1
|
Terrazas-Salgado L, Betancourt-Lozano M, García-Gasca A, Alvarado-Cruz I. Environmental concentrations of glyphosate through direct or parental exposure alter nervous system development and reduce the fertility rate in zebrafish. Neurotoxicology 2025; 108:169-179. [PMID: 40187569 DOI: 10.1016/j.neuro.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
N-(phosphonomethyl)glycine (glyphosate) is the most widely used herbicide worldwide. Although it has been extensively studied, few studies use realistic environmental concentrations to assess its potential effects on fish embryos and larvae. This work aims to evaluate potential neurotoxic and reproductive effects of realistic concentrations of glyphosate in non-target aquatic species using zebrafish larvae. Biological and reproductive biomarkers (condition factor, hepatic and gonadic indices, and fertility rate) were evaluated for adults exposed to 0, 10, 100, and 1000 µg/L, while a transcriptomic comparison was carried out for larvae from both exposure scenarios at 1000 µg/L. The fertility rate of exposed parents decreased with increasing glyphosate concentration, while gonadosomatic (GSI) and hepatosomatic (HIS) indices of females treated with 100 µg/L glyphosate were significantly higher in glyphosate-exposed fish compared to the control group; however, glyphosate treatment did not significantly change GSI or HSI in males. Transcriptomic analysis in larvae showed that glyphosate could alter developmental and metabolic processes, targeting the nervous system in both exposure schemes. The ability of glyphosate to alter the development of the nervous system in larvae of exposed parents suggests that exposure to gametes could produce intergenerational alterations, with potential ecotoxicological implications that remain to be determined.
Collapse
Affiliation(s)
- Luis Terrazas-Salgado
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa 82100, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa 82100, Mexico
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa 82100, Mexico
| | | |
Collapse
|
2
|
Sridhar VV, Turner LW, Reidenbach LS, Horzmann KA, Freeman JL. A review of the influence of pH on toxicity testing of acidic environmental chemical pollutants in aquatic systems using zebrafish (Danio rerio) and glyphosate toxicity as a case study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117506. [PMID: 39667323 DOI: 10.1016/j.ecoenv.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Glyphosate is an acidic herbicide reported to contaminate water sources around the globe. Glyphosate alters the pH of a solution depending upon the concentration and buffering capacity of the solution in which it is present. Hence, toxicity observed in laboratory-based studies could be caused by the chemical or acidic pH if the solution is not adjusted to neutral conditions, confounding toxicity assessments. When reviewing zebrafish glyphosate toxicity studies, major discrepancies were noted among the published literature. Moreover, it was discovered that most of these studies did not mention pH or neutralization of the test solution. Thirty-six articles were identified when restricting the search from January 2009 through April 2024 to studies testing glyphosate toxicity (as glyphosate or glyphosate-based herbicides) in zebrafish and assessed for time of exposure, test concentrations, and mention or assessment of pH in exposure solutions. Additionally, toxicity curves for unadjusted pH and adjusted pH conditions for glyphosate were also determined in developing zebrafish from 1 to 120 hours post fertilization (hpf), to further clarify and support pH influence of glyphosate in these toxicity tests. Furthermore, a pH toxicity curve was established for the same developmental period to address if the divergence noted in the literature was based on glyphosate's influence on acidity of the exposure solution. Results showed that at concentrations greater than 10 ppm (mg/L), the pH of the water used in the experiments at chemistry parameters commonly used in zebrafish toxicity studies reduced to 5.5. As the glyphosate concentration increased, the pH continued to drop as low as 2.98. When comparing unneutralized and neutralized glyphosate solutions, the 120 hpf-LC50 without neutralization was close to 50 ppm, while minimal lethality was observed up to 1000 ppm in the neutralized solutions. Findings were then compared to the thirty-six zebrafish glyphosate toxicity studies for alignment of findings with glyphosate or pH toxicity. Eighteen of the studies included treatment concentrations less than 10 ppm with pH likely not to influence reported outcomes. Of the 18 remaining studies at higher concentrations likely to influence pH, only one reported neutralizing their exposure solutions. Two additional studies mentioned pH as a potential driving factor but did not repeat in neutral conditions. As a result, 17 of the 36 studies are observing primarily pH toxicity in the glyphosate assessments. Based on these findings, caution is warranted in interpreting results of acidic environmental contaminants in cases where pH of exposure solutions is not stated.
Collapse
Affiliation(s)
| | - Lucas W Turner
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
3
|
Izumi Y, O’Dell KA, Zorumski CF. Glyphosate as a direct or indirect activator of pro-inflammatory signaling and cognitive impairment. Neural Regen Res 2024; 19:2212-2218. [PMID: 38488555 PMCID: PMC11034589 DOI: 10.4103/1673-5374.391331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 04/24/2024] Open
Abstract
Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that could result in neurological, psychiatric, or cognitive impairment. We recently found that a single injection of glyphosate inhibits long-term potentiation, a cellular model of learning and memory, in rat hippocampal slices dissected 1 day after injection, indicating that glyphosate-based herbicides can alter cognitive function. Glyphosate-based herbicides could adversely affect cognitive function either indirectly and/or directly. Indirectly, glyphosate could affect gut microbiota, and if dysbiosis results in endotoxemia (leaky gut), infiltrated bacterial by-products such as lipopolysaccharides could activate pro-inflammatory cascades. Glyphosate can also directly trigger pro-inflammatory cascades. Indeed, we observed that acute glyphosate exposure inhibits long-term potentiation in rat hippocampal slices. Interestingly, direct inhibition of long-term potentiation by glyphosate appears to be similar to that of lipopolysaccharides. There are several possible measures to control dysbiosis and neuroinflammation caused by glyphosate. Dietary intake of polyphenols, such as quercetin, which overcome the inhibitory effect of glyphosate on long-term potentiation, could be one effective strategy. The aim of this narrative review is to discuss possible mechanisms underlying neurotoxicity following glyphosate exposure as a means to identify potential treatments.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kazuko A. O’Dell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Pagano AD, Nunes LS, Domingues WB, da Silveira TLR, Kütter MT, Schneider A, Kremer FS, Junior ASV, Amaral MG, Gonçalves NM, Bellido-Quispe DK, Volcan MV, Costa PG, Bianchini A, Pinhal D, Campos VF, Remião MH. Assessing reproductive effects and epigenetic responses in Austrolebias charrua exposed to Roundup Transorb®: Insights from miRNA profiling and molecular interaction analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104539. [PMID: 39173985 DOI: 10.1016/j.etap.2024.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This study examines the effects of Roundup Transorb® (RDT) exposure on reproductive functions and ovarian miRNA expression in Austrolebias charrua. Exposure to RDT (at 0.065 or 5 mg. L-1 for 96 h) significantly disrupts fertility, evidenced by changes in fertilization rates and egg diameter. Profiling of ovarian miRNAs identified a total 205 miRNAs in A. charrua. Among these, three miRNAs were upregulated (miR-10b-5p, miR-132-3p, miR-100-5p), while ten miRNAs were downregulated (miR-499-5p, miR-375, miR-205-5p, miR-206-3p, miR-203a-3p, miR-133b-3p, miR-203b-5p, miR-184, miR-133a-3p, miR-2188-5p) compared to non-exposed fish. This study reveals that differentially expressed miRNAs are linked to molecular pathways such as steroid hormone biosynthesis, lipid and carbohydrate metabolism, bioenergetics, and antioxidant defense. It also analyzes molecular interactions between miRNAs and target genes during RDT exposure in annual killifish, providing insights into biomarkers in ecotoxicology. Moreover, it provides scope for developing environmental health assessment models based on epigenomic endpoints, supporting the protection of biodiversity and ecosystem services through the quantification of stress responses in living organisms exposed to pesticides.
Collapse
Affiliation(s)
- Antônio D Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Tony L R da Silveira
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mateus T Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Antonio S V Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Marta G Amaral
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natiéli M Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Dionet K Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Matheus V Volcan
- Instituto Pró-Pampa (IPPampa), Laboratório de Ictiologia, Pelotas, Brazil
| | - Patrícia G Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, UNESP, Botucatu, SP, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mariana H Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| |
Collapse
|
5
|
Moraes JS, Ballesteros ML, Hued AC, Bonifacio AF, Azambuja TG, Vaz BDS, Martins CDMG. Glyphosate and its formulated product Roundup Transorb R® affect locomotor activity and reproductive and developmental parameters in Jenynsia lineata fish: An intergenerational study. CHEMOSPHERE 2024; 362:142541. [PMID: 38851497 DOI: 10.1016/j.chemosphere.2024.142541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Glyphosate is the most widely utilized herbicide worldwide due to its effectiveness in controlling agricultural weeds. However, its persistence in aquatic ecosystems has raised concerns about the well-being of non-target organisms such as fish. This study aimed to evaluate the effects of chronic exposure (21 days) to glyphosate or its formulated product Roundup Transorb R®, at an environmentally relevant concentration permitted by regulations in certain countries (65 μg/L of glyphosate), on the locomotor activity and reproductive success of the fish Jenynsia lineata, as well as on the morphology/development and locomotor activity of its offspring, as intergenerational effects. Neither the pure nor formulated herbicide altered the distance traveled and velocity of adult fish exposed to the herbicide (F0), but they negatively affected reproductive success, decreasing the percentage of positive response to the presence of the female, reducing the number of gravid females, causing abortions, and lowering offspring survival (F1). In the F1 generation, a decrease in weight and length was noted along with developmental abnormalities in both treatment groups (pure or formulated glyphosate), with the formulation causing more harm. Observed developmental abnormalities included muscle atrophy, ascites, pigmentary disorders, vertebral agenesis, spinal deviation, and exophthalmia. Furthermore, parental exposure to pure glyphosate led to an increase in the distance traveled and velocity of F1 (hyperlocomotion), whereas exposure to the formulated product resulted in a decrease in these behaviors (hypolocomotion) of F1. These findings highlight the toxic effects of glyphosate at very low concentrations, although varying between pure and formulated, and demonstrate the intergenerational consequences of herbicide exposure, underscoring the risk to the survival of fish offspring in glyphosate-contaminated environments.
Collapse
Affiliation(s)
- Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - María Laura Ballesteros
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Córdoba, 5000, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Andrea Cecilia Hued
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Córdoba, 5000, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Alejo Fabian Bonifacio
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Córdoba, 5000, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Thaíz Gonçalves Azambuja
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Campus Pelotas. Praça 20 de Setembro, 455, 96015360, Pelotas, RS, Brazil.
| | - Bernardo Dos Santos Vaz
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Campus Pelotas. Praça 20 de Setembro, 455, 96015360, Pelotas, RS, Brazil.
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
6
|
Pagano AD, Blödorn EB, Domingues WB, de Souza LP, da Silveira TLR, Kütter MT, Gonçalves NM, Volcan MV, Costa PG, Bianchini A, Remião MH, Campos VF. Validation of qPCR reference genes in the endangered annual killifish Austrolebias charrua considering different tissues, gender and environmental conditions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1-12. [PMID: 38602608 DOI: 10.1007/s10646-024-02752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The annual killifish Austrolebias charrua is an endangered species, endemic to the southern region of South America, which inhabits temporary ponds that emerges in the rainy season. The main anthropogenic threat driving the extinction of A. charrua stems from extensive agriculture, primarily due to the widrespread use of glyphosate-based herbicides near their habitats. Annual killifishes have been used as models for ecotoxicological studies but, up to now, there are no studies about reference genes in any Austrolebias species. This represents an obstacle to the use of qPCR-based technologies, the standard method for gene expression quantification. The present study aimed to select and validate potential reference genes for qPCR normalization in the annual killifish Austrolebias charrua considering different tissues, gender and environmental conditions. The candidate reference genes 18 s, actb, gapdh, ef1a, shox, eif3g, and the control gene atp1a1 were evaluated in male and female individuals in three different tissues (brain, liver, and gills) under two experimental conditions (control and acute exposition to Roundup Transorb®). The collected tissues were submitted to RNA extraction, followed by cDNA synthesis, cloning, sequencing, and qPCR. Overall, 18 s was the most stable reference gene, and 18 s and ef1a were the most stable combination. Otherwise, considering all variables, gapdh and shox were the least stable candidate genes. Foremost, suitable reference genes were validated in A. charrua, facilitating accurate mRNA quantification in this species, which might be useful for developing molecular tools of ecotoxicological assessment based on gene expression analysis for environmental monitoring of annual killifish.
Collapse
Affiliation(s)
- Antônio Duarte Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Eduardo Bieharls Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Lucas Petitemberte de Souza
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Tony Leandro Rezende da Silveira
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Mateus Tavares Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Natiéli Machado Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil.
| |
Collapse
|
7
|
Rao C, Chu F, Fang F, Xiang D, Xian B, Liu X, Bao S, Fang T. Toxic effects and comparison of common amino antioxidants (AAOs) in the environment on zebrafish: A comprehensive analysis based on cells, embryos, and adult fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171678. [PMID: 38485016 DOI: 10.1016/j.scitotenv.2024.171678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The ubiquity of amino antioxidants (AAOs) in the environment has attracted increasing attention, given their potential toxicity. This investigation represents a pioneering effort, systematically scrutinizing the toxicological effects of four distinct AAOs across the developmental spectrum of zebrafish, encompassing embryonic, larvae, and adult stages. The results indicate that four types of AAO exhibit varying degrees of cell proliferation toxicity. Although environmentally relevant concentrations of AAOs exhibit a comparatively circumscribed impact on zebrafish embryo development, heightened concentrations (300 μg/L) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD) distinctly evoke developmental toxicity. Behavioral analysis results indicate that at concentrations of 20 and 300 μg/L, the majority of AAOs significantly reduced the swimming speed and activity of larvae. Moreover, each AAO triggers the generation of reactive oxygen species (ROS) in larvae, instigating diverse levels of oxidative stress. The study delineates parallel toxicological patterns in zebrafish exposed to 300 μg/L of 6PPD and IPPD, thereby establishing a comparable toxicity profile. The comprehensive toxicity effects among the four AAOs is as follows: IPPD >6PPD > N-Phenyl-1-naphthylamine (PANA) > diphenylamine (DPA). These findings not only enrich our comprehension of the potential hazards associated with AAOs but also provide data support for structure-based toxicity prediction models.
Collapse
Affiliation(s)
- Chenyang Rao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuhao Chu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaying Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Cresto N, Courret M, Génin A, Martin CMP, Bourret J, Sakkaki S, de Bock F, Janvier A, Polizzi A, Payrastre L, Ellero-Simatos S, Audinat E, Perroy J, Marchi N. Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123477. [PMID: 38307239 DOI: 10.1016/j.envpol.2024.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Prolonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, we aimed to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals. Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of excitatory synaptic transmission was specifically increased in NOAEL conditions, with a predominant influence in males, suggesting a reduced probability of neurotransmitter release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed mice. Next, we explore whether these neurophysiological modifications are associated with neuro-glia changes in the somatosensory cortex and hippocampus. High-resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Vglut1+ Homer1+ synapses. Microglial Iba1+ cells displayed a shortening of their ramifications, a sign of cellular reactivity that was more pronounced in males at NOAEL levels. The morphology of GFAP+ astrocytes was generally not modified. Finally, we asked whether mouse-specific cross-correlations exist among all data sets generated. This examination included the novel object recognition (NOR) test performed before ex vivo functional and immunohistochemical examinations. We report a negative linear regression between the number of synapses and NOR or LTP maintenance when plotting ADI and NOAEL datasets. These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the potential significance of these findings to real-world consumer situations and long-term brain resilience.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Margot Courret
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athénaïs Génin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Julie Bourret
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Sakkaki
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Frederic de Bock
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
9
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
10
|
Wang J, Yu Z, Wang Y, Chen Y, Xiao L, Zong Y, Feng Q, Peng L, Zhang H, Liu C. Ethylene thiourea exposure induces neurobehavioral toxicity in zebrafish by disrupting axon growth and neuromuscular junctions. J Environ Sci (China) 2024; 137:108-119. [PMID: 37980000 DOI: 10.1016/j.jes.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/20/2023]
Abstract
Ethylene thiourea (ETU) converted from ethylene bisdithiocarbamate (EBDC) fungicides has aroused great concern because of its prevalence and harmful effects. Although ETU-induced neurotoxicity has been reported, the potential mechanisms remain unclear. This study provided insights into its neurotoxic effects at environmentally relevant concentrations in zebrafish. Our findings showed that embryonic exposure to ETU decreased the hatch rate and delayed somite development. Furthermore, ETU treatment significantly reduced the dark velocity in the locomotion assay. The upregulated tendency of the mitogen-activated protein kinases (MAPK) pathway (mknk1, atf4, mapkapk3) screened by transcriptome analysis implied motor neuron degeneration, which was validated by subsequent morphological observation, as axon length and branches were truncated in the 62.5 µg/L ETU group. However, although the rescue experiment with a p38 MAPK inhibitor (SB203580) successfully ameliorated axon degeneration, it failed to reverse the locomotion behaviors. Further exploration of transcriptome data revealed the varied expression of presynaptic scaffold protein-related genes (pcloa, pclob, bsna), whose downregulation might impair the neuromuscular junction (NMJ). Therefore, we reasonably suspected that ETU-induced neurobehavioral deficits might result from the combined effects of the MAPK pathway and presynaptic proteins. Considering this, we highlighted the necessity to take precautions and early interventions for susceptible ETU-exposed populations.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjun Zong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiyuan Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianqi Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Babich R, Merutka I, Craig E, Harichandara A, De Silva PMCS, Gunasekara TDKSC, Jayasundara N. Transcriptomic and behavioral analyses reveal unique target tissues and molecular pathways associated with embryonic exposure to low level glyphosate and metal mixtures in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169271. [PMID: 38114029 PMCID: PMC10964846 DOI: 10.1016/j.scitotenv.2023.169271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Investigation of developmental molecular events following exposure to environmentally relevant agrochemical mixtures is critical to predicting their potential long-term ecological and human health risks. Here, we sought to uncover transcriptomic changes during zebrafish (Danio rerio) embryonic development following exposure to glyphosate and co-exposure to metals. Glyphosate is widely used globally with an allowable drinking water limit of 700 ppb. We examined effects of glyphosate (10 ppb) alone and when co-exposed to a metal mixture containing low levels of arsenic (4 ppb), lead (5 ppb), cadmium (2 ppb), and vanadium (15 ppb). This mixture was derived based on behavioral and morphological toxicity findings and environmentally relevant concentrations found in agricultural regions where glyphosate and metals are ubiquitously present. Gene expression patterns coupled to a single-cell transcriptomic dataset revealed that developmental exposure (28-72 h post fertilization) to glyphosate dysregulates expression of developmental genes specific to the central nervous system. Subsequent studies indicated significant suppression of larval zebrafish movement with 10 ppb glyphosate exposure. Studies with glyphosate + metals mixture and metals mixture alone showed unique developmental transcriptomic patterns and behavioral changes compared to glyphosate exposure alone. However, some outcomes (e.g., changes in expression of genes involved in epigenetic regulation and extracellular matrix patterning) were common across all three exposures compared to the control. Notably, glyphosate + metals co-exposure distinctly suppresses lysosomal transcripts and targets renal developmental genes. While further studies are required to uncover the precise nature of the interactions between glyphosate and metals, our study shows that glyphosate at very low levels is a behavioral and neurotoxicant that changes when metals are present. Given this herbicide affects distinctive physiological processes, including renal development and lysosomal dysregulation when co-exposed with metals, we conclude that environmental cation levels should be considered in glyphosate toxicity and risk assessment.
Collapse
Affiliation(s)
- Remy Babich
- University of Maine, Orono, ME 14069, United States of America.
| | - Ilaria Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Emily Craig
- University of Maine, Orono, ME 14069, United States of America; Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | | | | | | | - Nishad Jayasundara
- University of Maine, Orono, ME 14069, United States of America; Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
12
|
Pagano AD, Gonçalves NM, Domingues WB, da Silveira TLR, Kütter MT, Junior ASV, Corcini CD, Nascimento MC, Dos Reis LFV, Costa PG, Bianchini A, Volcan MV, Remião MH, Campos VF. Assessment of oxidative stress biomarkers in the threatened annual killifish Austrolebias charrua exposed to Roundup. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109787. [PMID: 37977240 DOI: 10.1016/j.cbpc.2023.109787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
This study aimed to analyze the toxic effects of Roundup Transorb® on the endangered Neotropical annual killifish Austrolebias charrua through the assessment of molecular and biochemical biomarkers. The fish were collected in temporary ponds and exposed to environmentally realistic concentrations of the herbicide (5 mg.L-1 for 96 h). The production of ROS, lipid peroxidation, DNA damage, and membrane fluidity were evaluated in the blood cells by flow cytometry. The mRNA expression of the antioxidant-related genes sod2, cat, gstα, atp1a1, gclc, and ucp1 across the brain, liver, and gills was quantified. The acute exposure of annual killifish to Roundup significantly increased ROS production, lipid peroxidation, and DNA damage in their erythrocytes. Likewise, Roundup Transorb® decreased membrane fluidity in the blood cells of the exposed fish. Gene expression analysis revealed that Roundup exposure alters the relative expression of genes associated with oxidative stress and antioxidant defense. Our results give rise to new insights into adaptive mechanisms of A. charrua in response to Roundup. Since Brazilian annual killifishes strongly risk extinction, this study paves the way for developing novel biotechnologies applied to environmental monitoring and aquatic toxicology assessment.
Collapse
Affiliation(s)
- Antônio Duarte Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Natiéli Machado Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | | | - Mateus Tavares Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | | | | | - Mariana Cavalcanti Nascimento
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Luana Ferreira Viana Dos Reis
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | | | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil.
| |
Collapse
|
13
|
Chai Y, Sheng D, Ji X, Meng Y, Shen F, He R, Ma R, Wang Y. Developmental and neurobehavioral toxicity of 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (antioxidant AO2246) during the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166306. [PMID: 37586501 DOI: 10.1016/j.scitotenv.2023.166306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND 2,2'-Methylenebis (4-methyl-6-tert-butylphenol) (AO2246) is a synthetic phenolic antioxidant extensively used in food packaging bags and cosmetics. Recently, AO2246 was detected with unexpectedly high concentrations in plasma and breast milk samples from pregnant and lactating women. Hence, it is essential to conduct a thorough investigation to evaluate the detrimental effects of AO2246 on biota. OBJECTIVE To investigate the developmental and behavioral toxicity of AO2246 in zebrafish, as well as the molecular mechanisms underlying these effects. METHODS Zebrafish embryos were exposed to AO2246 at concentrations ranging from 0.05 to 10 μM for up to 6 days postfertilization (dpf). Hatching rate, survival rate, heart rate, and body length were measured. Locomotor behavioral and electrophysiologal analyses were performed. Two fluorescence-labeled transgenic zebrafish lines (endothelium-Tg and macrophage/microglia-Tg) were employed. RNA sequencing was carried out. RESULTS AO2246 has a 96-hour LC50 value of 3 μM. The exposure of AO2246 resulted in a significant reduction in both hatching rate and heart rate. Analysis of locomotor behavior demonstrated that larvae exposed to AO2246 doses exceeding 2 μM exhibited a significant decrease in both total distance and mean velocity. Electrophysiological recordings demonstrated a noteworthy reduction in spike activity at a concentration of 3 μM, relative to control conditions. The administration of AO2246 at 3 μM elicited morphological reactivity and immune alteration of the midbrain microglia in the macrophage/microglia-transgenic zebrafish line, indicating a potential contribution of neurological disorders to behavioral defects. RNA sequencing analysis revealed altered gene expression profiles at high AO2246 concentrations, particularly the dysregulation of pathways associated with neuronal function. CONCLUSIONS The present study demonstrates that AO2246 exposure elicits developmental and neurobehavioral toxicity in zebrafish larvae. Specifically, exposure to AO2246 was found to cause disturbances in neuronal electrophysiological activity and neurological disorders, which ultimately led to the impairment of locomotor behavior in zebrafish larvae.
Collapse
Affiliation(s)
- Yinan Chai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaowei Ji
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; Department of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yanlong Meng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Feihao Shen
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui He
- College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Runjia Ma
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
14
|
Moraes JS, da Costa Silva DG, Dos Santos Vaz B, Mizuschima CW, de Martinez Gaspar Martins C. Glyphosate is Harmful to Early Life Stages of the Viviparous Fish Jenynsia Multidentata: Biochemical and Locomotor Effects. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:417-428. [PMID: 37603055 DOI: 10.1007/s00244-023-01015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is the most widely used herbicide worldwide due to its efficacy in weed control in agriculture. This herbicide has been consistently detected in the aquatic environment, causing harmful consequences to nontarget organisms residing in agricultural regions. In this study, we assessed the effects of environmentally relevant concentrations of glyphosate (30-100 µg/L) on the early life stages of the viviparous fish Jenynsia multidentata through biochemical and locomotor endpoints. At 96 h of exposure, 30 and 65 µg/L glyphosate caused an increase in acetylcholinesterase (AChE) activity, and 65 µg/L glyphosate also augmented the levels of lipid peroxidation. Glyphosate at 100 µg/L did not alter the activity of acetylcholinesterase or the levels of lipid peroxidation, but it stimulated the activity of the cellular detoxification enzyme glutathione S-transferase. In addition, all concentrations affected the swimming of the fish. Under light conditions, glyphosate caused hypolocomotion at all concentrations tested, whereas under dark conditions, this was observed at 30 and 100 µg/L. Hyperlocomotion was observed at 65 µg/L glyphosate. These findings are alarming for the health of fish, such as J. multidentata that inhabit streams that pass through agricultural areas, especially for the early life stages of these fish. Research studying the effects of pollutants on native species is relevant to improve regulation that protects aquatic ecosystems.
Collapse
Affiliation(s)
- Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Bernardo Dos Santos Vaz
- Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Praça Vinte de Setembro, Centro Pelotas, RS, 96015360, Brazil
| | - Catiúscia Weinert Mizuschima
- Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Praça Vinte de Setembro, Centro Pelotas, RS, 96015360, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
15
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
16
|
Izumi Y, O'Dell KA, Zorumski CF. The herbicide glyphosate inhibits hippocampal long-term potentiation and learning through activation of pro-inflammatory signaling. Sci Rep 2023; 13:18005. [PMID: 37865669 PMCID: PMC10590375 DOI: 10.1038/s41598-023-44121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Glyphosate, a herbicide marketed as Roundup, is widely used but there are concerns this exposure could impair cognitive function. In the CA1 region of rat hippocampal slices, we investigated whether glyphosate alters synaptic transmission and long-term potentiation (LTP), a cellular model of learning and memory. Our hypothesis is that glyphosate alters neuronal function and impairs LTP induction via activation of pro-inflammatory processes. Roundup depressed excitatory synaptic potentials(EPSPs) in a dose-dependent manner with complete suppression at 2000 mg/L. At concentrations ≤ 20 mg/L Roundup did not affect basal transmission, but 4 mg/L Roundup administered for 30 min inhibited LTP induction. Acute administration of 10-100 μM glyphosate also inhibited LTP induction. Minocycline, an inhibitor of microglial activation, and TAK-242, an inhibitor of toll-like receptor 4 (TLR4), both overcame the inhibitory effects of 100 µM glyphosate. Similarly, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), a different TLR4 antagonist, overcame the inhibitory effects. In addition, ISRIB (integrated stress response inhibitor) and quercetin, an inhibitor of endoplasmic reticulum stress, overcame the inhibitory effects. We also observed that in vivo glyphosate injection (16.9 mg/kg i.p.) impaired one-trial inhibitory avoidance learning. This learning deficit was overcome by TAK-242. These observations indicate that glyphosate can impair cognitive function through pro-inflammatory signaling in microglia.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Barreto LS, Souza TLD, Morais TPD, Oliveira Ribeiro CAD. Toxicity of glyphosate and aminomethylphosphonic acid (AMPA) to the early stages of development of Steindachneridion melanodermatum, an endangered endemic species of Southern Brazil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104234. [PMID: 37481050 DOI: 10.1016/j.etap.2023.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
This study aimed to evaluate glyphosate (GLY) and aminomethylphosphonic acid (AMPA) toxicity at 65, 650, and 6500 μg L-1 to the initial stages of development of Steindachneridion melanodermatum, an endangered endemic species from the Iguaçu River, assessing hatching, survival, total larval length, deformities, oxidative stress biochemical biomarkers, and neurotoxicity. Overall, looking at the sum of responses through the integrated biomarker response, the species was more sensitive to AMPA than GLY, especially at the lower concentration of 65 μg L-1, which induced mortality, deformities, underdevelopment, and oxidative stress. Considering the risk of exposure and the importance of conservation of the highly endemic ichthyofauna of this basin, it is urgent to investigate and regulate both GLY and AMPA levels at the Iguaçu River to protect not only this species, but the entire ecosystem.
Collapse
Affiliation(s)
- Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil.
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Tobias Pereira de Morais
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil
| |
Collapse
|
18
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
19
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
20
|
Glyphosate-based herbicide (GBH) causes damage in embryo-larval stages of zebrafish (Danio rerio). Neurotoxicol Teratol 2023; 95:107147. [PMID: 36493994 DOI: 10.1016/j.ntt.2022.107147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Glyphosate-Based Herbicides (GBH) show risks to the environment and also to aquatic organisms, such as fish. The present work aimed to evaluate the effects of GBH and Pure Glyphosate (PG) exposure on Danio rerio embryos at drinking water concentrations. Zebrafish embryos were exposed to 250, 500, and 1000 μg L-1 of Roundup Original DI® and pure glyphosate for 96 h. Glyphosate concentration in water, parameters physicochemical water, survival, hatching rate, heart rate, malformations, behavior, and biomarkers were evaluated. We verified that at 6 h post-fertilization (hpf), animals exposed to GBH 500 showed decreased survival as compared to the control. The hatching rate increased in all groups exposed to GBH at 48 hpf as compared to the control group. The embryos exposed did not present changes in the spontaneous movement and touch response. Exposed groups to GBH demonstrated a higher number of malformations in fish embryos as compared to the control. Most malformations were: pericardial edema, yolk sac edema, body malformations, and curvature of the spine. In heart rate, bradycardia occurred in groups exposed, as predicted due to cardiac abnormalities. As biochemical endpoints, we observed a decrease in Glutathione S-transferase (GBH 250, GBH 500 and PG 250) and Acetylcholinesterase (GBH 250 and PG 250) activity. No differences were found between the groups in the concentration of protein, Total Antioxidant Capacity Against Peroxyl Radicals, Lipid peroxidation, Reactive Oxygen Species, Non-protein thiols, and Catalase. In conclusion, the damage in all evaluated stages of development was aggravated by survival and malformations. Therefore, the large-scale use of GBHs, coupled with the permissiveness of its presence could be the cause damage to the aquatic environment affecting the embryonic development of non-target organisms.
Collapse
|
21
|
Alvarado-Suárez GB, Silva-Briano M, Arzate-Cárdenas MA, Carbajal-Hernández AL, Yáñez-Rivera B, Rico-Martínez R. Feeding behavior of early life stages of the zebrafish Danio rerio is altered by exposure to glyphosate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85172-85184. [PMID: 35794329 DOI: 10.1007/s11356-022-21790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate levels and the transfer of glyphosate across trophic levels have rarely been studied in zooplankton. The food preferences of zebrafish during the first-feeding stage (which is critical for the survival of organisms), were analyzed because of the requirement for live food. Larval survival begins to be affected when glyphosate intake exceeds 0.3666 µg/larvae/day, in the case that only the food is contaminated; if the medium is also contaminated, the effects on survival start from 0.2456 µg/larvae/day. It was shown that glyphosate was more likely to be incorporated through the medium than through the food (zooplankton), which supports the results of previous studies that have ruled out the potential for biomagnification. The bioconcentration factor (BCF) of glyphosate was determined using an ELISA tests specific to measure glyphosate in the fish D. rerio, the rotifers Brachionus calyciflorus and Lecane papuana, and the cladoceran Ceriodaphnia dubia. The experimental design consisted in exposing seven zebrafish adults per replica (four replicates) in three treatments 1, 5, and 10 mg/L of glyphosate for 96 h to obtain bioconcentration factors in the gills, liver, and muscle. These concentrations were selected as potential glyphosate concentrations right after application as double highest reported concentration. Glyphosate levels in zooplankton can represent up to 6.26% of the total weight of rotifers (BFC = 60.35) and in zebrafish adult organs were less than 8 µg/mg of tissue (BCF values < 6). Although glyphosate does not biomagnify, our results suggest that glyphosate affected the dynamics between zooplankton and zebrafish larvae, diminishing survival and feeding rates, given that zooplankton species bioconcentrate glyphosate in large quantities. The BCF values found in this contribution are higher than expected. Glyphosate exposure affected energy metabolism and feeding behavior of zebrafish larvae, which presented high mortality rates at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Gabriela Beatriz Alvarado-Suárez
- Universidad Autónoma de Aguascalientes, Departamento de Biología, Avenida Universidad 940, Ags. C. P. 20131, Aguascalientes, Mexico
| | - Marcelo Silva-Briano
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria Aguascalientes, Aguascalientes, 20131, México
| | - Mario Alberto Arzate-Cárdenas
- Universidad Autónoma de Aguascalientes, Departamento de Biología, Avenida Universidad 940, Ags. C. P. 20131, Aguascalientes, Mexico
- Cátedras CONACYT, Consejo Nacional de Ciencia Y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de México, 03940, México
| | - Ana Laura Carbajal-Hernández
- Universidad Autónoma de Aguascalientes, Departamento de Biología, Avenida Universidad 940, Ags. C. P. 20131, Aguascalientes, Mexico
| | - Beatriz Yáñez-Rivera
- Cátedras CONACYT, Consejo Nacional de Ciencia Y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de México, 03940, México.
- CIAD AC, Unidad Mazatlán en Acuicultura Y Manejo Ambiental, Avenida Sábalo-Cerritos S/N, Estero del Yugo, Mazatlán, Sin. 82112, México.
| | - Roberto Rico-Martínez
- Universidad Autónoma de Aguascalientes, Departamento de Biología, Avenida Universidad 940, Ags. C. P. 20131, Aguascalientes, Mexico.
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria Aguascalientes, Aguascalientes, 20131, México.
| |
Collapse
|
22
|
Ames J, Miragem AA, Cordeiro MF, Cerezer FO, Loro VL. Effects of glyphosate on zebrafish: a systematic review and meta-analysis. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1189-1204. [PMID: 36065034 DOI: 10.1007/s10646-022-02581-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate herbicide is widely used in worldwide crop production. Consequently, its active ingredient, surfactants, and adjuvants commonly reach the aquatic ecosystem, thereby harming the biota. An investigation into how this herbicide affects aquatic species is important, especially in fish, as they have the ability to absorb and concentrate toxins. We aimed to evaluate the effects of glyphosate on the embryonic, larval and adult stages of zebrafish (Danio rerio), an appreciable organismal model. In this sense, we performed a meta-analysis using published articles from online databases (PubMed and ScienceDirect), which covered studies published until 2022. From a massive compilation of studies evaluating the effects of active substance glyphosate and Glyphosate-Based Herbicides (GBH) on zebrafish, we selected 36 studies used in downstream analyses. Overall, we report that glyphosate affects developmental stages and demonstrates toxicity and damage in zebrafish. We observed that embryos exposed to glyphosate exhibit increased mortality. There was also an increase in the number of morphological abnormalities related to yolk sac oedema, pericardial oedema, spinal curvature and body malformations, and a decrease in body size was observed. Furthermore, there was a decrease in the number of beats. The biochemical results demonstrated an increase in reactive oxygen species and antioxidant capacity against peroxyl radicals in the gills. The literature shows that glyphosate decreased the distance covered and the mean speed of the animals and increased the number of rotations. We concluded that glyphosate causes damage in the embryonic, larval and adult stages of this species. These results are valid for zebrafish and can be applied to other freshwater fish species. Graphical abstract.
Collapse
Affiliation(s)
- Jaíne Ames
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Análises Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Santa Rosa, RS, 98787-740, Brazil
- Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Antônio Azambuja Miragem
- Laboratório de Análises Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Santa Rosa, RS, 98787-740, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina, Joaçaba, SC, Brazil
| | - Felipe Osmari Cerezer
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Laboratório de Análises Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Santa Rosa, RS, 98787-740, Brazil.
| |
Collapse
|
23
|
Terrazas-Salgado L, Yáñez-Rivera B, Llera-Herrera R, García-Gasca A, Alvarado-Cruz I, Betancourt-Lozano M. Transcriptomic signaling in zebrafish ( Danio rerio) embryos exposed to environmental concentrations of glyphosate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:775-785. [PMID: 36048159 DOI: 10.1080/03601234.2022.2115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is one of the most popular herbicides worldwide. Globally, the use of glyphosate is increasing, and its residues have been found in drinking water and food products. The data regarding the possible toxic effects of this herbicide are controversial. Therefore, the aim of this study was to evaluate the effects of glyphosate at environmental concentrations in zebrafish (Danio rerio) embryos. Embryos were exposed to 0, 1, 100, and 1,000 µg/L glyphosate for 96 h, and mortality, heart rate, and hatching rate were evaluated. After the experiment, RNA was extracted from the embryos for transcriptional analysis. No mortality was recorded, and exposure to 100 µg/L and 1,000 µg/L of glyphosate resulted in lower heart rates at 48 h. In addition, RNA-seq analysis revealed that glyphosate exposure induced subtle changes in gene transcription profiles. We found 30 differentially expressed genes; however, the highest glyphosate concentration (1,000 µg/L) induced the greatest number of differentially expressed genes involved in oocyte maturation, metabolic processes, histone deacetylation, and nervous system development.
Collapse
Affiliation(s)
- Luis Terrazas-Salgado
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| |
Collapse
|
24
|
Virenque A, Koivisto H, Antila S, Zub E, Rooney EJ, Miszczuk D, Müller A, Stoka E, Marchi N, Alitalo K, Tanila H, Noe FM. Significance of developmental meningeal lymphatic dysfunction in experimental post-traumatic injury. Brain Behav Immun Health 2022; 23:100466. [PMID: 35694175 PMCID: PMC9184565 DOI: 10.1016/j.bbih.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding the pathological mechanisms unfolding after chronic traumatic brain injury (TBI) could reveal new therapeutic entry points. During the post-TBI sequel, the involvement of cerebrospinal fluid drainage through the meningeal lymphatic vessels was proposed. Here, we used K14-VEGFR3-Ig transgenic mice to analyze whether a developmental dysfunction of meningeal lymphatic vessels modifies post-TBI pathology. To this end, a moderate TBI was delivered by controlled cortical injury over the temporal lobe in male transgenic mice or their littermate controls. We performed MRI and a battery of behavioral tests over time to define the post-TBI trajectories. In vivo analyses were integrated by ex-vivo quantitative and morphometric examinations of the cortical lesion and glial cells. In post-TBI K14-VEGFR3-Ig mice, the recovery from motor deficits was protracted compared to littermates. This outcome is coherent with the observed slower hematoma clearance in transgenic mice during the first two weeks post-TBI. No other genotype-related behavioral differences were observed, and the volume of cortical lesions imaged by MRI in vivo, and confirmed by histology ex-vivo, were comparable in both groups. However, at the cellular level, post-TBI K14-VEGFR3-Ig mice exhibited an increased percentage of activated Iba1 microglia in the hippocampus and auditory cortex, areas that are proximal to the lesion. Although not impacting or modifying the structural brain damage and post-TBI behavior, a pre-existing dysfunction of meningeal lymphatic vessels is associated with morphological microglial activation over time, possibly representing a sub-clinical pathological imprint or a vulnerability factor. Our findings suggest that pre-existing mLV deficits could represent a possible risk factor for the overall outcome of TBI pathology. Developmental deficit in the meningeal lymphatic vessels contributes to sustain the chronic neuroinflammation and represent a susceptibility factor in TBI, despite the lack of a functional phenotype. Development and progression of TBI-related cortical lesion is not exacerbated by developmental deficit in meningeal lymphatics. Meningeal lymphatic developmental deficits result in increased neuroinflammation, suggesting a sub-clinical pathological imprint or a vulnerability factor. Congenital mLV deficit affects the interstitial fluid dynamics and the post-TBI hematoma resolution.
Collapse
Affiliation(s)
- Anaïs Virenque
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Emma Zub
- Cerebrovascular and Glia Research, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Erin Jane Rooney
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Diana Miszczuk
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Adrian Müller
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Enija Stoka
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Francesco Mattia Noe
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Corresponding author. HiLIFE, Neuroscience Center, Helsinki University, Helsinki, Finland.
| |
Collapse
|
25
|
Ivantsova E, Wengrovitz AS, Souders CL, Martyniuk CJ. Developmental and behavioral toxicity assessment of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in zebrafish embryos/larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103873. [PMID: 35504511 DOI: 10.1016/j.etap.2022.103873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The relative toxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) to zebrafish were compared. Embryos/larvae were exposed to one dose of either GLY (0.1, 1, or 10 μM), AMPA (0.1, 1, or 10 μM), or a 1 μM mixture for 7-days post-fertilization. Survival, success of hatch, and deformity frequency were not different from controls. Neither chemical induced reactive oxygen species in larval fish. GLY increased superoxide dismutase 2 mRNA in larvae while AMPA increased catalase and superoxide dismutase 1 in a concentration-specific manner. GLY increased cytochrome c oxidase subunit 4 isoform 1 and citrate synthase mRNA in larvae while AMPA decreased cytochrome c oxidase I and increased 3-hydroxyacyl CoA dehydrogenase transcripts. Hyperactivity was noted in fish treated with GLY, but not AMPA nor the mixture. Anxiety-like behaviors were absent with exposure to GLY or AMPA. GLY and AMPA may exert different effects at the molecular and behavioral level.
Collapse
Affiliation(s)
- Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Liu Z, Shangguan Y, Zhu P, Sultan Y, Feng Y, Li X, Ma J. Developmental toxicity of glyphosate on embryo-larval zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113493. [PMID: 35398647 DOI: 10.1016/j.ecoenv.2022.113493] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) induces developmental toxicity in fish, but research on the toxicity mechanism is limited. In this study, zebrafish embryos were exposed for 120 hpf to 0.7, 7, and 35 mg L-1 GLY. The results show that GLY treatment induced developmental toxicity in the fish, including premature hatching, reduced heartbeats, pericardial and yolk sac oedema, swim bladder deficiency, and shortened body length, which was possibly due to a significantly decreased triiodothyronine (T3)/thyroxine (T4) ratio and the abnormal expression patterns of hypothalamic-pituitary-thyroid (HPT) (crh, tshβ, tr α, tr β, and t tr ) and growth hormone/insulin-like growth factor (GH/IGF) axis-related genes (gh, ghrα, ghrβ, igf1, igf1rα, and igf1rβ) in larvae exposed to GLY. In addition, GLY exposure altered the levels of SOD and CAT, increased ROS, promoted malondialdehyde (MDA) content, and significantly altered the levels of endoplasmic reticulum (ER) stress signalling pathway factors (perk, eif2α, gadd34, atf4, ire1α, xbp1, atf6, hspa5, and chop), suggesting that GLY treatment induced oxidative injury and ER stress in the larvae. Further research showed that treatment with a higher concentration of GLY upregulated the levels of iNOS, IL-1β, and TNF-α while inhibiting the expression of IL-10 and TGF-β, suggesting that GLY causes an inflammatory reaction in the larvae. In addition, we also found that apoptosis was induced in the larvae, which was determined by acridine orange staining and abnormal expression of p53, caspase-3, -8, and -9. Taken together, our results demonstrate that GLY exposure altered the T3/T4 ratio, disturbed the expression patterns of HPT and GH/IGF axis-related genes, and induced oxidative and ER stress, inflammatory reactions, and apoptosis in the zebrafish larvae. This investigation contributes to improved understanding of the developmental toxicity mechanism of GLY in fish.
Collapse
Affiliation(s)
- Zhihui Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yingying Shangguan
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Penglin Zhu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
27
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|
28
|
Giommi C, Ladisa C, Carnevali O, Maradonna F, Habibi HR. Metabolomic and Transcript Analysis Revealed a Sex-Specific Effect of Glyphosate in Zebrafish Liver. Int J Mol Sci 2022; 23:2724. [PMID: 35269866 PMCID: PMC8911326 DOI: 10.3390/ijms23052724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Glyphosate is a component of commonly used herbicides for controlling weeds in crops, gardens and municipal parks. There is increasing awareness that glyphosate-based herbicides, in addition to acting on plants, may also exert toxicity in wildlife and humans. In this study, male and female adult zebrafish were exposed to 700 µg/L of glyphosate (GLY), for 28 days. We used the metabolomic approach and UHPLC-ESI-MS to analyze liver samples to investigate the adverse effects of glyphosate on hepatic metabolism. The impact of GLY was found to be sex-specific. In female, GLY exposure affected purine metabolism by decreasing the levels of AMP, GMP and inosinic acid, consequently increasing uric acid levels with respect to the control (CTRL). Exposure to GLY also caused a decrease of UMP levels in the pyrimidine metabolism pathway. In male, GLY exposure decreased the aminoadipic acid within the lysine degradation pathway. Transcript analysis of genes involved in stress response, oxidative stress and the immune system were also performed. Results demonstrated an increased stress response in both sexes, as suggested by higher nr3c1 expression. However, the hsp70.2 transcript level was increased in female but decreased in male. The results demonstrated reduced sod1, sod2, and gpx1a in male following exposure to GLY, indicating an impaired oxidative stress response. At the same time, an increase in the cat transcript level in female was observed. mRNA levels of the pro-inflammatory interleukins litaf and cxcl8b.1 were increased in female. Taken together, the results provide evidence of disrupted nucleotide hepatic metabolism, increased stress inflammatory response in female and disruption of oxidative stress response in male.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (O.C.)
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.L.); (H.R.H.)
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (O.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (O.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.L.); (H.R.H.)
| |
Collapse
|
29
|
Li X, Gao D, Paudel YN, Li X, Zheng M, Liu G, Ma Y, Chu L, He F, Jin M. Anti-Parkinson's Disease Activity of Sanghuangprous vaninii Extracts in the MPTP-Induced Zebrafish Model. ACS Chem Neurosci 2022; 13:330-339. [PMID: 35044760 DOI: 10.1021/acschemneuro.1c00656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a devastating disease of the central nervous system that occurs mainly in the elderly age group, affecting their quality of life. The PD pathogenesis is not yet fully understood and lacks the disease-modifying treatment strategies. Sanghuangprous vaninii (S. vaninii) is a perennial fungus with a plethora of pharmacological activities including anti-cancer and antioxidant activity and so on. However, no study till date has reported its neuroprotective effect against symptoms that are similar to PD in pre-clinical investigation. In the current study, we investigated anti-PD-like effects of S. vaninii mycelium extracts (SvMEs) on MPTP-induced PD in zebrafish. We observed that the loss of dopaminergic neurons and neurovascular reduction were reversed by using SvMEs in the zebrafish brain in a concentration-independent manner. Moreover, it also relieved locomotor impairments in MPTP-induced PD zebrafish. In addition, SvMEs exerted significant antioxidant activity in vitro, which was also demonstrated in vivo on ktr4:NTR-hKikGR zebrafish. Upon investigating the underlying mechanism, we found that SvMEs may alleviate oxidant stress and accelerate α-synuclein degradation and then alleviate PD-like symptoms. Antioxidant-related genes (sod1, gss, gpx4a, gclm, and cat) implied that the SvMEs exhibited anti-PD activity due to the antioxidation mechanism. Finally, upon analysis of chemical composition of SvMEs by liquid chromatography-mass spectrometry, we identified 10 compounds that are plausibly responsible for the anti-PD-like effect of SvMEs. On the limiting part, the finding of the study would have been more robust had we investigated the protein expression of genes related to PD and oxidative stress and compared the effects of SvMEs with any standard anti-PD therapy. Despite this, our results indicated that SvMEs possess anti-PD effects, indicating SvMEs as a potential candidate that is worth exploring further in this avenue.
Collapse
Affiliation(s)
- Xuezhen Li
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, 16001 East Jingshi Road, Ji’nan, 250220 Shandong Province, People’s Republic of China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan, 250103 Shandong Province, People’s Republic of China
- Jilin Agricultural University, 2888 Xincheng Road, Changchun, 130118 Jilin Province, People’s Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan, 250103 Shandong Province, People’s Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Ji’nan, 250101 Shandong Province, P.R. China
| | - Mingzhu Zheng
- Jilin Agricultural University, 2888 Xincheng Road, Changchun, 130118 Jilin Province, People’s Republic of China
| | - Guangpeng Liu
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, 16001 East Jingshi Road, Ji’nan, 250220 Shandong Province, People’s Republic of China
| | - Yanrui Ma
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, 16001 East Jingshi Road, Ji’nan, 250220 Shandong Province, People’s Republic of China
| | - Le Chu
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, 16001 East Jingshi Road, Ji’nan, 250220 Shandong Province, People’s Republic of China
| | - Fatao He
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, 16001 East Jingshi Road, Ji’nan, 250220 Shandong Province, People’s Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan, 250103 Shandong Province, People’s Republic of China
| |
Collapse
|
30
|
Le Du-Carrée J, Boukhari R, Cachot J, Cabon J, Louboutin L, Morin T, Danion M. Generational effects of a chronic exposure to a low environmentally relevant concentration of glyphosate on rainbow trout, Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149462. [PMID: 34411792 DOI: 10.1016/j.scitotenv.2021.149462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, glyphosate became the most used herbicide substance worldwide. As a result, the substance is ubiquitous in surface waters. Concerns have been raised about its ecotoxicological impact, but little is known about its generational toxicity. In this study, we investigate the impact of an environmentally relevant concentration of glyphosate and its co-formulants on an F2 generation issued from exposed generations F0 and F1. Trans, inter and multigenerational toxicity of 1 μgL-1 of the active substance was evaluated on early stages of development and juvenile rainbow trout (Oncorhynchus mykiss) using different molecular, biochemical, immuno-hematologic, and biometric parameters, behavior analysis, and a viral challenge. Reproductive parameters of generation F1 were not affected. However, developmental toxicity in generation F2 due to glyphosate alone or co-formulated was observed with head size changes (e.g. head surface up to +10%), and metabolic disruptions (e.g. 35% reduction in cytochrome-c-oxidase). Moreover, larvae exposed transgenerationally to Viaglif and intergenerationally to glyphosate and Roundup presented a reduced response to light, potentially indicating altered escape behavior. Overall methylation was, however, not altered and further experiments using gene-specific DNA metylation analyses are required. After several months, biochemical parameters measured in juvenile fish were no longer impacted, only intergenerational exposure to glyphosate drastically increased the susceptibility of rainbow trout to hematopoietic necrosis virus. This result might be due to a lower antibody response in exposed fish. In conclusion, our results show that generational exposure to glyphosate induces developmental toxicity and increases viral susceptibility. Co-formulants present in glyphosate-based herbicides can modulate the toxicity of the active substance. Further investigations are required to study the specific mechanisms of transmission but our results suggest that both non-genetic mechanisms and exposure during germinal stage could be involved.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Rania Boukhari
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Jérôme Cachot
- University of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire, 33 600 Pessac, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| |
Collapse
|
31
|
Forner-Piquer I, Klement W, Gangarossa G, Zub E, de Bock F, Blaquiere M, Maurice T, Audinat E, Faucherre A, Lasserre F, Ellero-Simatos S, Gamet-Payrastre L, Jopling C, Marchi N. Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116755. [PMID: 33725534 DOI: 10.1016/j.envpol.2021.116755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40-80 Hz) and an increase of theta (6-9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 μg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 μg/L, while other components provoked changes from 0.5 μg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 μg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Wendy Klement
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Emma Zub
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Frederic de Bock
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|