1
|
Siraz MMM, Kamal MH, Khan ZH, Alam MS, Al Mahmud J, Rashid MB, Khandaker MU, Osman H, Yeasmin S. Radionuclide Transfer in Tea Cultivation: Assessing Radiological Risks in the Largest and First Established Tea Garden in Bangladesh. SOIL AND SEDIMENT CONTAMINATION: AN INTERNATIONAL JOURNAL 2025; 34:435-453. [DOI: 10.1080/15320383.2024.2353629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
2
|
Khan R, Akhi SZ, Khan MHR, Sultana S, Aldawood S, Basir MS, Parvez MS, Naher K, Habib MA, Idris AM, Roy DK. Comparison of environmental radioactivity in road dust between a city and a megacity: geo-environmental evaluation, health risks, and potential remediation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:344-362. [PMID: 39919233 DOI: 10.1093/etojnl/vgae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 10/06/2024] [Indexed: 02/09/2025]
Abstract
This pioneering study represents a comprehensive comparative analysis of naturally occurring radioactive materials (NORMs: 226Ra (≈238U),232Th, 40K) on the roadside dust samples collected from a coastal city (Khulna) and a highly urban megacity (Dhaka), Bangladesh. The corresponding radioactivity was calculated based on Instrumental Neutron Activation Analysis of elemental abundances (uranium [U], thorium [Th], and potassium [K]). Averagen=30 radioactivity levels of 226Ra (≈238U), 232Th, and 40K in the road dust of Khulna city were 46.82 ± 24, 74.79 ± 25, and 541.14 ± 160.8, whereas in Dhaka city, they were 84.4 ± 13, 126 ± 11, and 549 ± 48 (Bq.kg-1), respectively. Khulna city had 1.3, 2.5, and 1.4 times greater 226Ra (≈238U), 232Th, and 40K radioactivity than the global average values, respectively. For Dhaka city, the following values were 2.42, 4.2, and 1.4 times elevated. The levels of radioactivity in Dhaka city are significantly higher than those in Khulna city; however, both cities have exceeded the world average values. The mechanisms for the enrichment and dispersion of NORMs from their fundamental source (surface soil) were studied, considering waterlogging, relative solubility-controlled leaching and translocation, climate conditions, and aerodynamic fractionations (dry and wet air deposition). The computation of standard radiological indices indicates risks to human health. Respiratory harm can be inflicted by α-particles originating from the radioactive decay products of 232Th and 238U. In addition to public awareness, policymakers should prioritize limiting the evolution of dust particles to mitigate the associated health risks.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
| | - Sayma Zahan Akhi
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka-1216, Bangladesh
| | | | - Sadiya Sultana
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
- Physics Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Md Samium Basir
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka-1216, Bangladesh
| | | | - Kamrun Naher
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
| | - Md Ahosan Habib
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka-1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha-62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha-62529, Saudi Arabia
| | - Dhiman Kumer Roy
- Department of Geology and Mining, University of Barishal, Barishal-8254, Bangladesh
| |
Collapse
|
3
|
Munim M, Khan R, Kawsaruzzaman M, Naher K, Tamim U, Idris AM, Khan MHR, Aldawood S, Saadat AHM, Habib MA. Radionuclides' Dispersion from Coal-Fired Brick Kilns: Geo-Environmental Processes, Potential Risks and Management. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:386-408. [PMID: 39472319 DOI: 10.1007/s00244-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/25/2024]
Abstract
In order to investigate the distributions and possible dispersion mechanism(s) of naturally occurring radioactive materials (NORMs: 226Ra, 232Th, and 40K) from coal-based brick kilns, a systematic set (n = 60) of coal, ash, surface-soil, and subsurface soil samples were analyzed. High-quality analytical data of U, Th and K obtained from HPGe detector and TRIGA Mark-II research reactor-based neutron activation analysis were converted to the corresponding radioactivities. Average (n = 10) radioactivities of 226Ra, 232Th, and 40 K in coal samples were 15.6, 16.7, and 145.5 Bq.kg-1, respectively, where only 40 K surpassed the corresponding global mean value. Average (n = 10) radioactivities of 226Ra, 232Th, and 40 K in ash samples were 62.7, 88.5, and 521 Bq.kg-1, respectively, where only 226Ra was within the established limit. In soil samples, average (n = 40) activities of 226Ra, 232Th, and 40 K were 62.7, 95.1, and 641 Bq.kg-1, respectively, which have surpassed the corresponding worldwide mean values. The observed differences in activity levels between soil samples collected near and far from the kilns, as well as between topsoil and subsoil samples, suggest the presence of distinct transport mechanisms for NORMs within the pedosphere. Dispersions of NORMs from the brick kilns to the ambient pedosphere are largely governed by aerodynamic convection and hydrodynamic leaching. These mechanisms are also influenced by geochemical mobility and relative solubility of NORMs, as well as factors such as rainfall patterns and wind-flow direction. Radiological indices invoke long-term carcinogenic-risks, whereas aerodynamic convection of finer particles (coal fly ash) from chimneys can cause significant health hazards to the nearby dwellers. Scientific processes as well as public awareness are essential to mitigate the risks.
Collapse
Affiliation(s)
- Muhibul Munim
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh.
| | - Md Kawsaruzzaman
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Kamrun Naher
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Umma Tamim
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| | | | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. BOX 2455, 11451, Riyadh, Saudi Arabia
| | | | - Md Ahosan Habib
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka, 1000, Bangladesh
| |
Collapse
|
4
|
Duong VH. Characteristics and radiological hazard assessment of 210Po in tilapia (Oreochromis niloticus) in Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51858-51869. [PMID: 39134795 DOI: 10.1007/s11356-024-34649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
210Po is one of the most toxic natural radionuclides. This isotope's characteristics and radiological hazard assessment have been concerned in different objects. In this study, the 210Po activities were determined in different tilapia organs/parts of 20 sample groups by alpha spectrometry. The 210Po activities in muscle, bone, intestine organs, and stomach contents unevenly distributed with a wide range from 0.5 ± 0.2 to 2.8 ± 0.4 and 1.4 ± 0.2 Bq·kg-1 wet.wt on average, from 0.6 ± 0.3 to 6.3 ± 0.7 and 3.5 ± 0.4 Bq·kg-1 wet.wt on average, from 46.3 ± 2.9 to 263 ± 9.7 and 115 ± 6 Bq·kg-1 wet.wt on average, and 20.9 ± 1.2 to 800 ± 29 and 197 ± 9 Bq·kg-1 wet.wt on average, respectively. The average 210Po activities in different parts of tilapia trend in order of CMuscle < CBone < CIntestine < CStomach contents. Insignificant correlations were observed between 210Po activities in tilapia organs with their total fish mass. The result could depend on feeding types, diet, different nutrient levels, metabolism, and excretion of 210Po in different ages. The concentration ratios (CRs) of tilapia muscle and bone organs were recorded with low values, while it was far greater than the CRs for the intestine organ. Annual committed effective doses contributing from 210Po concentration due to tilapia fish consumption were within the allowable limits for muscle and bone organs, while those values for intestine organs were far higher than the allowable limit value (assuming similar amount consumption of 30 kg·year-1 for each organ). The Erica tool was used to estimate the dose and risk to tilapia from 210Po exposure. Based on the calculated results, it can be seen that there was insignificant concern for tilapia due to ionizing radiation in the study area.
Collapse
Affiliation(s)
- Van-Hao Duong
- VNU School of Interdisciplinary Sciences and Arts, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 100000, Hanoi, Vietnam.
| |
Collapse
|
5
|
Basir MS, Khan R, Akhi SZ, Ullah AKMA, Islam MA, Naher K, Idris AM, Khan MHR, Aldawood S, Saha N. Source specific sedimentary response towards the differential anthropogenic impacts in terms of potentially toxic elements in an urban river. MARINE POLLUTION BULLETIN 2024; 203:116425. [PMID: 38705004 DOI: 10.1016/j.marpolbul.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
To investigate the interplay between varying anthropogenic activities and sediment dynamics in an urban river (Turag, Bangladesh), this study involved 37-sediment samples from 11 different sections of the river. Neutron activation analysis and atomic absorption spectrometry were utilized to quantify the concentrations of 14 metal(oid)s (Al, Ti, Co, Fe, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn). This study revealed significant toxic metal trends, with Principal coordinate analysis explaining 62.91 % of the variance from upstream to downstream. The largest RSDs for Zn(287 %), Mn(120 %), and Cd(323 %) implies an irregular regional distribution throughout the river. The UNMIX-model and PMF-model were utilized to identify potential sources of metal(oid)s in sediments. ∼63.65-66.7 % of metal(oid)s in sediments originated from anthropogenic sources, while remaining attributed to natural sources in both models. Strikingly, all measured metal(oid)s' concentrations surpassed the threshold effect level, with Zn and Ni exceeding probable effect levels when compared to SQGs.
Collapse
Affiliation(s)
- Md Samium Basir
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka 1216, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
| | - Sayma Zahan Akhi
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka 1216, Bangladesh
| | - A K M Atique Ullah
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Ramna, Dhaka 1000, Bangladesh
| | - Mohammad Amirul Islam
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh
| | - Kamrun Naher
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Narottam Saha
- Center for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Saint Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Shelley A, Ovi MH, Alam MS. Assessment of radioactivity level and associated radiological hazard in riverbed samples within industrial areas. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024; 60:213-225. [PMID: 38372986 DOI: 10.1080/10256016.2024.2317391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Terrestrial gamma radiation is one of the major outdoor radiation exposures to the general public that varies substantially based on the type and geological properties of the soil. The objective of this study is to evaluate the naturally occurring radioactive materials (NORMs) distribution and assess the hazard parameters in the riverbank soil within various industrial zones in the densely populated Dhaka and Chattogram cities of Bangladesh. The mean activities of 226Ra (37 ± 3), 232Th (58 ± 4), and 40K (1129 ± 18) Bqkg-1 in the assessed soil samples were found to be slightly higher than the world average values 32, 35, and 420 Bqkg-1, respectively. The mean radium equivalent activity (207.49 Bqkg-1) and the external and internal hazard indices were within the recommended limits of 370 Bqkg-1 and <1, respectively. The mean absorbed dose rate (99.47 nGyhr-1), annual effective dose (0.12 mSva-1), ELCR (4.27 × 10-4), and gamma level index (1.58) exceeded the world average values 59 nGyhr-1, 0.07 mSva-1, 2.9 × 10-4, and 1 respectively. However, the studied areas are safe from a radiological viewpoint with no radiation health hazard to the people. The results of this study can be utilized to produce factual baseline data for future studies.
Collapse
Affiliation(s)
- Afroza Shelley
- Department of Nuclear Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Mahmud Hasan Ovi
- Department of Nuclear Engineering, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Habib MA, Akhi SZ, Khan R, Phoungthong K, Basir MS, Anik AH, Islam ARMT, Idris AM. Elevated levels of environmental radioactivity in fluvial sediment: origin and health risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:555-581. [PMID: 38305448 DOI: 10.1039/d3em00455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
To study the geogenic processes of naturally occurring radioactive materials' (NORMs') distribution, a transboundary Himalayan river (Punarbhaba) is chosen due to its trivial anthropogenic impacts. In explaining the genesis of radionuclides, transition elements (Sc, Ti, V, and Fe), rare-earth-elements (REEs: La, Eu, Ce, Yb, Sm, and Lu), Ta, Hf, Th, and U were analysed in 30 riverbed sediments collected from the Bangladeshi portion of the river. Elemental abundances and NORMs' activity were measured by neutron activation analysis and HPGe-gamma-spectrometry, respectively. Averagen=30 radioactivity concentrations of 226Ra (68.4 Bq kg-1), 232Th (85.7 Bq kg-1), and 40K (918 Bq kg-1) were 2.0-2.3-fold higher, which show elevated results compared to the corresponding world mean values. Additionally, mean-REE abundances were 1.02-1.38-times higher than those of crustal origin. Elevated (relative to earth-crust) ratios of Th/U (=3.95 ± 1.84) and 232Th/40K and statistical demonstrations invoke Th-dominant heavy minerals, indicating the role of kaolinite clay mineral abundance/granitic presence. However, Th/Yb, La/V, Hf/Sc, and Th/Sc ratios reveal the presence of felsic abundances, hydrodynamic sorting, and recycling of sedimentary minerals. Geo-environmental indices demonstrated the enrichment of chemical elements in heavy minerals, whereas radiological indices presented ionizing radiation concerns, e.g., the average absorbed-gamma-dose rate (123.1 nGy h-1) was 2.24-fold higher compared to the threshold value which might cause chronic health impacts depending on the degree of exposure. The mean excess lifetime cancer risk value for carcinogen exposure was 5.29 × 10-4 S v-1, which is ∼2-times greater than the suggested threshold. Therefore, plausible extraction of heavy minerals and using residues as building materials can alleviate the two-reconciling problems: (1) radiological risk management and (2) fluvial navigability.
Collapse
Affiliation(s)
- Md Ahosan Habib
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand.
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka 1000, Bangladesh
| | - Sayma Zahan Akhi
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka-1216, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
| | - Khamphe Phoungthong
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Md Samium Basir
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka-1216, Bangladesh
| | - Amit Hasan Anik
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka-1216, Bangladesh
| | - A R M Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
8
|
Li H, Wang Q, Zhang C, Su W, Ma Y, Zhong Q, Xiao E, Xia F, Zheng G, Xiao T. Geochemical Distribution and Environmental Risks of Radionuclides in Soils and Sediments Runoff of a Uranium Mining Area in South China. TOXICS 2024; 12:95. [PMID: 38276730 PMCID: PMC10820150 DOI: 10.3390/toxics12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Uranium mining activities have contributed to the distribution and uptake of radionuclides, which have increased the active concentrations of natural radionuclides in environmental media, causing elevated human health risks. The present study aims to assess the spatial distribution characteristics of natural radionuclides in the surface soils and river sediments of the typical granite uranium mining area in South China, as well as investigate the geochemical features of natural radionuclides in the soil and sediments to understand their migration processes. The activity concentrations for 238U, 226Ra, 232Th, and 40K ranged from 17-3925 Bq/kg, 50-1180 Bq/kg, 29-459 Bq/kg, and 240-1890 Bq/kg, respectively. The open-pit mining areas and tailings pond locations exhibited the highest concentrations of activity for all these radionuclides. This distribution points to an elevated potential health risk due to radiological exposure in these specific areas. Additionally, the values of radium equivalent activity (Raeq) and annual gonadal dose equivalent (AGDE) in those areas were higher than the limits recommended by ICRP (2021). 238U and 226Ra have a significant correlation (0.724), and the cluster analysis was showing a statistically meaningful cluster below 5 indicated that they have similar behavior during parent rock weathering and watershed erosion, and the distribution of 232Th and 40K were influenced by the addition of rock types. The activity ratios of 226Ra/238U, 226Ra/232Th, 238U/40K, and 226Ra/40K variation indicated that 40K more mobile than 226Ra and 238U, U(VI) was reduced to U(IV) by organic matter in the downstream area and re-entered into the sediment during the sediment surface runoff in the small watershed of the uranium ore open-pit mining area. Therefore, it is necessary to further seal up and repair the tailings landfill area.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; (H.L.); (F.X.)
- Research Institute No. 290, China National Nuclear Corporation, Shaoguan 512029, China;
| | - Qiugui Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (E.X.); (T.X.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China;
| | - Chunyan Zhang
- Disaster Reduction and Disaster Preparedness Center of Jiangxi, Nanchang 330036, China;
| | - Weigang Su
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810016, China
| | - Yujun Ma
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China;
| | - Qiangqiang Zhong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (E.X.); (T.X.)
| | - Fei Xia
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; (H.L.); (F.X.)
| | - Guodong Zheng
- Research Institute No. 290, China National Nuclear Corporation, Shaoguan 512029, China;
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (E.X.); (T.X.)
| |
Collapse
|
9
|
Khan R, Habib MA, Tamim U, Kormoker T, Khan MHR, Rashid MB, Idris AM, Aldawood S, Hossain SM, Islam MS. Fractionation of environmental radioactivity in road dust from a megacity: external and internal health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8254-8273. [PMID: 38175520 DOI: 10.1007/s11356-023-31657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Naturally occurring radioactive materials (NORMs: 232Th, 226Ra, 40K) can reach our respiratory system by breathing of road dust which can cause severe health risks. Targeting the pioneering consideration of health risks from the NORMs in road dust, this work reveals the radioactivity abundances of NORMs in road dust from a megacity (Dhaka) of a developing country (Bangladesh). Bulk chemical compositions of U, Th, and K obtained from neutron activation analysis were converted to the equivalent radioactivities. Radioactivity concentrations of 226Ra, 232Th, and 40K in road dust ranged from 60-106, 110-159, and 488-709 Bq kg-1 with an average of 84.4 ± 13.1, 126 ± 11, and 549 ± 48 Bq kg-1, respectively. Estimated 226Ra, 232Th, and 40K radioactivities were, respectively, 1.7-3.0-, 3.7-5.3-, and 1.2-1.8-folds greater than the affiliated world average values. Mechanistic pathway of NORMs' enrichment and fractionation relative to the major origin (pedosphere) were evaluated concerning the water logging, relative solubility-controlled leaching and translocation, climatic conditions, and aerodynamic fractionations (dry and wet atmospheric depositions). Computation of customary radiological risk indices invokes health risks. Noticing the ingress of NOMR-holding dust into the human respiratory system along with the associated ionizing radiations, the computed radiological indices represent only the least probable health hazards. Nevertheless, in real situations, α-particles from the radioactive decay products of 232Th and 238U can create acute radiation damages of respiratory system. Policymakers should emphasize on limiting the dust particle evolution, and public awareness is required to alleviate the health risks.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| | - Md Ahosan Habib
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka, 1000, Bangladesh
| | - Umma Tamim
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | | | - Md Bazlar Rashid
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka, 1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. BOX 2455, 11451, Riyadh, Saudi Arabia
| | - Syed Mohammod Hossain
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| |
Collapse
|
10
|
Habib MA, Islam ARMT, Varol M, Phoungthong K, Khan R, Islam MS, Hasanuzzaman M, Mia MY, Costache R, Pal SC. Receptor model-based source-specific health risks of toxic metal(loid)s in coal basin-induced agricultural soil in northwest Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8539-8564. [PMID: 37646918 DOI: 10.1007/s10653-023-01740-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Toxic metal(loid)s (TMLs) in agricultural soils cause detrimental effects on ecosystem and human health. Therefore, source-specific health risk apportionment is very crucial for the prevention and control of TMLs in agricultural soils. In this study, 149 surface soil samples were taken from a coal mining region in northwest Bangladesh and analyzed for 12 TMLs (Pb, Cd, Ni, Cr, Mn, Fe, Co, Zn, Cu, As, Se, and Hg). Positive matrix factorization (PMF) and absolute principal component score-multiple linear regression (APCS-MLR) receptor models were employed to quantify the pollution sources of soil TMLs. Both models identified five possible sources of pollution: agrochemical practice, industrial emissions, coal-power-plant, geogenic source, and atmospheric deposition, while the contribution rates of each source were calculated as 28.2%, 17.2%, 19.3%, 19% and 16.3% in APCS-MLR, 22.2%, 13.4%, 24.3%, 15.1% and 25.1% in PMF, respectively. Agrochemical practice was the major source of non-carcinogenic risk (NCR) (adults: 32.37%, children: 31.54%), while atmospheric deposition was the highest source of carcinogenic risk (CR) (adults: 48.83%, children: 50.11%). NCR and CR values for adults were slightly higher than for children. However, the trends in NCR and CR between children and adults were similar. As a result, among the sources of pollution, agrochemical practices and atmospheric deposition have been identified as the primary sources of soil TMLs, so prevention and control strategies should be applied primarily for these pollution sources in order to protect human health.
Collapse
Affiliation(s)
- Md Ahosan Habib
- Industrial Ecology in Energy Research Center, Faculty of Environmental Management, 10 Prince of Songkla University, Songkhla, 90112, Thailand
- Geological Survey of Bangladesh, Government of the People's Republic of Bangladesh, 153 Pioneer Road, Seghunbaghicha, Dhaka, 1000, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Memet Varol
- Agriculture Faculty, Department of Aquaculture, Malatya Turgut Özal University, Malatya, Turkey.
| | - Khamphe Phoungthong
- Industrial Ecology in Energy Research Center, Faculty of Environmental Management, 10 Prince of Songkla University, Songkhla, 90112, Thailand
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Hasanuzzaman
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Romulus Costache
- Department of Civil Engineering, Transilvania University of Brasov, 5, TurnuluiStr, 500152, Brasov, Romania
- Danube Delta National Institute for Research and Development, 165 Babadag Street, 820112, Tulcea, Romania
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| |
Collapse
|
11
|
Khan R, Basir MS, Akhi SZ, Anik AH, Hossain S, Islam HMT, Islam ARMT, Idris AM, Khan MHR, Aldawood S, Tareq SM. Radiation exposure and health concerns associated with the environmental geochemistry of relatively higher radioactivity in a fresh water basin. MARINE POLLUTION BULLETIN 2023; 196:115588. [PMID: 37806014 DOI: 10.1016/j.marpolbul.2023.115588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
This study was carried out on a negligible anthropogenically impacted Indo-Bangla transboundary river basin (Atrai, Bangladesh) to elicit radionuclides' and elemental distributions. Thirty sediment samples were collected from the Bangladesh portion of the river, and instrumental neutron activation analysis and HPGe γ-Spectrometry techniques were used to determine environmental radionuclides (e.g., 232Th, 226Ra, 40K) and associated elemental concentrations, respectively. Metal concentrations (Sc, V, Fe, Eu, Sm, La, Yb, Ce, Lu, Ta, Hf) were determined to comprehend the genesis of greater radioactivity. Recognizing the mean concentration of absorbed gamma dose rate (158.7 hGyh-1) is 2.88-times more than the recommended value (55 hGyh-1) that describes ionizing radiation concerns regarding potential health risks to the surrounding communities and the houses of native residents, which are constructed by Atrai river sediment. This work will assist relevant policymakers in exploring valuable heavy minerals and provide information regarding radiological health risks from a fluvial system.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka 1216, Bangladesh
| | - Sayma Zahan Akhi
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka 1216, Bangladesh
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka 1216, Bangladesh
| | - Shabiha Hossain
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka 1216, Bangladesh
| | - H M Touhidul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - A R M Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil Internaitonal University, Dhaka 1216, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
12
|
Khan R, Anik AH, Hossain S, Phoungthong K, Islam ARMT, Saha N, Idris AM, Khan MHR, Aldawood S, Alam M. Receptor model-based source tracing and risk assessment of elements in sediment of a transboundary Himalayan River. CHEMOSPHERE 2023; 339:139733. [PMID: 37544528 DOI: 10.1016/j.chemosphere.2023.139733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
This study utilized surface sediments from a potentially less polluted transboundary Himalayan River (Brahmaputra: China-India-Bangladesh) to investigate the abundance of 15 geochemically and ecologically significant elements and to predict their sources and ecological consequences. INAA was applied to determine the elemental concentrations. The average abundances (μg.g-1) of Rb (94.20), Cs (4.49), Th (20.31), & U (2.73) were 1.12-2.26 folds elevated than shale. Environmental indices disclosed a pollution status ranging from "uncontaminated to moderately contaminated," with minimal Rb, U, and Th enrichment in the downstream zone. Consensus-based sediment quality guideline (SQG) threshold values suggested that only Cr (60% samples > TEL) may impose rare biological effects. Ecological risk indices suggested "minor to no" possible eco-toxicological risks for the accounted elements (Cr, Co, Mn, Zn, Sb, & As). The positive matrix factorization (PMF) model predicated the predominance of geogenic or crustal contributions (∼72.69%) for Al, K, Na, Ti, Co, Zn, Ba, Cs, As, Rb, Th, & U derived from elemental fractionations, mineral weathering, and bio-geo-chemical mobilization. The relative contributions of anthropogenic sources (∼27.31%; such as the construction of roads, settlement expansion, litter disposal, municipal waste discharge, mining activities, agricultural encroachment, etc.) on elemental distribution were significantly lower. The abundance of Cr and Mn was mainly influenced by anthropogenic sources. This study demonstrated the effectiveness of utilizing geo-environmental guidelines and receptor models in discriminating the natural & anthropogenic origins of metals in the complex riverine sediments of a less anthropogenically affected river.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| | - Amit Hasan Anik
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Shabiha Hossain
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Khamphe Phoungthong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | | | - Narottam Saha
- Sustainable Minerals Institute, Center for Mined Land Rehabilitation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | | | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| |
Collapse
|
13
|
Wang Q, Wang H, Ma Y, Wang J, Su W, Xiao E, Du J, Xiao T, Zhong Q. Geochemical distributions of natural radionuclides in surface soils and sediments impacted by lead-zinc mining activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115210. [PMID: 37418943 DOI: 10.1016/j.ecoenv.2023.115210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
This study investigated the distribution features of uranium-238 (238U), radium-226 (226Ra), thorium-232 (232Th), and potassium-40 (40K) and evaluated the associated environmental radiological hazards of the topsoil and river sediments in the Jinding lead-zinc (Pb-Zn) mine catchment from Southwest China. The activity concentrations of 238U, 226Ra, 232Th, and 40K ranged from 24.0 ± 2.29-60.3 ± 5.26 Bq.kg-1, from 32.5 ± 3.95-69.8 ± 3.39 Bq.kg-1, from 15.3 ± 2.24-58.3 ± 4.92 Bq.kg-1, and from 203 ± 10.2-1140 ± 27.4 Bq.kg-1, respectively. The highest activity concentrations for all these radionuclides were primarily found in the mining areas and decreased with increasing distance from the mining sites. The radiological hazard indices, including radium equivalent activity, absorbed gamma dose rate in the air, outdoor annual effective dose equivalent, annual gonadal dose equivalent, and excess lifetime cancer, revealed that the highest values were observed in the mining area and downstream, specifically in the vicinity of the ore body. These elevated values exceeded the global mean value but remained below the threshold value, suggesting that routine protection measures for Pb-Zn miners during production activities are sufficient. The correlation analysis and cluster analysis revealed strong associations between radionuclides such as 238U, 226Ra, and 232Th, indicating a common source of these radionuclides. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K varied with distance, suggesting the influence of geological processes and lithological composition on their transport and accumulation. In the mining catchment areas, the variations in these activity ratios increased indicated the impact of limestone material dilution on the levels of 232Th, 40K, and 238U in the upstream region. Moreover, the presence of sulfide minerals in the mining soils contributed to the enrichment of 226Ra and the removal of 238U caused those activity ratios decreased in the mining areas. Therefore, in the Jinding PbZn deposit, the patterns of mining activities and surface runoff processes in the catchment area favored the accumulation of 232Th and 226Ra over 40K and 238U. This study provides the first case study on the geochemical distributions of natural radionuclides in a typical Mississippi Valley-type PbZn mining area and offers fundamental information on radionuclide migration and baseline radiometric data for PbZn deposits worldwide.
Collapse
Affiliation(s)
- Qiugui Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yujun Ma
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
| | - Jinlong Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Weigang Su
- Qinghai Earthquake Agency, Xining 810001, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Qiangqiang Zhong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
14
|
Khan R, Hossain S, Anik AH, Phoungthong K, Islam ARMT, Saha N, Idris AM, Alam M. Indexical and statistical approaches to investigate the integrated origins of elements in the sediment of Teesta River, Bangladesh: sediment quality and ecological risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:832-849. [PMID: 36897614 DOI: 10.1039/d2em00475e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study investigates ecological consequences from the combined provenance (natural and manmade) of fifteen metal(oid)s (Na, Al, K, Ti, Cr, Mn, Co, Zn, As, Rb, Sb, Cs, Ba, Th, and U) from a major Indo-Bangla transboundary river (Teesta). Instrumental neutron activation analysis has been performed to calculate the elemental concentration for a total of thirty sediment samples which accumulated from the upper, middle and downstream section of the Teesta River. In comparison with the crustal origin Rb, Th, and U were 1.5-2.8 times elevated. Elements from upstream and midstream sediments showed greater spatial variability than those from downstream sediments in terms of Na, Rb, Sb, Th, and U. Statistical approaches suggested the dominance of geogenic sources (Na, K, Al, Ti, Co, and Ba) of elements over anthropogenic sources (Cr and Zn). Alkali feldspar and aluminosilicates release lithophilic minerals into the sediments under the redox condition (U/Th = 0.18). Site-specific ecotoxicological indices advocated that some specific locations are highly hazardous relative to Cr and Zn. From SQG-based guidelines, Cr showed higher potential toxicity in some upstream locations relative to Zn, Mn, and As. In order to attain the knowledge limitation of northern transboundary rivers from Bangladesh, this study of origin and relative environmental impact will be beneficial for policy makers.
Collapse
Affiliation(s)
- Rahat Khan
- Industrial Ecology in Energy Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand.
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh.
| | - Shabiha Hossain
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh.
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka-1216, Bangladesh
| | - Amit Hasan Anik
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh.
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka-1216, Bangladesh
| | - Khamphe Phoungthong
- Industrial Ecology in Energy Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand.
| | | | - Narottam Saha
- Sustainable Minerals Institute, Center for Mined Land Rehabilitation, The University of Queensland, St Lucia QLD 4072, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka-1216, Bangladesh
| |
Collapse
|
15
|
Nasiruddin M, Islam ARMT, Siddique MAB, Hasanuzaman M, Hassan MM, Akbor MA, Hasan M, Islam MS, Khan R, Al Amin M, Pal SC, Idris AM, Kumar S. Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20934-20958. [PMID: 36264457 DOI: 10.1007/s11356-022-23617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Indexical assessment coupled with a self-organizing map (SOM) and positive matrix factorization (PMF) modeling of toxic metal(loid)s in sediment and water of the aquatic environment provides valuable information from the environmental management perspective. However, in northwest Bangladesh, indexical and modeling assessments of toxic metal(loid)s in surface water and sediment are still rare. Toxic metal(loid)s were measured in sediment and surface water from an urban polluted river (Ichamati) in northwest Bangladesh using an atomic absorption spectrophotometer to assess distribution, pollution levels, sources, and potential environmental risks to the aquatic environment. The mean concentrations (mg/kg) of metal(loid)s in water are as follows: Fe (871) > Mn (382) > Cr (72.4) > Zn (34.2) > Co (20.8) > Pb (17.6) > Ni (16.7) > Ag (14.9) > As (9.0) > Cu (5.63) > Cd (2.65), while in sediment, the concentration follows the order, Fe (18,725) > Mn (551) > Zn (213) > Cu (47.6) > Cr (30.2) > Ni (24.2) > Pb (23.8) > Co (9.61) > As (8.23) > Cd (0.80) > Ag (0.60). All metal concentrations were within standard guideline values except for Cr and Pb for water and Cd, Zn, Cu, Pb, and As for sediment. The outcomes of eco-environmental indices, including contamination and enrichment factors and geo-accumulation index, differed spatially, indicating that most of the sediment sites were moderately to highly polluted by Cd, Zn, and As. Cd and Zn content can trigger ecological risks. The positive matrix factorization (PMF) model recognized three probable sources of sediment, i.e., natural source (49.39%), industrial pollution (19.72%), and agricultural source (30.92%), and three possible sources of water, i.e., geogenic source (45.41%), industrial pollution (22.88%), and industrial point source (31.72%), respectively. SOM analysis identified four spatial patterns, e.g., Fe-Mn-Ag, Cd-Cu, Cr-Pb-As-Ni, and Zn-Co in water and three patterns, e.g., Mn-Co-Ni-Cr, Cd-Cu-Pb-Zn, and As-Fe-Ag in sediment. The spatial distribution of entropy water quality index values shows that the southwestern area possesses "poor" quality water. Overall, the levels of metal(loid) pollution in the investigated river surpassed a critical threshold, which might have serious consequences for the river's aquatic biota and human health in the long run.
Collapse
Affiliation(s)
- Md Nasiruddin
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | | | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Hasanuzaman
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh
| | - Md Mahedi Hassan
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mehedi Hasan
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Md Al Amin
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Abubakr Mustafa Idris
- Department of Chemistry, College of Science King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62629, Saudi Arabia
| | - Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji
| |
Collapse
|
16
|
Haque MR, Ali MM, Ahmed W, Siddique MAB, Akbor MA, Islam MS, Rahman MM. Assessment of microplastics pollution in aquatic species (fish, crab, and snail), water, and sediment from the Buriganga River, Bangladesh: An ecological risk appraisals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159344. [PMID: 36240925 DOI: 10.1016/j.scitotenv.2022.159344] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Current work focus on microplastic (MPs) occurrence in the water, sediment, and aquatic species (fish, crab, and snail) of the Buriganga River, Bangladesh, with an ecological risk assessment perspective. It also includes the distribution of MPs in different river ecosystem segments and the presence of heavy metal (loid)s (HMs) in water, sediments, and MPs surface. The MPs were inspected by stereomicroscope to identify the shapes, color, and size, and Fourier transform infrared (FTIR) spectroscopy was used to characterize polymer types. The samples concentration of four HMs viz., As, Cd, Cr, and Pb were determined by atomic absorption spectrometry (AAS). The possible MPs content in water, sediment, fish, crab, and snail were varied from 0.250 to 0.117 MPs/mL, 3.5-8.17 MPs/g, 0.65-3.82 MPs/g, 3.75-4.28 MPs/g, and 0.84-1.12 MPs/g, respectively. Fibers and fragments were the most dominant shape, less than 0.5 mm was dominant in size, and blue was the dominant color. In the evaluation of the chemical composition of MPs in water, sediment, fish, snail, and crab samples, Polyethylene terephthalate (PETE), Ethylene-vinyl acetate (EVA), High-density polyethylene (HDPE), Acrylonitrile butadiene styrene (ABS), Cellulose acetate (CA), and Nylon were identified. Regarding HMs load, the river demonstrated a highly polluted environment following the abundance pattern Cr > Pb > As>Cd. SEM-EDAX of MPs was conducted to investigate the surface MP's surface and elemental composition. It reveals that the MPs surface has characteristic flakes, cracks, and adhering particles along with Si, K, Au, C, and O on the surface studied MPs. There is no significant relationship found among the ecosystem segments. However, Ompok bimaculatus species show a negative relationship of MPs distribution with water and sediment. Moreover, according to the ecological risk of MPs pollution in the Buriganga River, it was in category-I, indicating considerable pollution load due to the presence of MPs.
Collapse
Affiliation(s)
- Md Rashedul Haque
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Wahida Ahmed
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
17
|
Jawad-Ul-Haque, Siddique MAB, Islam MS, Ali MM, Tokatli C, Islam A, Pal SC, Idris AM, Malafaia G, Islam ARMT. Effects of COVID-19 era on a subtropical river basin in Bangladesh: Heavy metal(loid)s distribution, sources and probable human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159383. [PMID: 36240937 PMCID: PMC9551124 DOI: 10.1016/j.scitotenv.2022.159383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
The COVID-19 era has profoundly affected everyday human life, the environment, and freshwater ecosystems worldwide. Despite the numerous influences, a strict COVID-19 lockdown might improve the surface water quality and thus provide an unprecedented opportunity to restore the degraded freshwater resource. Therefore, we intend to investigate the spatiotemporal water quality, sources, and preliminary health risks of heavy metal(loid)s in the Karatoya River basin (KRB), a tropical urban river in Bangladesh. Seventy water samples were collected from 35 stations in KRB in 2019 and 2022 during the dry season. The results showed that the concentrations of Ni, Cu, Zn, Pb, Cd, and Cr were significantly reduced by 89.3-99.7 % during the post-lockdown period (p < 0.05). However, pH, Fe, Mn, and As concentrations increased due to the rise of urban waste and the usage of disinfectants during the post-lockdown phase. In the post-lockdown phase, the heavy metal pollution index, heavy metal evaluation index, and Nemerow's pollution index values lessened by 8.58 %, 42.86 %, and 22.86 %, respectively. Besides, the irrigation water quality indices also improved by 59 %-62 %. The total hazard index values increased by 24 % (children) and 22 % (adults) due to the rise in Mn and As concentrations during the lockdown. In comparison, total carcinogenic risk values were reduced by 54 % (children) and 53 % (adults) in the post-lockdown. We found no significant changes in river flow, rainfall, or land cover near the river from the pre to post-lockdown phase. The results of semivariogram models have demonstrated that most attributes have weak spatial dependence, indicating restricted industrial and agricultural effluents during the lockdown, significantly improving river water quality. Our study confirms that the lockdown provides a unique opportunity for the remarkable improvement of degraded freshwater resources. Long-term management policies and regular monitoring should reduce river pollution and clean surface water.
Collapse
Affiliation(s)
- Jawad-Ul-Haque
- Department of Disaster Management, Begum Bekeya University, Rangpur 5400, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Cem Tokatli
- Trakya University, Laboratory Technology Department, İpsala, Edirne,Turkey
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700 014, West Bengal, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Abubakar M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | | |
Collapse
|
18
|
Hossain S, Khan R, Anik AH, Siddique MAB, Tamim U, Islam ARMT, Idris AM, Khaleque MA. Natural and anthropogenic contributions to the elemental compositions and subsequent ecological consequences of a transboundary river's sediments (Punarbhaba, Bangladesh). ENVIRONMENTAL RESEARCH 2023; 216:114444. [PMID: 36179881 DOI: 10.1016/j.envres.2022.114444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
An anthropogenically less affected transboundary river (Punarbhaba, Bangladesh) was studied to detect associated risks from the combined origin(s) of geochemically and toxicologically significant elements in benthic sediments. A total of 30 river bed sediments were analyzed by instrumental neutron activation analysis targeting the 15 chemical elements viz., Na, Al, K, Ti, Cr, Mn, Co, Zn, As, Rb, Sb, Cs, Ba, Th, and U. Among the estimated elements, the mean abundances (μg/g) of Rb (136), Sb (0.66), Cs (6.66), Th (14.6), and U (3.92) were 1.4-1.7 times higher than the crustal origin. These elements are primarily responsible for the contaminated state of the Punarbhaba River. The studied area is 'moderately polluted' (Igeo: 2.01 to 0.02) and possesses 'minor enrichment' (EF: 1.98 to 0.48) in terms of the measured elements. The output of statistical analyses projected that the studied elements are geochemically fractionated in an oxidizing environment (U/Th = 0.44) and mostly originated from felsic sources, thus confirming the mineral is comprised of aluminosilicates and alkali feldspar. However, SQGs-based and ecological risk indices invoked minor (Cr: 6.67%) to no potential ecotoxicological threats for Cr, Mn, Co, Zn, As, and Sb. Nonetheless, altered distribution patterns caused by geogenic activities increased Cr and Zn in the environment which may cause toxicity (Cr: 22-53%, Zn: 35-70%), and pose potential ecological risks, specifically in upstream locations (P-2, P-3, P-5). Further, this study broadened the perspective of sediment deposition from fractionation, fluvial transportation, and weathering events beyond the industrial disintegration of elements, which will aid researchers and policymakers to comprehend combined risks from suspended sediments.
Collapse
Affiliation(s)
- Shabiha Hossain
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh.
| | - Amit Hasan Anik
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Umma Tamim
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Md Abdul Khaleque
- Department of Environmental Science and Management, Independent University, Dhaka, 1229, Bangladesh
| |
Collapse
|
19
|
Wyatt NLP, Costa VC, de Souza JR, Ferde M, Costa FS, Neris JB, Brandão GP, Guedes WN, Carneiro MTWD. Unsupervised pattern-recognition and radiological risk assessment applied to the evaluation of behavior of rare earth elements, Th, and U in monazite sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83417-83425. [PMID: 35763145 DOI: 10.1007/s11356-022-21632-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The Brazilian coast is rich in monazite which is found in beach sand deposits. In this study, the composition of the monazite sands from beaches of State of Espírito Santo, Brazil, was investigated. The concentrations of rare earth elements (REEs), Th, and U were determined by inductively coupled plasma mass spectrometry (ICP-MS). In the studied region, the mean concentration of investigated elements increased in the following order: Tm < Yb < Ho < Lu < Eu < Er < Tb < Dy < U < Y < Th < Gd < Sm < Pr < Nd < La < Ce. The sampling sites were classified into three clusters and discriminated by the concentrations of REEs, Th, and U found. In general, the radiological risk indices were higher than the established limits, and the risk of developing cancer was estimated to be higher than the world average.
Collapse
Affiliation(s)
- Nathalia Luiza P Wyatt
- Spectrometry Atomic Laboratory (LEA)/LabPetro, Department of Chemistry, Federal University of Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Vinicius C Costa
- Spectrometry Atomic Laboratory (LEA)/LabPetro, Department of Chemistry, Federal University of Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Jefferson R de Souza
- Spectrometry Atomic Laboratory (LEA)/LabPetro, Department of Chemistry, Federal University of Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Merisnet Ferde
- Spectrometry Atomic Laboratory (LEA)/LabPetro, Department of Chemistry, Federal University of Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Floriatan S Costa
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil
| | - Jordan B Neris
- Department of Chemistry, Universidade Federal Do São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geisamanda P Brandão
- Spectrometry Atomic Laboratory (LEA)/LabPetro, Department of Chemistry, Federal University of Espírito Santo, Vitória, ES, 29075-910, Brazil
| | | | - Maria Tereza W D Carneiro
- Spectrometry Atomic Laboratory (LEA)/LabPetro, Department of Chemistry, Federal University of Espírito Santo, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
20
|
Anik AH, Khan R, Hossain S, Siddique MAB, Tamim U, Islam ARMT, Idris AM, Tareq SM. Reconciling the geogenic and non-crustal origins of elements in an Indo-Bangla transboundary river, Atrai: Pollution status, sediment quality, and preliminary risk assessment. ENVIRONMENTAL RESEARCH 2022; 214:114134. [PMID: 35998696 DOI: 10.1016/j.envres.2022.114134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This study has been conducted on an anthropogenically less influenced transboundary river (Atrai: Indo-Bangladesh) to comprehend the inherent geochemistry and identify potential elemental sources. In doing so, across the Bangladeshi portion, 30 river-bed samples were culled and studied by neutron activation analysis to quantify the abundances of 15 geochemically and toxicologically significant elementals (Na, Al, K, Ti, Cr, Mn, Co, Zn, As, Rb, Sb, Cs, Ba, Th, and U). The results revealed that the mean concentrations (μg/g) of Rb (154.6), Cs (7.53), Th (20.90), and U (4.88) were 1.5-2.0 times higher than crustal values. Besides, geo-environmental indices revealed 'uncontaminated to moderately contaminated' pollution status with minor enrichment or contamination for Rb, Th, Sb, U, and Cs, relatively concentrated in the mid-to-downstream zone possessed geogenic and non-crustal origins. The positive matrix factorization and other statistical approaches revealed predominant geogenic enrichment of Na, K, Al, Ti, Zn, Cs, Rb, As, Th, and U from differential mineralogical compositions via weathering, elemental fractionations, and biogeochemical mobilization. Contrariwise, several anthropogenic sources (for Cr, Sb, Co, Mn, Th) were also ascertained in the vicinity of Atari River. However, sediment characterization based on SQG threshold values manifested that Cr and Mn possess rare biological effects on local aquatic organisms. Nevertheless, SQGs-based and ecological risk indices invoked minor to no potential ecotoxicological intimidations for the considered metal(oid)s (Cr, Mn, Co, Zn, As, and Sb). Hence, this study manifested the usefulness of a less anthropogenically affected river to reckon geogenic and non-crustal elemental origins in the compounded riverine sediment.
Collapse
Affiliation(s)
- Amit Hasan Anik
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh.
| | - Shabiha Hossain
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Umma Tamim
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - A R M Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia.
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
21
|
Khan R, Islam HMT, Apon MAS, Islam ARMT, Habib MA, Phoungthong K, Idris AM, Techato K. Environmental geochemistry of higher radioactivity in a transboundary Himalayan river sediment (Brahmaputra, Bangladesh): potential radiation exposure and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57357-57375. [PMID: 35349070 DOI: 10.1007/s11356-022-19735-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This study of a downstream segment (Brahmaputra, Bangladesh) of one of the longest transboundary (China-India-Bangladesh) Himalayan rivers reveals elevated radioactivity compared to other freshwater basins across the world. Naturally occurring radioactive nuclides (226Ra, 232Th, and 40K) and metal contents (transition metals, Fe, Ti, Sc, and V; rare earth elements, La, Ce, Eu, Sm, Dy, Yb, and Lu; high field strength elements, Ta and Hf; and actinides, Th and U) in thirty sediment samples were measured by HPGe γ-spectrophotometry and research reactor-based neutron activation analysis, respectively. We systematically investigated the mechanism of the deposition of higher radioactivity concentrations and rare earth elements (REEs) associated with heavy minerals (HMs) and photomicrograph-based mineralogical analysis. The results show that total REEs (∑REE) and Ta, Hf, U, and Th are generally 1.5- to 3.0-fold elevated compared to crustal values associated with -δEu and -δCe anomalies, suggesting a felsic source provenance. The enrichment of light REEs (×1.5 upper continental crust (UCC)) and Th (×1.9 UCC), besides Th/U (=7.74 ± 2.35) and 232Th/40K ratios, along with the micrographic and statistical approaches, revealed the elevated presence of HMs. Fluvial suspended sedimentary transportation (from upstream) followed by mineralogical recycling and sorting enriched the HM depositions in this basin. Bivariate plots, including La/Th-Hf, La/Th-Th/Yb, and La/V-Th/Yb, revealed significant contributions of felsic source rock compared to mafic sources. The assessment of radiological hazards demonstrates ionizing-radiation-associated health risks to the local residents and people inhabiting houses made from Brahmaputra River sediments (as construction material).
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| | - Hossain Mohammad Touhidul Islam
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Adnan Sarker Apon
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | | | - Md Ahosan Habib
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka, 1000, Bangladesh
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, | Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Khamphe Phoungthong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, | Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuaanan Techato
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, | Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| |
Collapse
|
22
|
Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Islam MS, Khan R, Rahman MS, Pal SC, Ali MM, Idris AM, Gustave W, Elbeltagi A. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022. [PMID: 35088286 DOI: 10.21203/rs.3.rs-941620/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Potentially toxic element (PTE) contamination in Wainivesi River, Fiji triggered by gold-mining activities is a major public health concern deserving attention. However, chemometric approaches and pattern recognition of PTEs in surface water and sediment are yet hardly studied in Pacific Island countries like Fijian urban River. In this study, twenty-four sediment and eight water sampling sites from the Wainivesi River, Fiji were explored to evaluate the spatial pattern, eco-environmental pollution, and source apportionment of PTEs. This analysis was done using an integrated approach of self-organizing map (SOM), principle component analysis (PCA), hierarchical cluster analysis (HCA), and indexical approaches. The PTE average concentration is decreasing in the order of Fe > Pb > Zn > Ni > Cr > Cu > Mn > Co > Cd for water and Fe > Zn > Pb > Mn > Cr > Ni > Cu > Co > Cd for sediment, respectively. Outcomes of eco-environmental indices including contamination and enrichment factors, and geo-accumulation index differed spatially indicated that majority of the sediment sites were highly polluted by Zn, Cd, and Ni. Cd and Ni contents can cause both ecological and human health risks. According to PCA, both mixed sources (geogenic and anthropogenic such as mine wastes discharge and farming activities) of PTEs for water and sediment were identified in the study area. The SOM analysis identified three spatial patterns, e.g., Cr-Co-Zn-Mn, Fe-Cd, and Ni-Pb-Cu in water and Zn-Cd-Cu-Mn, Cr-Ni and Fe, Co-Pb in sediment. Spatial distribution of entropy water quality index (EWQI) values depicted that northern and northwestern areas possess "poor" to "extremely poor" quality water. The entropy weights indicated Zn, Cd, and Cu as the major pollutants in deteriorating the water quality. This finding provides a baseline database with eco-environmental and health risk measures for the Wainivesi river contamination.
Collapse
Affiliation(s)
- Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji.
| | | | - Md Hasanuzzaman
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Roquia Salam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - M Safiur Rahman
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre Dhaka, 4 -Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, West Bengal, Pin: 713104, India
| | - Mir Mohammad Ali
- Department of Aquaculture, Bangla Agricultural University, Sher-e, Dhaka-1207, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| | - Williamson Gustave
- School of Chemistry, Environmental and Life Sciences, University of the Bahamas, New Province, Nassau, Bahamas
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
23
|
Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Islam MS, Khan R, Rahman MS, Pal SC, Ali MM, Idris AM, Gustave W, Elbeltagi A. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42742-42767. [PMID: 35088286 DOI: 10.1007/s11356-022-18734-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Potentially toxic element (PTE) contamination in Wainivesi River, Fiji triggered by gold-mining activities is a major public health concern deserving attention. However, chemometric approaches and pattern recognition of PTEs in surface water and sediment are yet hardly studied in Pacific Island countries like Fijian urban River. In this study, twenty-four sediment and eight water sampling sites from the Wainivesi River, Fiji were explored to evaluate the spatial pattern, eco-environmental pollution, and source apportionment of PTEs. This analysis was done using an integrated approach of self-organizing map (SOM), principle component analysis (PCA), hierarchical cluster analysis (HCA), and indexical approaches. The PTE average concentration is decreasing in the order of Fe > Pb > Zn > Ni > Cr > Cu > Mn > Co > Cd for water and Fe > Zn > Pb > Mn > Cr > Ni > Cu > Co > Cd for sediment, respectively. Outcomes of eco-environmental indices including contamination and enrichment factors, and geo-accumulation index differed spatially indicated that majority of the sediment sites were highly polluted by Zn, Cd, and Ni. Cd and Ni contents can cause both ecological and human health risks. According to PCA, both mixed sources (geogenic and anthropogenic such as mine wastes discharge and farming activities) of PTEs for water and sediment were identified in the study area. The SOM analysis identified three spatial patterns, e.g., Cr-Co-Zn-Mn, Fe-Cd, and Ni-Pb-Cu in water and Zn-Cd-Cu-Mn, Cr-Ni and Fe, Co-Pb in sediment. Spatial distribution of entropy water quality index (EWQI) values depicted that northern and northwestern areas possess "poor" to "extremely poor" quality water. The entropy weights indicated Zn, Cd, and Cu as the major pollutants in deteriorating the water quality. This finding provides a baseline database with eco-environmental and health risk measures for the Wainivesi river contamination.
Collapse
Affiliation(s)
- Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji.
| | | | - Md Hasanuzzaman
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Roquia Salam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - M Safiur Rahman
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre Dhaka, 4 -Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, West Bengal, Pin: 713104, India
| | - Mir Mohammad Ali
- Department of Aquaculture, Bangla Agricultural University, Sher-e, Dhaka-1207, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| | - Williamson Gustave
- School of Chemistry, Environmental and Life Sciences, University of the Bahamas, New Province, Nassau, Bahamas
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
24
|
Kormoker T, Kabir MH, Khan R, Islam MS, Shammi RS, Al MA, Proshad R, Tamim U, Sarker ME, Taj MTI, Akter A, Idris AM. Road dust-driven elemental distribution in megacity Dhaka, Bangladesh: environmental, ecological, and human health risks assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22350-22371. [PMID: 34782979 DOI: 10.1007/s11356-021-17369-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Road dust, which reflects ambient air quality, receives various pollutants including toxic metal(oid)s from several natural and/or anthropogenic sources. This manuscript reports a comprehensive evaluation of the levels of seventeen metal(oid)s in road dust of a megacity (Dhaka, Bangladesh). Different evaluation approaches were implemented including statistical analysis and GIS mapping, besides environmental, ecological, and human health risk indices. From 30 sampling sites, representative samples were collected, which were analyzed by neutron activation analysis. The average concentrations (± SD) of Na, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, As, Rb, Sb, Cs, Ba, and W were 11,738 ± 560 µg g-1, 12,410 ± 1249 µg g-1, 62,127 ± 5937 µg g-1, 8.89 ± 0.47 µg g-1, 5224 ± 1244 µg g-1, 66 ± 8 µg g-1, 66.7 ± 6.9 µg g-1, 547 ± 110 µg g-1, 25,150 ± 1723 µg g-1, 8.39 ± 0.65 µg g-1, 125 ± 17 µg g-1, 3.63 ± 0.56 µg g-1, 87 ± 9 µg g-1, 0.75 ± 0.28 µg g-1, 4.40 ± 0.48 µg g-1, 397 ± 87 µg g-1, and 3.82 ± 1.77 µg g-1, respectively. The distance-based redundancy analysis showed that the northern region was enriched with Na, Mn, Al, Fe, Zn, and Rb, while the southern region was enriched with Fe, Al, Ti, Cr, and Mg. The GIS mapping shows hot spots of Sc, Cr, Zn, and Cs were observed mostly in heavy traffic areas. Significant positive correlations of Fe-Sc, Al-Mg, V-Mg, V-Al, Cs-Rb, Cs-Sc, Rb-Sc, As-Na, and Cs-Rb invoked their inter-dependency and persistence in road dust. Depending on a set of environmental and ecological index-based calculation, the degree of metal(oid) pollution followed the descending order as W > Sb > Zn > Cr > As > Ti > Sc > V, while no pollution was recorded by Mn, Fe, Al, Rb, Cs, Co, and Ba. Importantly, the total hazard index values for adults and children were higher than unity, indicating potential non-carcinogenic health risks from exposure of road dust. Furthermore, the total carcinogenic risks from Cr and As through ingestion and dermal contact exceeded the standard guideline values. The implementation of different evaluation approaches strengthens the findings of metal(oid) source apportionment.
Collapse
Affiliation(s)
- Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh.
| | - Md Humayun Kabir
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Rifat Shahid Shammi
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Marine Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Ram Proshad
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Umma Tamim
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Md Eusuf Sarker
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | | | - Ayesha Akter
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 9004, Saudi Arabia.
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| |
Collapse
|
25
|
Redistributions of NORMs in and around a gas-field (Shabazpur, Bangladesh): radiological risks assessment. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Wasim M, Shah SA, Tariq A, Ali M. Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Distribution of natural and anthropogenic radionuclides (226Ra, 232Th, 137Cs and 40K) was determined in 32 samples from Ghizer, an Eastern Hindukush district at an altitude of 2286 m in Pakistan using high resolution gamma-ray spectrometry. Mineralogical analysis by X-ray diffractometry identified quartz, calcite, albite and anorthite as major phases whereas actinolite, chlorite serpentine and kaolinite as minor phases. The activity concentrations for 226Ra, 232Th, 137Cs and 40K varied from 25.2 ± 1.7 to 145.3 ± 10.1 Bq kg−1, 24.9 ± 1.1 to 197 ± 9 Bq kg−1, 2.03 ± 0.21 to 16.7 ± 1.1 and 252 ± 6 to 1433 ± 35 Bq kg−1, respectively. The samples yielded average radium equivalent activity as 178.4 ± 23.3 Bq kg−1. The majority of the samples revealed external hazard index and representative level index less than one. The average air absorbed dose rate was 91.2 ± 13.6 nGy h−1 corresponding to the annual effective dose rate 111.8 ± 17.4 μSv y−1. These values were higher than the world averages for air absorbed dose rate and outdoor annual effective dose rate. Principal component analysis was applied to obtain distribution pattern within the samples and among the radionuclides.
Collapse
Affiliation(s)
- Mohammad Wasim
- Pakistan Institute of Nuclear Science and Technology , P.O. Nilore , Islamabad , Pakistan
| | - Sardar Ali Shah
- Pakistan Institute of Nuclear Science and Technology , P.O. Nilore , Islamabad , Pakistan
| | - Arfan Tariq
- Pakistan Institute of Nuclear Science and Technology , P.O. Nilore , Islamabad , Pakistan
| | - Manzoor Ali
- Department of Physics , Karakoram International University , Gilgit , Pakistan
| |
Collapse
|
27
|
Kabir MH, Kormoker T, Islam MS, Khan R, Shammi RS, Tusher TR, Proshad R, Islam MS, Idris AM. Potentially toxic elements in street dust from an urban city of a developing country: ecological and probabilistic health risks assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57126-57148. [PMID: 34089159 DOI: 10.1007/s11356-021-14581-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities in and around the urban highways followed by aerodynamic processing generate street dusts, which can cause adverse health effects through different exposure pathways. Hence, considering the high degree of industrialization, concomitant unplanned urbanization, and rapid demographic augmentation, street dust samples from an urban city (Gazipur, Bangladesh) were investigated in terms of potentially toxic elements (using ICP-MS) to evaluate their ecological and health risks. Mean concentrations (± SD) of lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd), zinc (Zn), nickel (Ni), and arsenic (As) in the analyzed air-dried samples were 40.9 ± 13.6, 44.9 ± 15.4, 83.3 ± 19.0, 9.1 ± 5.4, 239.1 ± 34.7, 33.5 ± 10.4, and 2.1 ± 0.8 mg/kg, respectively with heterogeneous distribution which were 0.2 (As) to 82.7 (Cd) times higher than the available internationally recommended limits. Element-specific environmental indices revealed that contamination levels followed the descending order as Cd > Zn > Cu > Pb > Cr > Ni > As, whereas individual ecological risks followed the descending order as Cd > Cu > Pb > Ni > Zn > Cr > As. Sampling site-specific composite indices indicated that sampling sites with high loadings of traffic, population, industrialization, and urbanization were mostly polluted. Multivariate statistical approaches also deduced the similar origins of the studied elements. In terms of the investigated elements, the study site possessed high potential ecological risks, although non-carcinogenic and carcinogenic risks through different pathway's exposures seem insignificant, where children are more vulnerable than adults.
Collapse
Affiliation(s)
- Md Humayun Kabir
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Patuakhali, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Rifat Shahid Shammi
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanmoy Roy Tusher
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Md Shafiqul Islam
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abubakr M Idris
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, 9004, Saudi Arabia
| |
Collapse
|
28
|
Kumar S, Islam ARMT, Islam HMT, Hasanuzzaman M, Ongoma V, Khan R, Mallick J. Water resources pollution associated with risks of heavy metals from Vatukoula Goldmine region, Fiji. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112868. [PMID: 34089960 DOI: 10.1016/j.jenvman.2021.112868] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 05/27/2023]
Abstract
Although mining is essential for human economic development, is amongst the most polluting anthropogenic sources that influence seriously in water resources. Thus, understanding the presence and concentration of heavy metals in water and sediment in the vicinity of mines is important for the sustainability of the ecosystem. In this work, a multidisciplinary approach was developed to characterize the contamination level, source apportionment, co-existence, and degree of ecological and human health risks of HMs on water resources in the Vatukoula Goldmine region (VGR), Fiji. The outcomes suggested significant contamination by Cd (range: 0.01-0.95 g/L), Pb (range: 0.03-0.53 g/L), and Mn (range: 0.01-3.66 g/L) in water samples surpassed the level set by Fiji and international laws, whereas higher concentration of Cd (range: 2.60-23.16 mg/kg), Pb (range: 28.50-200.90 mg/kg) and Zn (range: 36.50-196.66 mg/kg) were detected in sediment samples. Lead demonstrated a strong significant co-existence network with other metals (e.g., Mn, Ni). Source apportionment recognized four source patterns (Cd, Pb, Ni, and Mn) for water and (Cr, Cd-Pb, Mn, and Zn) for sediment which was further confirmed by principal component analysis. The mine inputs source mainly contributed to Cd (66.07%) for water, while mineral processing mostly contributed to Zn (76.10%) for sediment. High non-carcinogenic (>1) and carcinogenic (>10-4) health risks, particularly in children, are related to the elevated Cd, Pb and Cr contents from the VGR. Uncertainty analysis demonstrates that the 90th quantile of Cd led to higher carcinogenic risk. Pollution indices disclosed a moderate to extremely contamination status mainly along the Toko dam which poses high ecological risks identified by index calculation. However, sediment quality indicators based on probable effect levels showed that there was a 75% of likelihood that the concentrations of Cd and Pb adjacent to the VGR have a severe toxic impact on aquatic lives.
Collapse
Affiliation(s)
- Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji
| | | | - H M Touhidul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Hasanuzzaman
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Victor Ongoma
- International Water Research Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Javed Mallick
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
29
|
Geochemical characterization of miocene core sediments from Shahbazpur gas-wells (Bangladesh) in terms of elemental abundances by instrumental neutron activation analysis. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07770-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Ahmed FT, Khan AHAN, Khan R, Saha SK, Alam MF, Dafader NC, Sultana S, Elius IB, Mamum SA. Characterization of arsenic contaminated groundwater from central Bangladesh: Irrigation feasibility and preliminary health risks assessment. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2021.100433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Uddin MJ, Jeong YK. Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon 2021; 7:e06107. [PMID: 33659727 PMCID: PMC7892934 DOI: 10.1016/j.heliyon.2021.e06107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
River water is very much important for domestic, agriculture and industrial use in Bangladesh which is in critical condition from long time based on research data. During last 40 years, extreme pollution events occurred in peripheral rivers surrounding Dhaka city and Karnaphuli River in Chittagong city. Present data showed that other urban rivers are also in critical condition especially Korotoa, Teesta, Rupsha, Pashur and Padma. The pollutants flowing with water made a severe pollution in downstream areas of rivers. Metals concentrations in river water was found to be higher in dry season. Dissolve oxygen (DO) was nearly zero in Buriganga River and several points in Turag, Balu, Sitalakhya and Karnaphuli River. NO3-, NO2- and PO43- pollution occurred in different rivers. Zn, Cu, Fe, Pb, Cd, Ni, Mn, As and Cr concentration was above drinking water standard in most of the river and some metals was even above irrigation standard in water from several rivers. Sediment data showed very much higher metal concentrations in most of the rivers especially peripheral rivers in Dhaka and Karnaphuli, Korotoa, Teesta, Rupsha and Meghna River. Metal concentrations in sediment was above US EPA threshold value in most of the rivers. Metal concentrations in fish and agricultural crops showed that bioaccumulations of metals had occurred. The concentration of metals showed the trend like: water<fish<sediment. Agricultural crops were found to contain toxic metals through polluted water irrigation. The calculated data of daily intake for the non-carcinogenic and carcinogenic showed that consumption of the contaminated foodstuff can cause serious health injuries.
Collapse
Affiliation(s)
- Md. Jamal Uddin
- Department of Soil and Environmental Sciences, University of Barisal, Bangladesh
- Corresponding author.
| | - Yeon-Koo Jeong
- Solid and Hazardous Waste Management Laboratory, Department of Environmental Engineering, Kumoh National Institute of Technology, South Korea
| |
Collapse
|
32
|
Environmental Impacts of Coal-Mining and Coal-Fired Power-Plant Activities in a Developing Country with Global Context. ENVIRONMENTAL CHALLENGES AND SOLUTIONS 2021. [DOI: 10.1007/978-3-030-63422-3_24] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|