thorough understanding of the activation mechanism. Herein, four new MOFs, named [Co(Hchtc)(bpe)] (1), [Co(Hchtc)(bpy)]·H2O (2), [Co1.5(Hcptc)(bpy)0.5(H2O)2]·2H2O (3) and [Co2(cptc)(bpe)2(H2O)]·H2O (4) (H3chtc = cyclohexane-tricarboxylic acid, H4cptc = cyclopentane-tetracarboxylic acid, bpe = trans-1,2-(bis(4-pyridyl)ethene), bpy = 4,4'-bipyridine), were exploited as catalysts in the degradation of X3B by the activation of sulfites. Complexes 1 and 2, the first MOFs constructed with H3chtc, are similar two-dimensional layered structures composed of double organic linkers and dinuclear units in which the coordination numbers of cobalt ions are five and six, respectively; complex 3 is also a layered framework assembled with six-coordinated trinuclear cobalt units and bpy, whereas complex 4 is a three-dimensional framework including both 5- and 6-coordinated cobalt ions. Interestingly, catalysts 1/SO32- and 4/SO32- demonstrate a superior degradation efficiency on X3B, while 2/SO32- and 3/SO32- exhibit moderate degradation efficacy on X3B. Further investigations suggest that both the adsorption capacity of the dye and the coordination vacancy on the metal ions contribute to the degradation process, with the latter exerting an activation effect of sulfite ions.
Collapse
Affiliation(s)
- Yi-Ru Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Yan-Bing Liang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Dan Jian
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Jian-Zhong Wu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Yong-Cong Ou
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Wang H, Cao Y, Shen L, Wu XL, Zhao DL, Li R, Lin H. Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123775. [PMID: 39731949 DOI: 10.1016/j.jenvman.2024.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage. Notably, the CPZF catalyst with 11% ZIF-67 content (named as CPZF-11%) achieved an impressive 99.7% degradation of TCH within just 10 min under visible light and PMS activation, highlighting its superior catalytic efficiency. The study revealed that CPZF-11% exhibited excellent stability and recyclability, maintaining near 100% degradation rates even after six cycles. This catalytic performance is attributed to the synergistic effect of photogenerated electrons and PMS activation, leading to the formation of reactive oxygen species (ROS) such as sulfate radicals and singlet oxygen. The research further elucidated the degradation pathways and intermediate products through quenching experiments and electron paramagnetic resonance (EPR) analysis. The findings demonstrate the broad applicability of CPZF/Vis/PMS in various water matrices, including tap water and wastewater, underscoring its potential for real-world applications in wastewater treatment. This innovative integration of MOFs and electrospinning offers a promising strategy for developing efficient, recyclable, and high-performance catalysts for environmental remediation.
Collapse
Affiliation(s)
- Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Yuzhen Cao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
7
|
Yoon M, Park J, Jang J, Choi H, Jeon H, Kim J. Facile fabrication of shape-controllable and reusable nanoporous catalytic aerogels based on Co-MOF and agarose for efficient decomposition of organic pollutants in water. Carbohydr Polym 2024; 345:122559. [PMID: 39227098 DOI: 10.1016/j.carbpol.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have been studied to date by utilizing metal-organic frameworks as efficient catalysts to generate sulfate radicals by peroxymonosulfate (PMS) activation in water purification. It is important to select high-performance and reliable catalysts for efficient water remediation, and separation and recovery of catalysts are essential in the practical application of MOFs. Herein, we adapted thermally curable, shape-controllable, and cost-effective agarose (AG) as a smart matrix and ZIF-67, as a powerful catalyst to prepare nanoarchitectured aerogel (Z67@AG). This nanoporous aerogel composite can efficiently generate sulfate radicals and hydroxyl radicals by activating PMS in the nanopores. Z67@AG aerogel could be easily fabricated in various molds to make desired shapes. This approach enables its utilization for different filtering systems and demonstrates cost-effective and stable performance by mass production and reusability. In the SR-AOP, aerogel exhibited excellent catalytic decomposition performances of 95 % and 88 % efficiencies within 8 and 10 min for dye and levofloxacin, respectively. It is believed that the proposed highly catalytic nanoporous aerogel nanocomposite having cost-effectiveness, excellent catalytic activity, facile fabrication of desired shapes, and an excellent porous structure can be extended to the synthesis of various nanocomposites and emerging applications.
Collapse
Affiliation(s)
- Minsoo Yoon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jisoo Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jieun Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hojoon Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunuk Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Lee J, Ly QV, Cui L, Truong HB, Park Y, Hwang Y. Singlet oxygen dominant-activation by hollow structural cobalt-based MOF/peroxymonosulfate system for micropollutant removal. CHEMOSPHERE 2024; 364:143250. [PMID: 39251156 DOI: 10.1016/j.chemosphere.2024.143250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Despite the keen interest in potentially using the metal-organic framework (MOF) in advanced oxidation processes (AOPs), their application for environmental abatement and the corresponding degradation mechanisms have remained largely elusive. This study explores the use of cobalt-based MOF (CoMOF) for peroxymonosulfate (PMS) activation to remove tetracycline (TC) from water resources. Under optimal conditions, the given catalytic system could achieve a TC removal of 83.3%. Radical quenching tests and EPR analysis revealed that SO4•-, HO•, •O2-, and 1O2 could participate in the catalytic degradation, but the discernible removal mechanism was mainly ascribed to the nonradical pathway induced by 1O2. At only 5 mg/L of CoMOF, the performance of the catalytic system was superior to that of PMS alone for different types of micropollutants. The CoMOF/PMS system could also reliably deal with typical anions in water, such as Cl-, SO42-, HCO3-, and PO43-. The MOF catalyst could last for four cycles with a minor decrease in reactivity of ∼30%. However, the removal performance decreased markedly when aromatic natural organic matter (NOM) were present in the water bodies, and the effectiveness was lower in alkaline or acidic environments. Our work offers insights into the catalytic degradation of CoMOF/PMS applied in contaminated water remediation and serves as a baseline for fabricating an efficient MOF with enhanced catalytic performance and stability.
Collapse
Affiliation(s)
- Jueun Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Quang Viet Ly
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - LeLe Cui
- Membrane & Nanotechnology-Enabled Water Treatment Center, Institute of Environment and Ecology, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
9
|
Xu H, Ye G, Wei C, Xia Y, Wu Z, Zhou Y, Zhou J. Enhanced water stability and catalytic activity of Fe-based metal-organic frameworks with co-ligands for 2,4-dichlorophenol degradation. CHEMOSPHERE 2024; 361:142518. [PMID: 38830463 DOI: 10.1016/j.chemosphere.2024.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Fe-based metal-organic frameworks (MOFs) have good photocatalytic performance, environmental friendliness, low cost, and abundance. However, their applications are limited by low water stability, particularly in the presence of light irradiation and oxidizing agents. In this study, we present a MIL-53(Fe)-based MOF using 1,4-naphthalene dicarboxylic (1,4-NDC) and 1,4-benzenedicarboxylic (H2BDC) acid co-ligands, denoted MIL-53(Fe)-Nx, where Nx represents the ratio of 1,4-NDC. This MOF exhibits high water stability and good photocatalytic activity because of the hydrophobicity of naphthalene. The removal and mineralization rates for 100 mg/L 2,4-dichlorophenol reached 100% and 22%, respectively, within 60 min. After three cycles of use, the Fe leached into the solution from the catalysts was significantly lower than the maximum permissible limit indicated in the European Union standard. Of note, 1,4-NDC can be used to make a rigid MOF, thereby improving the crystallinity, porosity, and hydrophobicity of the resultant materials. It also significantly reduced the bandgap energy and improved the charge separation efficiency of the catalysts. This study provides a route to enhance the water stability of Fe-based MOFs via a mixed-ligand strategy to expand their applications in pollutant control.
Collapse
Affiliation(s)
- Hao Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Guirong Ye
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Cui Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yi Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiming Wu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongxin Zhou
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Li S, Zhang T, Zheng H, Dong X, Leong YK, Chang JS. Advances and challenges in the removal of organic pollutants via sulfate radical-based advanced oxidation processes by Fe-based metal-organic frameworks: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171885. [PMID: 38527540 DOI: 10.1016/j.scitotenv.2024.171885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Tianqi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
11
|
Song Y, Chen R, Li S, Yu S, Ni X, Fang M, Xie H. Enhancement of Peroxydisulfate Activation for Complete Degradation of Refractory Tetracycline by 3D Self-Supported MoS 2/MXene Nanocomplex. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:786. [PMID: 38727380 PMCID: PMC11085324 DOI: 10.3390/nano14090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic abuse, particularly the excessive use of tetracycline (TC), a drug with significant environmental risk, has gravely harmed natural water bodies and even posed danger to human health. In this study, a three-dimensional self-supported MoS2/MXene nanohybrid with an expanded layer spacing was synthesized via a facile one-step hydrothermal method and used to activate peroxydisulfate (PDS) for the complete degradation of TC. The results showed that a stronger •OH signal was detected in the aqueous solution containing MoS2/MXene, demonstrating a superior PDS activation effect compared to MoS2 or Ti3C2TX MXene alone. Under the conditions of a catalyst dosage of 0.4 g/L, a PDS concentration of 0.4 mM, and pH = 5.0, the MoS2/MXene/PDS system was able to fully eliminate TC within one hour, which was probably due to the presence of several reactive oxygen species (ROS) (•OH, SO4•-, and O2•-) in the system. The high TC degradation efficiency could be maintained under the influence of various interfering ions and after five cycles, indicating that MoS2/MXene has good anti-interference and reusability performance. Furthermore, the possible degradation pathways were proposed by combining liquid chromatography-mass spectrometry (LC-MS) data and other findings, and the mechanism of the MoS2/MXene/PDS system on the degradation process of TC was elucidated by deducing the possible mechanism of ROS generation in the reaction process. All of these findings suggest that the MoS2/MXene composite catalyst has strong antibiotic removal capabilities with a wide range of application prospects.
Collapse
Affiliation(s)
| | - Runhua Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.S.)
| | | | | | | | | | | |
Collapse
|
12
|
Ruan X, Wang H, Huang F, Wang F, Yang X. Degradation of 2, 4-dichlorophenol by peroxymonosulfate catalyzed by ZnO/ZnMn 2 O 4. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10984. [PMID: 38298030 DOI: 10.1002/wer.10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
In this study, a highly efficient peroxymonosulfate (PMS) activator, ZnO/ZnMn2 O4 , was synthesized using a simple one-step hydrothermal method. The resulting bimetallic oxide catalyst demonstrated a homogenous and high-purity composition, showcasing synergistic catalytic activity in activating PMS for degrading 2, 4-dichlorophenol (2, 4-DCP) in aqueous solution. This catalytic performance surpassed that of individual ZnO, Mn2 O3 , and ZnMn2 O4 metal materials. Under the optimized conditions, the removal efficiency of 2, 4-DCP reached approximately 86% within 60 min, and the catalytic ability remained almost constant even after four cycles of recycling. The developed degradation system proved effective in degrading other azo-dye pollutants. Certain inorganic anions such as HPO4 - , HCO3 - , and NO3 - significantly inhibited the degradation of 2, 4-DCP, while Cl- and SO4 2- did not exhibit such interference. Results from electrochemical experiments indicated that the electron transfer ability of ZnO/ZnMn2 O4 surpassed that of individual metals, and electron transfer occurred between ZnO/ZnMn2 O4 and the oxidant. The primary active radicals responsible for degrading 2, 4-DCP were identified as SO4 •- , OH• and O2 •- , generated through the oxidation and reduction of PMS catalyzed by Zn (II) and Mn (III). Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the fresh and used catalysts revealed that the exceptional electron transfer ability of ZnO facilitated the valence transfer of Mn (III) and the transfer of electrons to the catalyst's oxygen surface, thus enhancing the catalytic efficiency. The analysis of radicals and intermediates indicates that the two main pathways for degrading 2, 4-DCP involve hydroxylation and radical attack on its aromatic ring. PRACTITIONER POINTS: A bimetallic ZnO/ZnMn2 O4 catalyst was synthesized and characterized. ZnO/ZnMn2 O4 can synergistically activate PMS to degrade 2, 4-DCP compared with single metal oxide. Three primary active radicals, O2 •- , • OH, and SO4 •- , were generated to promote the degradation. ZnO promoted electron transfer among the three species of Mn to facilitate oxidizing pollutants. Hydroxylation and radical attack on the aromatic ring of 2, 4-DCP are the two degradation pathways.
Collapse
Affiliation(s)
- Xinchao Ruan
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Huan Wang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
| | - Fengyun Huang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
| | - Fanye Wang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
| | - Xiaojun Yang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| |
Collapse
|
13
|
Li Z, Zhang W, Liu X, Wang X, Dai H, Chen F, Tang Y, Li J. Iron-Cobalt magnetic porous carbon beads activated peroxymonosulfate for enhanced degradation and Microbial inactivation. J Colloid Interface Sci 2023; 652:1878-1888. [PMID: 37688934 DOI: 10.1016/j.jcis.2023.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Magnetic carbon-based catalysts are promising materials for advanced oxidation processes, offering both high catalytic activity and environmental friendliness, and hold great potential in environmental remediation. In this work, Fe and Co zeolite imidazole frameworks (ZIFs) derived micron-sized magnetic porous carbon beads (MPCBs) were prepared by phase inversion and following the carbonization procedure, and the morphological and structural characteristics of the MPCBs were confirmed. The presence of pores and channels in the MPCBs provides a specific microenvironment for the for the catalysis of the core. Bisphenol A (BPA) was selected for the targeted pollutant, and the catalytic experiments confirmed that the effective catalytic activity of MPCBs in the presence of peroxymonosulfate (PMS), which could almost completely degrade BPA in 20 min with a reaction rate of 0.368 min-1. Furthermore, the MPCBs were used to effectively bacterial inactivation. Intermediate products of the BPA degradation process were validated and the toxicological studies showed a gradual decrease in toxicity, indicating effective reduction of potential hazards. The macroscopic preparation methods we developed for MPCBs that is promising for industrial applications and has the potential to cope with complex environmental remediation.
Collapse
Affiliation(s)
- Zihan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xingyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Fangyan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
14
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
15
|
Molavi H, Mirzaei K, Jafarpour E, Mohammadi A, Salimi MS, Rezakazemi M, Nadagouda MM, Aminabhavi TM. Wastewater treatment using nanodiamond and related materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119349. [PMID: 39491939 DOI: 10.1016/j.jenvman.2023.119349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Nanodiamonds (NDs) are zero-dimensional (0D) carbon-based nanoparticles with SP3/SP2-hybridized carbon atoms that have shown great potential in wastewater treatment areas due to their high surface area, chemical stability, and unique adsorption properties. They can efficiently remove a wide range of pollutants from water, including heavy metals, organic compounds, and dyes via various mechanisms such as electrostatic interactions, π-π stacking, and ion exchange. NDs can be functionalized following different surface chemistries, enabling tailored surface properties and enhanced pollutant adsorption capabilities. This review covers recent research on the application of nanodiamonds in wastewater treatment domain with a major emphasis on adsorption, photocatalytic degradation, and membrane separation, highlighting their promising performances, challenges, and future directions.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Erfan Jafarpour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Megha M Nadagouda
- William Mason High School, 6100 Mason Montgomery Rd, Mason, OH 45040, USA
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
16
|
Xie W, Yuan Y, Wang JJ, Zhang SR, Xu GJ, Jiang N, Xu YH, Su ZM. Co-based MOF heterogeneous catalyst for the efficient degradation of organic dye via peroxymonosulfate activation. Dalton Trans 2023; 52:14852-14858. [PMID: 37791974 DOI: 10.1039/d3dt01783d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this study, a new cobalt-based metal-organic framework (JLNU-500), [Co2(OH)(PBA)(AIP)]·3DMA·0.75H2O (4-(pyridin-4-yl) benzoic acid (HPBA), 5-aminoisophthalic acid (H2AIP) and N,N-dimethylacetamide (DMA)), was fabricated using a solvothermal method. JLNU-500 has 3D network architecture with 1D nanopore channels. The prepared JLNU-500 can activate peroxymonosulfate (PMS) for Rhodamine B (RhB) dye decolorization. Interestingly, catalyst JLNU-500 exhibited high efficiency for PMS activation, and nearly 100% (above 99.8%) removal of RhB with a high concentration (50.0 mg L-1, 100 mL) was achieved within 6 min. The reaction rate constant of the JLNU-500/PMS system was 1.02 min-1 calculated based on the pseudo-first-order kinetics, which is higher than that of the other reported catalysts. Furthermore, the factors, which could influence PMS activation were also investigated, such as PMS dosage, catalyst dosage, pollutant RhB concentration, reaction temperature and solution pH. More importantly, the radical trapping experiments ferreted out that sulfate (SO4˙-) and hydroxyl (˙OH) radicals were the dominating oxidants in the removal of RhB. Moreover, the possible degradation mechanism was elucidated. This study provides new prospects for fabricating new MOFs that can potentially be employed for high-efficiency catalytic oxidation as heterogeneous catalysts.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Yuan Yuan
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Jia-Jun Wang
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Shu-Ran Zhang
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Guang-Juan Xu
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Nan Jiang
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China.
| |
Collapse
|
17
|
Tokay Yılmaz FG, Tekin G, Ersöz G, Atalay S. Reclamation of real textile wastewater by sequential advanced oxidation and adsorption processes using corn-cob based materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122196. [PMID: 37495039 DOI: 10.1016/j.envpol.2023.122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Wastewater management has become crucial for sustaining biological life in the near future. One of the key aspects is integration of treatment processes aiming reuse of treated water for many purposes instead of water discharge. This study focused on combining two different methods, photo-Fenton-like oxidation, and adsorption, for treatment of real textile wastewater to improve water quality to be reused for irrigation. The real textile wastewater was collected from a local plant and subjected to photo-Fenton-like oxidation and adsorption as hybrid process. The operational parameters were optimized for each step by assessing the water quality according to the domestic regulations for irrigation water. The photo-Fenton-like oxidation itself was not successful to achieve the targeted water quality for reuse whereas adsorption as an additional step made the treated water reusable in terms of organic content. But the treated water still contained a certain amount of salinity due to extreme salt usage in textile processing. It was concluded that the treated water at the end of hybrid process could be used for salinity resistant plants such as sugar beet, barley, and cotton which demonstrates a promising contribution to the circular economy for biomass.
Collapse
Affiliation(s)
- Fehmiye Gül Tokay Yılmaz
- Ege University, Graduate School of Natural and Applied Sciences, 35100 Bornova, İzmir, Turkey; Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey
| | - Gulen Tekin
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey.
| | - Gülin Ersöz
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey
| | - Süheyda Atalay
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey
| |
Collapse
|
18
|
Zhang BT, Yan Z, Zhao J, Chen Z, Liu Y, Fan M, Du W. Peroxymonocarbonate activation via Co nanoparticles confined in metal-organic frameworks for efficient antibiotic degradation in different actual water matrices. WATER RESEARCH 2023; 243:120340. [PMID: 37480599 DOI: 10.1016/j.watres.2023.120340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Traditional advanced oxidation processes suffer from low availability of ultrashort lifetime radicals and declining stability of catalysts. Co nanoparticles in hollow bimetallic metal-organic frameworks (Co@MOFs) were synthesized via a solvothermal method. Nanoconfinement and peroxymonocarbonate (PMC) degradation system endows Co@MOFs with high catalytic activity and stability even in the actual water matrices. The nanocomposites exhibited 100-200 nm polyhedron structure with irregular nanocavity between the 20 nm shell and multicores. Co nanoparticles were completely encapsulated by the FeIII-MOF-5 shell according to the X-ray diffraction and photoelectron spectra. Both 0.8 nm micropores and 3.6 nm mesopores were proven to be present. The yolk-shell Co@MOFs exhibited higher catalytic performance than that of Co nanoparticles, hollow FeIII-MOF-5 and its core-shell counterpart toward PMC activation during sulfamethoxazole degradation. The catalytic activities of Co@MOFs for the activation of unsymmetrical peroxides (PMC and peroxymonosulfate) were much higher than those for the symmetrical peroxides (H2O2 and persulfate) and the heterogeneous catalysis was dominant in the Co@MOFs activated H2O2 and PMC systems. The MOF stability was the highest and metal leakages were the least in the activated PMC system among the four peroxides because of mild reaction conditions and the alkalescent solution (pH = 8.3-8.4). Furthermore, the high removal efficiencies (>94%) and degradation rates could be maintained in the different actual water matrices due to the confinement effects. The contributions of carbonate and hydroxyl radicals were primary for sulfamethoxazole degradation, and superoxide anion and singlet oxygen also played essential roles according to scavenging experiments and time-series spin-trapping electron spin resonance spectra. Six degradation pathways were proposed according to 26 intermediate identification and the pharmacophores of more than 80% intermediates were destroyed, which would benefit subsequent biological treatment. Successful combination of nanoconfinement and PMC might provide a new effective solution for pollution remediation.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zihan Yan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Juanjuan Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuo Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuchun Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Maohong Fan
- College of Engineering and Physical Sciences, University of Wyoming, Laramie, WY 82071, United States.
| | - Wei Du
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| |
Collapse
|
19
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
20
|
Yan J, Brigante M, Mailhot G, Dong W, Wu Y. A comparative study on Fe(III)/H 2O 2 and Fe(III)/S 2O 82- systems modified by catechin for the degradation of atenolol. CHEMOSPHERE 2023; 329:138639. [PMID: 37054842 DOI: 10.1016/j.chemosphere.2023.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The processes of Fe(III) activated persulfate (PS) and H2O2 modified by catechin (CAT) had been shown to be effective in degrading contaminants. In this study, the performance, mechanism, degradation pathways and products toxicity of PS (Fe(III)/PS/CAT) and H2O2 (Fe(III)/H2O2/CAT) systems were compared using atenolol (ATL) as a model contaminant. 91.0% of ATL degradation was reached after 60 min in H2O2 system which was much higher than that in PS system (52.4%) under the same experimental condition. CAT could react directly with H2O2 to produce small amounts of HO• and the degradation efficiency of ATL was proportional to CAT concentration in H2O2 system. However, the optimal CAT concentration was 5 μM in PS system. The performance of H2O2 system was more susceptible to pH than that of PS system. Quenching experiments were conducted indicating that SO4•- and HO• were produced in PS system while HO• and O2•- accounted for ATL degradation in H2O2 system. Seven pathways with nine byproducts and eight pathways with twelve byproducts were put forward in PS and H2O2 systems respectively. Toxicity experiments showed that the inhibition rates of luminescent bacteria were both decreased about 25% after 60 min reaction in two systems. Although the software simulation result showed few intermediate products of both systems were More toxic than ATL, but the amounts of them were 1-2 orders of magnitude lower than ATL. Moreover, the mineralization rates were 16.4% and 19.0% in PS and H2O2 systems respectively.
Collapse
Affiliation(s)
- Jiaying Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
21
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
22
|
Duan WL, Li YX, Li WZ, Luan J. Controllable synthesis of copper-organic frameworks via ligand adjustment for enhanced photo-Fenton-like catalysis. J Colloid Interface Sci 2023; 646:107-117. [PMID: 37187044 DOI: 10.1016/j.jcis.2023.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The efficient heterogeneous photo-Fenton-like catalysts based on two secondary ligand-induced Cu(II) metal-organic frameworks (Cu-MOF-1 and Cu-MOF-2) were constructed for the first time and investigated for the degradation of multiple antibiotics. Herein, two novel Cu-MOFs were prepared using mixed ligands by a facile hydrothermal method. The one-dimensional (1D) nanotube-like structure could be obtained by using V-shaped, long and rigid 4,4'-bis(3-pyridylformamide)diphenylether (3-padpe) ligand in Cu-MOF-1, while polynuclear Cu cluster could be prepared more easily by using short and small isonicotinic acid (HIA) ligand in Cu-MOF-2. Their photocatalytic performances were measured by degradation of multiple antibiotics in Fenton-like system. Comparatively, Cu-MOF-2 exhibited superior photo-Fenton-like performance under visible light irradiation. The outstanding catalytic performance of Cu-MOF-2 was ascribed to the tetranuclear Cu cluster configuration and excellent ability of photoinduced charge transfer and hole separation thus improved the photo-Fenton activity. In addition, Cu-MOF-2 showed high photo-Fenton activity in wide pH working range 3-10 and maintained wonderful stability after five cyclic experiments. The degradation intermediates and pathways were deeply studied. The main active species h+, O2- and OH worked together in photo-Fenton-like system and possible degradation mechanism was proposed. This study provided a new approach to design the Cu-based MOFs Fenton-like catalysts.
Collapse
Affiliation(s)
- Wen-Long Duan
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Ye-Xia Li
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang 100819, PR China.
| |
Collapse
|
23
|
Chen Y, Cheng M, Lai C, Wei Z, Zhang G, Li L, Tang C, Du L, Wang G, Liu H. The Collision between g-C 3 N 4 and QDs in the Fields of Energy and Environment: Synergistic Effects for Efficient Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205902. [PMID: 36592425 DOI: 10.1002/smll.202205902] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Recently, graphitic carbon nitride (g-C3 N4 ) has attracted increasing interest due to its visible light absorption, suitable energy band structure, and excellent stability. However, low specific surface area, finite visible light response range (<460 nm), and rapid photogenerated electron-hole (e- -h+ ) pairs recombination of the pristine g-C3 N4 limit its practical applications. The small size of quantum dots (QDs) endows the properties of abundant active sites, wide absorption spectrum, and adjustable bandgap, but inevitable aggregation. Studies have confirmed that the integration of g-C3 N4 and QDs not only overcomes these limitations of individual component, but also successfully inherits each advantage. Encouraged by these advantages, the synthetic strategies and the fundamental of QDs/g-C3 N4 composites are briefly elaborated in this review. Particularly, the synergistic effects of QDs/g-C3 N4 composites are analyzed comprehensively, including the enhancement of the photocatalytic performance and the avoidance of aggregation. Then, the photocatalytic applications of QDs/g-C3 N4 composites in the fields of environment and energy are described and further combined with DFT calculation to further reveal the reaction mechanisms. Moreover, the stability and reusability of QDs/g-C3 N4 composites are analyzed. Finally, the future development of these composites and the solution of existing problems are prospected.
Collapse
Affiliation(s)
- Yongxi Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang, 330001, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Chensi Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
24
|
Wang J, Liu Z, Sun Z. In-situ cathode induction of HKUST-1-derived polyvalent copper oxides in electro-Fenton systems for effective sulfamethoxazole degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
25
|
Liu G, Liu Y, Chen D, Wang C, Guan W. Activation of peroxymonosulfate by Co-Mg-Fe layered doubled hydroxide for efficient degradation of Rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37634-37645. [PMID: 36574127 DOI: 10.1007/s11356-022-24983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Reactive species serve as a key to remediate the contamination of refractory organic contaminants in advanced oxidation processes. In this study, a novel heterogeneous catalyst, CoMgFe-LDH layered doubled hydroxide (CoMgFe-LDH), was prepared for an efficient activation of peroxymonosulfate (PMS) to oxidize Rhodamine B (RhB). The characterization results showed that CoMgFe-LDH had a good crystallographic structure. Correspondingly, the CoMgFe-LDH/PMS process exhibited good capacity to remove RhB, which was equivalent to degradation performance as homogeneous Co(II)/PMS process. The RhB oxidation in the CoMgFe-LDH/PMS process was well described with pseudo-first-order kinetic model. Additionally, the oxidation process presented an excellent stability, and only 0.9% leaching rate was detected after six sequential reaction cycles at pH 5.0. The effects of initial pH, CoMgFe-LDH dosage, PMS concentration, RhB concentration, and inorganic anions on the RhB degradation were discussed in detail. Quenching experiments showed that sulfate radicals (SO4•-) acted as the dominant reactive species. Further, the removal of RhB from simulated wastewater was explored. The removal efficiency of RhB (90 μM) could reach 94.3% with 0.8 g/L of catalyst and 1.2 mM of PMS addition at pH 5.0, which indicated the CoMgFe-LDH/PMS process was also effective in degrading RhB in wastewater.
Collapse
Affiliation(s)
- Guifang Liu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Yuhan Liu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Dongliang Chen
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunli Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Weiting Guan
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
26
|
Ma X, Yuan H, Qiao Q, Zhang S, Tao H. Enhanced catalysis for degradation of rhodamine B by amino-functionalized Fe-MOFs with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjun Xiao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang 330001, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| |
Collapse
|
28
|
Yu D, He J, Xie T, Yang J, Wang J, Xie J, Shi H, Gao Z, Xiang B, Dionysiou DD. Boosting catalytic activity of SrCoO 2.52 perovskite by Mn atom implantation for advanced peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130085. [PMID: 36193611 DOI: 10.1016/j.jhazmat.2022.130085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Material-enhanced heterogeneous peroxymonosulfate (PMS) activation for degradation of antibiotic in water has attracted intensive attention. However, one challenge is the electron transfer efficiency from the material to PMS for reactive oxygen species (ROS) production. Considering that the B-sites of perovskite oxides are closely associated with the catalytic performance, partial substitution of the B-sites of perovskite oxides can enhance the redox cycle of metals. Consequently, adjusting the ratio of each element at the B site can introduce oxygen vacancies on the surface of perovskite. Herein, a method was developed in which manganese (Mn) partially substitutes B-sites to modify surface properties of SrCoO2.52 perovskite oxides, resulting in the enhancement of catalytic activity. In degradation kinetics studies using SrCoMnO3-δ-0.5/PMS (SrCoMnO3-δ-0.5 denotes that the molar substitution of Mn at the B site of SrCoO2.52 perovskite oxide is 0.5) reaction system and sulfamethoxazole (SMX) as the target pollutant, it was found that the reaction rate constant (kobs) is 0.287 min-1 which is 2.4 times that of SrCoO2.52/PMS system. Experimental and theoretical analyses revealed that Mn-O covalent bonding governs the intrinsic catalytic activity of SrCoMnO3-δ-0.5 perovskite oxides. The Mn sites exhibits stronger adsorption energy with PMS than the Co sites, facilitating the breaking of O-O bond. Simultaneously, oxygen vacancies and surface adsorbed oxygen species have a synergistic effect for PMS adsorption. This work can provide a potential route in developing advanced catalysts based on manipulation of the B-sites of perovskite oxides for PMS activation.
Collapse
Affiliation(s)
- Dan Yu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jiahong He
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Taiping Xie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jun Yang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jiankang Wang
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jinchen Xie
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Huiting Shi
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zongyu Gao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bin Xiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| |
Collapse
|
29
|
Li Z, Ning S, Hu F, Zhu H, Zeng L, Chen L, Wang X, Fujita T, Wei Y. Preparation of VCo-MOF@MXene composite catalyst and study on its removal of ciprofloxacin by catalytically activating peroxymonosulfate: Construction of ternary system and superoxide radical pathway. J Colloid Interface Sci 2023; 629:97-110. [PMID: 36152584 DOI: 10.1016/j.jcis.2022.08.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
The synergistic effect between transition metal active centers and the generation of multiple removal pathways has a significant impact on the catalytic activation efficiency of peroxymonosulfate. In this work, a kind of composite catalyst was prepared by growing VCo-metal-organic frameworks (VCo-MOF) in-situ on the surface of Ti3C2Tx by a solvothermal method. The morphology and structure are characterized by Transmission Electron Microscope (TEM), Energy Dispersion Spectrum (EDS), Atomic Force Microscope (AFM), etc. Response surface methodology was used to optimize the experimental conditions. Only 5 mg catalyst can be used to effectively activate PMS and remove 96.14 % ciprofloxacin (CIP, 20 mg/L) within 30 min. The removal effect of catalyst on CIP in different actual water environment was explored. In addition, the fluorescence spectrum test also verified the effective removal of ciprofloxacin. V-Co-Ti ternary system provides a wealth of active sites for CIP removal. Cyclic voltammetry (CV) and lear sweep voltammetry (LSV) tests showed the existence of the electron transfer pathway. The results of density functional theory (DFT) calculation show that VCo-MOF@Ti3C2Tx has excellent adsorption and activation ability for PMS. At the same time, the hydrophilicity of the catalyst makes PMS more inclined to react with water molecules, which promotes the formation of a unique superoxide radical path.
Collapse
Affiliation(s)
- Zengzhiqiang Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China.
| | - Fengtao Hu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Hao Zhu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Lingdong Zeng
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Lifeng Chen
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China
| | - Xinpeng Wang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
30
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Cong Y, Chen X, Ye L, Li X, Lv SW. A newly-designed free-standing NiCo 2O 4 nanosheet array as effective mediator to activate peroxymonosulfate for rapid degradation of emerging organic pollutant with high concentration. CHEMOSPHERE 2022; 307:136073. [PMID: 35987267 DOI: 10.1016/j.chemosphere.2022.136073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nowadays effective treatment of high concentration organic wastewater is still a formidable task facing human beings. Herein, for the first time, a well-defined ZIF-67-derived NiCo2O4 nanosheet array was successfully prepared by a feasible method. In comparison with ordinary NiCo2O4 nanosphere, the formation of nanosheet structure could offer more opportunities to exposure internal active sites of NiCo2O4, thereby resulting in smaller interface resistance and higher charge transfer efficiency. As expected, ZIF-67-derived NiCo2O4 nanosheet array displayed great performance in peroxymonosulfate (PMS) activation. More importantly, recyclable redox couples of Co3+/Co2+ and Ni3+/Ni2+ endowed the stable catalytic activity of NiCo2O4 nanosheet. Interestingly, developed NiCo2O4-1/PMS oxidation system could achieve the effective degradation of antibiotics with high concentration in a short time. Both radical and nonradical pathways were involved into PMS activation, wherein SO4-, OH, O2- and 1O2 were major reactive oxygen species. The formation paths of reactive oxygen species and effects of inorganic anions were also investigated. Electrochemical analyses revealed that NiCo2O4-1 with nanosheet structure mediated the electron transfer between PMS and tetracycline (TC), which played a vital role in TC degradation. Furthermore, developed NiCo2O4-1/PMS oxidation system displayed great removal ability towards TC in actual water samples, and degradation products were low toxicity or no toxicity. In short, current work not only developed an effective oxidation system for completing the rapid degradation of antibiotic with high concentration, but also shared some novel insights into the activation mechanism of SR-AOPs.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiang Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lingjie Ye
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shi-Wen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
32
|
Zhang W, Li Z, Luo R, Guo Q, Xu F, Yang F, Zhang M, Jia L, Yuan S. Design of tandem CuO/CNTs composites for enhanced tetracycline degradation and antibacterial activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Li S, Huang D, Cheng M, Wei Z, Du L, Wang G, Chen S, Lei L, Chen Y, Li R. Application of sludge biochar nanomaterials in Fenton-like processes: Degradation of organic pollutants, sediment remediation, sludge dewatering. CHEMOSPHERE 2022; 307:135873. [PMID: 35932922 DOI: 10.1016/j.chemosphere.2022.135873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In today's society, wastewater sludge has become solid waste, and the preparation of wastewater sludge into sludge biochar nanomaterials (SBCs) for resource utilization has become a promising method. SBCs have advantages over other biomasses, including their complex composition, wide range of raw materials, and especially the presence of various transition metals with catalytic properties. Heterogeneous Fenton processes using SBCs as catalyst carriers have shown great potential in the removal of pollutants. In this review, the synthesis methods of SBCs are reviewed and the effects of different synthesis methods on their physicochemical properties are discussed. Furthermore, the successful applications of raw SBCs, metal-modified SBCs, and Fenton sludge-SBCs in organic pollutant degradation, sediment remediation, and sludge dewatering are reviewed. The mechanisms occurring with different metals as active sites are explored, and the review shows that the degradation efficiency and stability of SBCs are very satisfactory. We also provide an outlook on the future development of SBCs. We hope that this review will help readers gain a clearer and deeper understanding of SBCs and promote the development of SBCs.
Collapse
Affiliation(s)
- Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
34
|
Wu Y, Li Y, Zhao T, Wang X, Isaeva VI, Kustov LM, Yao J, Gao J. Bimetal-organic framework-derived nanotube@cellulose aerogels for peroxymonosulfate (PMS) activation. Carbohydr Polym 2022; 296:119969. [DOI: 10.1016/j.carbpol.2022.119969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
|
35
|
MOF derivative functionalized titanium-based catalytic membrane for efficient sulfamethoxazole removal via peroxymonosulfate activation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Zheng Y, Wei Y, Fan J, Liu X, Zhu Z, Yang B. The Fe
0
/Fe
3
O
4
/Fe
3
C@hydrophilic Carbon Composite for LED Light‐Assisted, Improved Fenton‐Like Catalytic Activity for Dye Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanping Zheng
- Department of Petrochemical Technology Lanzhou University of Technology Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou Yinchuan 730070 P.R. China
| | - Yunxia Wei
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Jinhu Fan
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Xianyu Liu
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Zhenhong Zhu
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Baoping Yang
- Department of Petrochemical Technology Lanzhou University of Technology Lanzhou 730070 P.R.China
| |
Collapse
|
37
|
Pu M, Ye D, Wan J, Xu B, Sun W, Li W. Zinc-based metal–organic framework nanofibers membrane ZIF-65/PAN as efficient peroxymonosulfate activator to degrade aqueous ciprofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Preparation of Fe/C-Mt composite catalyst and ofloxacin removal by peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Facile synthesis of porphyrin-MOFs with high photo-Fenton activity to efficiently degrade ciprofloxacin. J Colloid Interface Sci 2022; 622:690-699. [DOI: 10.1016/j.jcis.2022.04.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
|
40
|
Efficient cobalt-based metal-organic framework derived magnetic Co@C-600 Nanoreactor for peroxymonosulfate activation and oxytetracycline degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Shi Q, Deng S, Zheng Y, Du Y, Li L, Yang S, Zhang G, Du L, Wang G, Cheng M, Liu Y. The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. ENVIRONMENTAL RESEARCH 2022; 212:113340. [PMID: 35452671 DOI: 10.1016/j.envres.2022.113340] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) is a very important chemical oxidation technology for the degradation of recalcitrant organic pollutants in water and has been well developed. Recently, transition metals or their oxides-modified biochar has been widely used as the catalyst to catalyze peroxymonosulfate (PMS) and peroxydisulfate (PS) in SR-AOPs due to their outstanding properties (e.g., large surface area, high stability, abound catalytic sites, and diversity of material design, etc.). These composite materials not only combine the respective beneficial characteristics of biochar and transition metals (or their oxides) but also often present synergistic effects between the components. In this review, we present the synthesis of different types of transition metal (or metal oxides)/biochar-based catalysts and their application in SR-AOPs. The catalytic mechanism, including the generation process of free radicals and other reaction pathways on the surface of the catalyst were also carefully discussed. Particular attention has been paid to the synergistic effects between the components that result in enhanced catalytic performance. At the end of this review, the future development prospects of this technology are proposed.
Collapse
Affiliation(s)
- Qingkai Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Si Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuling Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yinlin Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Suzhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
42
|
Lu M, Liu M, Xu C, Yin Y, Shi L, Wu H, Yuan A, Ren XM, Wang S, Sun H. Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Jiang D, Fang D, Zhou Y, Wang Z, Yang Z, Zhu J, Liu Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119386. [PMID: 35550132 DOI: 10.1016/j.envpol.2022.119386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical () (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Di Fang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiwei Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - ZiHao Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
44
|
Yao C, Jin C, Wang S, Wang Y, Zhang Y, Hou Z, Yu Y, Sun C, Wei H, Wang G. Analysis of the degradation of m-cresol with Fe/AC in catalytic wet peroxide oxidation enhanced by swirl flow. CHEMOSPHERE 2022; 298:134356. [PMID: 35306055 DOI: 10.1016/j.chemosphere.2022.134356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Catalytic wet peroxide oxidation (CWPO) enhanced by swirl flow (SF-CWPO) was developed for the first time to explore the degradation of m-cresol in 3%iron/activated carbon catalysed Fenton reaction. Under the conditions of catalyst dosage of 0.6 g/L, H2O2 dosage of 1.5 mL/L, pH = 6 and reaction time of 20 min, the degradation rate of m-cresol and total organic carbon in 100 mg/L m-cresol solution reaches 81.5% and 82%, respectively. The reaction speed in the SF-CWPO system with an independently designed cyclone reactor was two times faster than the traditional CWPO systems. In addition, via liquid chromatography-mass spectrometry analysis of the degradation product, the possible degradation pathway for m-cresol was proposed. The proposed SF-CWPO can potentially be an efficient and economical method to treat organic pollutants in wastewaters.
Collapse
Affiliation(s)
- Chenxing Yao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Shengzhe Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yihuan Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yanan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zuojun Hou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yonghui Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China.
| |
Collapse
|
45
|
Core-shell bimetallic Fe-Co MOFs to activated peroxymonosulfate for efficient degradation of 2-chlorophenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Tan J, Xu C, Zhang X, Huang Y. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
N-TiO2-Coated SiC Foam for the Treatment of Dyeing Wastewater under Blue Light LED Irradiation. COATINGS 2022. [DOI: 10.3390/coatings12050585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
TiO2 is widely used for the photocatalytic degradation of organic pollutants in wastewater, but the practical applications of the photocatalyst are limited due to its poor visible light absorption and low recovery rate. In this study, high production of nitrogen-doped TiO2 was achieved by a hydrolysis precipitation method; the obtained N-TiO2 had a small crystallite size and good dispersibility. The effect of calcining temperature on the photocatalytic performance of N-TiO2 was evaluated through the degradation of methylene blue (MB) in a blue light LED irradiation cylinder, it was found the N-TiO2 calcined at 400 °C showed the best photocatalytic activity. Then the N-TiO2 was immobilized on SiC ceramic foam by dip-coating with PVA as the binder. The prepared N-TiO2/SiC foam showed excellent photocatalytic activity under blue light LED irradiation; as high as 96.3% of MB was degraded at optimum conditions. After five cycles of MB photodegradation, the photocatalytic activity of N-TiO2/SiC foam only changed slightly, which makes it a promising photocatalytic material for wastewater treatment.
Collapse
|
48
|
Zhu W, Han M, Kim D, Zhang Y, Kwon G, You J, Jia C, Kim J. Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. ENVIRONMENTAL RESEARCH 2022; 205:112417. [PMID: 34856164 DOI: 10.1016/j.envres.2021.112417] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have recently attracted much attention due to their potential in degrading organic pollutants. Metal-organic frameworks (MOFs) have been reported as effective materials to generate SO4•-. However, it is challenging to separate and recover the dispersed MOF particles from the reaction solution when MOFs are used alone. We used cellulose nanofibers (CNFs) as a porous filter template to immobilize Zn-based MOF, zeolitic imidazolate framework-8 (ZIF-8), and obtained a catalytic composite membrane having peroxymonosulfate (PMS) activating function to produce SO4•-. The CNF was effective in holding ZIF-8 nanoparticle and making a durable porous filter. The activated PMS-produced •OH and SO4•- radicals from ZIF-8 play an important role in the catalytic reaction. More than 90% of methylene blue and rhodamine B was degraded by ZIF-8/CNFs composite membrane in the PMS environment within 60 min. The ZIF-8/CNFs catalytic filters can be used several times without performance reduction for organic dye degradation. The results show that ZIF-8/CNFs catalytic membrane can be separated from organic pollution system quickly and used for the efficient separation and recovery of MOF particle-based catalytic materials. Therefore, this study provides a new perspective for fabricating the MOFs particles-immobilized catalytic filter by biomass nanocellulose-based materials for water purification. This method can be used for facile fabrication of the cellulose-based porous functional filter and open diverse applications.
Collapse
Affiliation(s)
- Wenkai Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donggyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Goomin Kwon
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
49
|
Zhang Z, Du C, Zhang Y, Yu G, Xiong Y, Zhou L, Liu Y, Chi T, Wang G, Su Y, Lv Y, Zhu H. Degradation of oxytetracycline by magnetic MOFs heterojunction photocatalyst with persulfate: high stability and wide range. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30019-30029. [PMID: 34997501 DOI: 10.1007/s11356-021-17971-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis with persulfate (PS) is an effective method for the degradation of degrading organic pollutants. In this study, Fe3O4/MIL-101(Fe), a magnetic heterojunction photocatalyst, was produced using a hydrothermal method. The material coupled with PS exhibited excellent removal efficiency for oxytetracycline (OTC) (87.1%, 1 h). And it has a wide range of applications, with good removal efficiency for OTC concentrations of 30 to 70 mg/L and pH values of 3 to 9. •SO4- and •OH played a major role in the OTC removal reaction and there was an Fe(III)/Fe(II) cycle during the reaction. With excellent stability and recoverability, the OTC removal efficiency decreased by only 4.29% after four cycles, and the Fe leaching did not exceed 0.035 mg/L per cycle. This study provides significant insights into the removal of organic pollutants from water bodies.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Chunyan Du
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China.
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, People's Republic of China.
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, People's Republic of China
| | - Ying Xiong
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, People's Republic of China
| | - Yuanyuan Liu
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Tianying Chi
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Guoliang Wang
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Yihai Su
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering and Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| |
Collapse
|
50
|
Du A, Fu H, Wang P, Zhao C, Wang CC. Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoS x-CuS x derived from ZIF-L(Co) immobilized on copper foam. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128134. [PMID: 34959213 DOI: 10.1016/j.jhazmat.2021.128134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The CoSx-CuSx was firmly immobilized on copper foam (CF) substrate to fabricate supported CoSx-CuSx/CF using ZIF-L(Co)/CF as a self-sacrificing template, in which CF substrate played an important role in improving the adhesion between CF and target catalyst as well as the interfacial interaction between CoSx and CuSx. The CoSx-CuSx/CF performed well in catalytic peroxymonosulfate (PMS) activation, which can accomplish 97.0% sulfamethoxazole (SMX) degradation within 10 min due to the special structure and Co2+ regeneration promoted by S2- and Cu+. The influences of pH, PMS dosage, catalyst dosage, co-existing anions and natural organic matter (NOM) on SMX removal were studied in detail. CoSx-CuSx/CF presented excellent catalytic activity and reusability, which might be fascinating candidate for real wastewater treatment. The possible pathway of SMX degradation was proposed, and the toxicity of the intermediates during the degradation process were evaluated. It is noteworthy that long-term continuous degradation of sulfonamide antibiotics was achieved using a self-developed continuous-flow fixed-bed reactor. This work demonstrated that CF as a substrate to fabricate supported catalysts derived from MOF had great potential in actual wastewater remediation.
Collapse
Affiliation(s)
- Aofei Du
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, China Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, China Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|