1
|
Hong W, Zhang F, Wang Z. Toxicity effects and mechanisms of graphdiyne towards freshwater microalgae Scenedesmus obliquus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 285:107419. [PMID: 40424960 DOI: 10.1016/j.aquatox.2025.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/09/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
Graphdiyne (GDY), an emerging 2D carbon nanomaterial, holds promise yet remains unexplored for environmental hazards. Herein, we investigated the toxicity effects and mechanisms of GDY towards the freshwater microalga Scenedesmus obliquus at environmentally relevant concentrations. The results revealed that 1 mg/L of GDY inhibited the growth of the algae and significantly induced a decrease in photosynthetic pigments. Exposure to 0.1 and 1 mg/L of GDY led to a reduction in cell membrane permeability and induced intracellular oxidative stress in the algae. Further, 1 mg/L of GDY caused oxidative damage to the algal cells. Molecular modeling indicated that GDY could directly affect the stability of dsDNA fragment. Transcriptome analysis showed that GDY at 1 mg/L influenced the expression of 2216 genes, with the glycerolipid metabolism pathway being enriched significantly. Metabolome analysis identified 129 differentially expressed metabolites (DEMs) in the algae exposed to 1 mg/L of GDY, revealing three significantly disrupted pathways: glycerophospholipid metabolism, pentose phosphate pathway, and flavonoid biosynthesis. The integrated transcriptome and metabolome analysis suggested that GDY exposure downregulated the level of a lysophosphatidylcholine species (LPC 18:3) by inhibiting the expression of genes related to FMN binding molecular functions. Simultaneously, the algae responded to GDY exposure by upregulating genes involved in the biological process of carbohydrate metabolic process and the molecular function of hydrolase activity, as well as increasing the levels of DEMs, specifically a lysophosphatidic acid species (LPA 16:4). This study elucidates the stress mechanisms induced by GDY in aquatic organisms and emphasizes the importance of monitoring its acute biological effects.
Collapse
Affiliation(s)
- Wei Hong
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Fan Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| |
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Qi Q, Wang Z. Integrating machine learning and nano-QSAR models to predict the oxidative stress potential caused by single and mixed carbon nanomaterials in algal cells. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae049. [PMID: 39798159 DOI: 10.1093/etojnl/vgae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/19/2024] [Indexed: 01/15/2025]
Abstract
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs. Herein, we utilized laboratory-derived toxicity data and machine learning methods to develop quantitative nanostructure-activity relationship (nano-QSAR) classification and regression models, aiming to predict the oxidative stress effects of five carbon nanomaterials (fullerene, graphene, graphene oxide, single-walled carbon nanotubes, and multi-walled carbon nanotubes) and their binary mixtures on Scenedesmus obliquus cells. We constructed five nano-QSAR classification models by combining zeta potential (ζP) with the C4.5 decision tree, support vector machine, artificial neural network, naive Bayes, and K-nearest neighbor algorithms. Moreover, we constructed three classification models by integrating the features including ζP, hydrodynamic diameter (DH), and specific surface area (SSA) with the logistic regression, random forest, and Adaboost algorithms. The Accuracy, Recall, Precision and harmonic mean of Precision and Recall (F1-score) values of these models were all higher than 0.600, indicating an excellent performance in distinguishing whether CNMs have the potential to generate ROS. In addition, using the ζP, DH, and SSA descriptors, we combined decision tree regression, random forest regression, gradient boosting, and the Adaboost algorithm, and successfully constructed four nano-QSAR regression models with applicable application domains (all training and testing data points lie within 95% confidence intervals), goodness-of-fit (Rtrain2 ≥ 0.850), and robustness (cross-validation R2 ≥ 0.650) as well as predictive power (Rtest2 ≥ 0.610). The method developed would establish a fundamental basis for more precise evaluations of ecological risks posed by these materials from a mechanistic standpoint.
Collapse
Affiliation(s)
- Qi Qi
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| |
Collapse
|
4
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. Joint Toxicity and Interaction of Carbon-Based Nanomaterials with Co-Existing Pollutants in Aquatic Environments: A Review. Int J Mol Sci 2024; 25:11798. [PMID: 39519349 PMCID: PMC11547080 DOI: 10.3390/ijms252111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed toxic effects. The study involved a systematic literature review to gather information on the joint toxicity and interaction between CNMs and various co-contaminants in aquatic settings. A total of 53 publications were chosen and analyzed, categorizing the studies based on the tested CNMs, types of co-contaminants, and the used species. Common test models included fish and microalgae, with zebrafish being the most studied species. The review underscores the necessity of conducting mixture toxicity testing to assess whether the combined effects of CNMs and co-existing pollutants are additive, synergistic, or antagonistic. The development of in silico models based on the solid foundation of research data represents the best opportunity for joint toxicity prediction, eliminating the need for a great quantity of experimental studies.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Kurdistan, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Kirill Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Presidium, 633501 Krasnoobsk, Russia
- Advanced Engineering School “Agrobiotek”, Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Peng Y, Yan Y, Ma X, Jiang B, Chen R, Feng H, Xia Y. Efficient electrochemical oxidation of antibiotic wastewater using a graphene-loaded PbO 2 membrane anode: Mechanisms and applications. ENVIRONMENTAL RESEARCH 2024; 259:119517. [PMID: 38964585 DOI: 10.1016/j.envres.2024.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 μm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 μm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Yifei Peng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Bowen Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Lu X, Yu Q, Johari SA, Wang Z. Microplastics with different functional groups modulate cellular and molecular mechanisms of reduced graphene oxide toxicity on the green microalga, Scenedesmus obliquus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108949. [PMID: 39053316 DOI: 10.1016/j.plaphy.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Even though microplastics (MPs) and graphene nanomaterials (GNMs) have demonstrated individual toxicity towards aquatic organisms, the knowledge gap lies in the lack of understanding regarding their combined toxicity. The difference between the combined toxicity of MPs and GNMs, in contrast to their individual toxicities, and furthermore, the elucidation of the mechanism of this combined toxicity are scientific questions that remain to be addressed. In this study, we examined the individual and combined toxicity of three polystyrene microplastics (MPs) with different functional groups-unmodified, carboxyl-modified (COOH-), and amino-modified (NH2-) MPs-in combination with reduced graphene oxide (RGO) on the freshwater microalga Scenedesmus obliquus. More importantly, we explored the cellular and molecular mechanisms responsible for the observed toxicity. The results indicated that the growth inhibition toxicity of RGO, either alone or in combination with the three MPs, against S. obliquus increased gradually with higher particle concentrations. The mitigating effect of MPs-NH2 on RGO-induced toxicity was most significant at a higher concentration, surpassing the effect of unmodified MPs. However, the MPs-COOH did not exhibit a substantial impact on the toxicity of RGO. Unmodified MPs and MPs-COOH aggravated the inhibition effects of RGO on the cell membrane integrity and oxidative stress-related biomarkers. Additionally, MPs-COOH exhibited a stronger inhibition effect on RGO-induced biomarkers compared to unmodified MPs. In contrast, the MPs-NH2 alleviated the inhibition effect of RGO on the biomarkers. Furthermore, the presence of differently functionalized MPs did not significantly affect RGO-induced oxidative stress and photosynthesis-related gene expression in S. obliquus, indicating a limited ability to modulate RGO genotoxicity at the molecular level. These findings can offer a more accurate understanding of the combined risks posed by these micro- and nano-materials and assist in designing more effective mitigation strategies.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Qi Yu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, PR China
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
7
|
Lu X, Wang Z. Molecular mechanism for combined toxicity of micro(nano)plastics and carbon nanofibers to freshwater microalgae Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123403. [PMID: 38244907 DOI: 10.1016/j.envpol.2024.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The understanding of the environmental consequences resulting from the presence of micro(nano)plastics and carbon nanofibers (CNFs) in aquatic ecosystems is currently limited. This research endeavor sought to investigate the underlying molecular mechanisms by which engineered polystyrene-based microplastics (MPs)/nanoplastics (NPs) and CNFs, both individually and in combination, elicit toxic effects on an algal species Chlorella pyrenoidosa. The findings revealed that the combined toxicity of MPs/NPs and CNFs depended on the concentration of the mixture. As the concentration increased, the combined toxicity of MPs/NPs and CNFs was significantly greater than the toxicity of each component on its own. Furthermore, the combined toxicity of NPs and CNFs was higher than that of MPs and CNFs. The study integrated data on cell membrane integrity, oxidative stress, and antioxidant modulation to create an Integrated Biomarker Response index, which demonstrated that the co-exposure of algae to NPs and CNFs resulted in more severe cellular stress compared to exposure to NPs alone. Similarly, the combination of NPs and CNFs caused greater cellular stress than the combination of MPs and CNFs. Additionally, significant changes in the expression of stress-related genes caused by MPs/NPs alone and in combination with CNFs indicated that oxidative stress response, glucose metabolism, and energy metabolism played critical roles in particle-induced toxicity. Overall, this study provides the first insight into the toxicological mechanism of MPs/NPs and CNFs mixtures at the molecular level in freshwater microalgae.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
8
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Tseytlin IN, Antrim AK, Gong P. Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms. Toxins (Basel) 2024; 16:41. [PMID: 38251256 PMCID: PMC10819728 DOI: 10.3390/toxins16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
With the rapid advancement of nanotechnology and its widespread applications, increasing amounts of manufactured and natural nanoparticles (NPs) have been tested for their potential utilization in treating harmful cyanobacterial blooms (HCBs). NPs can be used as a photocatalyst, algaecide, adsorbent, flocculant, or coagulant. The primary mechanisms explored for NPs to mitigate HCBs include photocatalysis, metal ion-induced cytotoxicity, physical disruption of the cell membrane, light-shielding, flocculation/coagulation/sedimentation of cyanobacterial cells, and the removal of phosphorus (P) and cyanotoxins from bloom water by adsorption. As an emerging and promising chemical/physical approach for HCB mitigation, versatile NP-based technologies offer great advantages, such as being environmentally benign, cost-effective, highly efficient, recyclable, and adaptable. The challenges we face include cost reduction, scalability, and impacts on non-target species co-inhabiting in the same environment. Further efforts are required to scale up to real-world operations through developing more efficient, recoverable, reusable, and deployable NP-based lattices or materials that are adaptable to bloom events in different water bodies of different sizes, such as reservoirs, lakes, rivers, and marine environments.
Collapse
Affiliation(s)
- Ilana N. Tseytlin
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA;
- School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Anna K. Antrim
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| |
Collapse
|
10
|
Lu X, Wang Z. Individual and binary exposure of embryonic zebrafish (Danio rerio) to single-walled and multi-walled carbon nanotubes in the absence and presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166458. [PMID: 37625727 DOI: 10.1016/j.scitotenv.2023.166458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The available toxicological information was inadequate to assess the potential ecological risk of a mixture of different nanostructured carbon nanotubes (CNTs) to aquatic organisms, especially for the co-existence of mixed CNTs with dissolved organic matter (DOM). Herein, we investigated individual and binary exposure of zebrafish (Danio rerio) embryos to single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) in the absence and presence of DOM. Results indicated that embryonic chorions were more resistant to mixed-type CNTs than to single-type CNTs, yet the addition of DOM decreased this resistance. The mixed-type CNTs increased the antioxidant capacity of zebrafish embryos by increasing superoxide dismutase activity in comparison to the single-type CNTs. Furthermore, the mixed-type CNTs caused oxidative damage to the zebrafish embryos, characterized by an increase in malondialdehyde level. Nevertheless, the activation of the antioxidant defense system was modulated by the presence of DOM. Transcriptome sequencing analysis showed that the number of unique genes (UGs) and differentially expressed genes (DEGs) between the mixed-type CNTs and control groups was significantly enhanced compared to the single-type CNTs. DOM increased the number of UGs and up-regulated DEGs, but decreased the number of down-regulated DEGs. GO classification analysis revealed that the mixed-type CNTs mainly altered the cellular component process of single-type CNTs to induce joint effects. DOM generally enhanced the GO enrichment of DEGs in D. rerio embryos exposed to the mixed-type CNTs during the biological process. KEGG pathway enrichment analysis for the mixed-type CNTs showed enrichment of DEGs encoding ether lipid metabolism, glycerophospholipid metabolism, glycerolipid metabolism, citrate cycle, and biosynthesis of nucleotide sugars. However, DOM allowed more specific KEGG pathways towards the mixed-type CNTs to be identified. Despite the mixed-type CNTs exhibiting differential expression of functional genes compared to the control and single-type CNTs, DOM could regulate the expression of these functional genes associated with oxidative stress response, carbohydrate metabolism, endoplasmic reticulum stress, neuroendocrine, osmotic stress, and DNA damage and repair. Our study thus paves a solid way for exploring the molecular mechanism of aquatic toxicity of multiple nanomaterials under field-relevant conditions.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| |
Collapse
|
11
|
Liu Y, Kang M, Weng Y, Ding Y, Bai X. Toxicity and tolerance mechanism of binary zinc oxide nanoparticles and tetrabromobisphenol A regulated by humic acid in Chlorella vulgaris. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1615-1625. [PMID: 37581509 DOI: 10.1039/d3em00230f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Recent studies have reported that nanoparticles (NPs) released into the aquatic environment may interact with persistent organic pollutants such as brominated flame retardants, whereas the environmental processes and toxicological impacts induced by such binary NPs require further specification. This study investigated the ultrastructural damage of Chlorella vulgaris triggered by exposure to zinc oxide (ZnO) NPs, tetrabromobisphenol A (TBBPA), ZnO-TBBPA, and ZnO-TBBPA-humic acid (HA), clarified the uptake and distribution of ZnO NPs in cells, and explored the physiological toxicity and tolerance mechanism. The results demonstrated that ZnO NPs induced irregular morphology in algal cells, and the disruption of the cellular ultrastructure by binary ZnO-TBBPA was also extremely severe due to the excessive uptake of ZnO NPs, which resulted in strong oxidative stress responses. In particular, the accumulation of reactive oxygen species further exacerbated the reduction of total chlorophyll content and algal density. Moreover, the cluster heat map and correlation analysis revealed that superoxide dismutase activity played a critical role in alleviating lipid peroxidation damage and enhancing the tolerance of algal cells to the stress of binary ZnO NPs. More notably, the existence of HA intensified the dispersion stability of NP suspensions and significantly mitigated the synergistic toxicity of binary ZnO-TBBPA. This study provides new insights into the environmental behavior and biological impacts of binary NPs in the natural environment.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Yuanyuan Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
12
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Siqueira PR, Souza JP, Venturini FP, Carmo TLL, Azevedo VC, Estevão BM, Bonomo MM, Santos FA, Zucolotto V, Fernandes MN. rGO outperforms GO in generating oxidative stress and DNA strand breaks in zebrafish liver cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106640. [PMID: 37595501 DOI: 10.1016/j.aquatox.2023.106640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/20/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) are both widely applicable and there is a massive production throughout the world which imply in inevitable contamination in the aquatic environment by their wastes. Nevertheless, information about their interaction at the cellular level in fish is still scarce. We investigated the metabolic activity, reactive oxygen species (ROS) production, responses of antioxidant defenses, and total antioxidant capacity (TAC) as well as oxidative stress and DNA integrity in zebrafish liver cells (ZFL) exposed to (0.001, 0.01, 0.1 and 1 µg mL-1) of GO and rGO after two exposure period (24 and 72 h). Higher ROS production and no significant changes in the antioxidant defenses resulted in lipid peroxidation in cells exposed to rGO. Cells exposed to GO increased the activity of antioxidant defenses sustaining the TAC and avoiding lipid peroxidation. Comet assay showed that both, GO and rGO, caused DNA strand breaks after 24 h of exposure; however, only rGO caused DNA damage after 72 h of exposure. The exposure to rGO was significantly more harmful to ZFL cells than GO, even at very low concentrations. The cells showed a high capacity to neutralize ROS induced by GO preventing genotoxic effects and metabolic activity, thus sustaining cell viability. The time of exposure had different impacts for both nanomaterials, GO caused more changes in 24 h showing recovery after 72 h, while cells exposed to rGO were jeopardized at both exposure times. These results indicate that the reduction of GO by removal of the oxygen functional groups (rGO) increased toxicity leading to adverse effects in the cells, even at very low concentrations.
Collapse
Affiliation(s)
- Priscila Rodrigues Siqueira
- Postgraduate Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| | - Jaqueline Pérola Souza
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Francine Perri Venturini
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | | | | | - Bianca Martins Estevão
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Marina Marques Bonomo
- Postgraduate Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Fabrício Aparecido Santos
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Valtencir Zucolotto
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Postgraduate Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
14
|
Matos D, Almeida SFP, Marques PAAP, Pinto S, Figueira E. Effects of Graphene Oxide Nanosheets in Freshwater Biofilms. Molecules 2023; 28:4577. [PMID: 37375132 DOI: 10.3390/molecules28124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Graphene oxide (GO) properties make it a promising material for graphene-based applications in areas such as biomedicine, agriculture, and the environment. Thus, its production is expected to increase, reaching hundreds of tons every year. One GO final destination is freshwater bodies, possibly affecting the communities of these systems. To clarify the effect that GO may impose in freshwater communities, a fluvial biofilm scraped from submerged river stones was exposed to a range (0.1 to 20 mg/L) of GO concentrations during 96 h. With this approach, we hypothesized that GO can: (1) cause mechanical damage and morphological changes in cell biofilms; (2) interfere with the absorption of light by biofilms; (3) and generate oxidative stress, causing oxidative damage and inducing biochemical and physiological alterations. Our results showed that GO did not inflict mechanical damage. Instead, a positive effect is proposed, linked to the ability of GO to bind cations and increase the micronutrient availability to biofilms. High concentrations of GO increased photosynthetic pigment (chlorophyll a, b, and c, and carotenoids) content as a strategy to capture the available light more effectively as a response to the shading effect. A significant increase in the enzymatic (SOD and GSTs activity) and low molecular weight (lipids and carotenoids) antioxidant response was observed, that efficiently reduced oxidative stress effects, reducing the level of peroxidation, and preserving membrane integrity. Being complex entities, biofilms are more similar to environmental communities and may provide more accurate information to evaluate the impact of GO in aquatic systems.
Collapse
Affiliation(s)
- Diana Matos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Salomé F P Almeida
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula A A P Marques
- Department of Mechanics, University of Aveiro, 3810-193 Aveiro, Portugal
- TEMA, Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia Pinto
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Das S, Giri S, Wadhwa G, Pulimi M, Anand S, Chandrasekaran N, Johari SA, Rai PK, Mukherjee A. Comparative ecotoxicity of graphene, functionalized multi-walled CNTs, and their mixture in freshwater microalgae, Scenedesmus obliquus: analyzing the role of oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:70246-70259. [PMID: 37145361 DOI: 10.1007/s11356-023-27367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gaurav Wadhwa
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi, 110054, India
| | | | - Seyed Ali Johari
- Aquaculture Department, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi, 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
16
|
Wang Z, Yu L, Wang DG. Dissolved Organic Matter and Lignin Modulate Aquatic Toxicity and Oxidative Stress Response Activated by Layered Double Hydroxides Nanomaterials. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:413-425. [PMID: 36790502 DOI: 10.1007/s00244-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Advanced nanomaterials can be released into the environment and can coexist with natural organic matter (NOM). However, evidence on the impacts of NOM on the environmental behavior and toxicity of advanced nanomaterials is still scarce. Here, we investigated the behavior and toxic effects of two layered double hydroxides (LDHs) nanomaterials with different metallic constituents (Mg-Al-LDH and Zn-Al-LDH) at relatively low exposure concentrations on a freshwater green alga (Chlorella pyrenoidosa) in the absence and presence of two types of NOM, namely dissolved organic matter (DOM) and dealkaline lignin (DL). The DOM or DL interaction with the LDHs at different mixture levels was shown to be an antagonistic effect on the growth inhibition toxicity to C. pyrenoidosa mainly. The estimation of the index of Integrated Biological Responses version 2 indicated that the joint interaction of the LDHs with DOM or DL occurred in the following order of frequency synergism > antagonism > additivity. Furthermore, the physicochemical characteristics of LDHs were crucial for illuminating the mechanism by which the DOM or DL modified the LDH-induced oxidative stress response. These findings highlighted the important role of NOM in the behavior and effect of LDHs as a representative of a new class of multifunctional nanomaterials in the freshwater environment.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Le Yu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - De-Gao Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
17
|
An Insight into the Combined Toxicity of 3,4-Dichloroaniline with Two-Dimensional Nanomaterials: From Classical Mixture Theory to Structure-Activity Relationship. Int J Mol Sci 2023; 24:ijms24043723. [PMID: 36835146 PMCID: PMC9959308 DOI: 10.3390/ijms24043723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The assessment and prediction of the toxicity of engineered nanomaterials (NMs) present in mixtures is a challenging research issue. Herein, the toxicity of three advanced two-dimensional nanomaterials (TDNMs), in combination with an organic chemical (3,4-dichloroaniline, DCA) to two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa), was assessed and predicted not only from classical mixture theory but also from structure-activity relationships. The TDNMs included two layered double hydroxides (Mg-Al-LDH and Zn-Al-LDH) and a graphene nanoplatelet (GNP). The toxicity of DCA varied with the type and concentration of TDNMs, as well as the species. The combination of DCA and TDNMs exhibited additive, antagonistic, and synergistic effects. There is a linear relationship between the different levels (10, 50, and 90%) of effect concentrations and a Freundlich adsorption coefficient (KF) calculated by isotherm models and adsorption energy (Ea) obtained in molecular simulations, respectively. The prediction model incorporating both parameters KF and Ea had a higher predictive power for the combined toxicity than the classical mixture model. Our findings provide new insights for the development of strategies aimed at evaluating the ecotoxicological risk of NMs towards combined pollution situations.
Collapse
|
18
|
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159867. [PMID: 36334667 DOI: 10.1016/j.scitotenv.2022.159867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Broad application of nanotechnology inevitably results in the release of nanomaterials (NMs) into the aquatic environment, and the negative effects of NMs on aquatic organisms have received much attention. Notably, in the natural aquatic environment, ubiquitous ecological macromolecules (i.e., natural organic matter, extracellular polymeric substances, proteins, and metabolites) can easily adsorb onto the surfaces of NMs and form an "eco-corona". As most NMs have such an eco-corona modification, the properties of their eco-corona significantly determine the fate and ecotoxicity of NMs in the natural aquatic ecosystem. Therefore, it is of great importance to understand the role of the eco-corona to evaluate the environmental risks NMs pose. However, studies on the mechanism of eco-corona formation and its resulting nanotoxicity on aquatic organisms, especially at molecular levels, are rare. This review systemically summarizes the mechanisms of eco-corona formation by several typical ecological macromolecules. In addition, the similarities and differences in nanotoxicity between pristine and corona-coated NMs to aquatic organisms at different trophic levels were compared. Finally, recent findings about potential mechanisms on how NM coronas act on aquatic organisms are discussed, including cellular internalization, oxidative stress, and genotoxicity. The literature shows that 1) the formation of an eco-corona on NMs and its biological effect highly depend on both the composition and conformation of macromolecules; 2) both feeding behavior and body size of aquatic organisms at different trophic levels result in different responses to corona-coated NMs; 3) genotoxicity can be used as a promising biological endpoint for evaluating the role of eco-coronas in natural waters. This review provides informative insight for a better understanding of the role of eco-corona plays in the nanotoxicity of NMs to aquatic organisms which will aid the safe use of NMs.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Zhang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
19
|
Connolly M, Moles G, Carniel FC, Tretiach M, Caorsi G, Flahaut E, Soula B, Pinelli E, Gauthier L, Mouchet F, Navas JM. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NANOIMPACT 2023; 29:100447. [PMID: 36563784 DOI: 10.1016/j.impact.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tests using algae and/or cyanobacteria, invertebrates (crustaceans) and fish form the basic elements of an ecotoxicological assessment in a number of regulations, in particular for classification of a substance as hazardous or not to the aquatic environment according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS-CLP) (GHS, 2022) and the REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals, EC, 2006). Standardised test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) are available to address the regulatory relevant endpoints of growth inhibition in algae and cyanobacteria (TG 201), acute toxicity to invertebrates (TG 202), and acute toxicity in fish (TG 203). Applying these existing OECD TGs for testing two dimensional (2D) graphene nanoforms may require more attention, additional considerations and/or adaptations of the protocols, because graphene materials are often problematic to test due to their unique attributes. In this review a critical analysis of all existing studies and approaches to testing used has been performed in order to comment on the current state of the science on testing and the overall ecotoxicity of 2D graphene materials. Focusing on the specific tests and available guidance's, a complete evaluation of aquatic toxicity testing for hazard classification of 2D graphene materials, as well as the use of alternative tests in an integrated approach to testing and assessment, has been made. This information is essential to ensure future assessments generate meaningful data that will fulfil regulatory requirements for the safe use of this "wonder" material.
Collapse
Affiliation(s)
- M Connolly
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain.
| | - G Moles
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| | - F Candotto Carniel
- UNITS, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
| | - M Tretiach
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - G Caorsi
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - E Flahaut
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - B Soula
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - E Pinelli
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - L Gauthier
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - F Mouchet
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - J M Navas
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| |
Collapse
|
20
|
Wu J, Liu Q, Wang S, Sun J, Zhang T. Trends and prospects in graphene and its derivatives toxicity research: A bibliometric analysis. J Appl Toxicol 2023; 43:146-166. [PMID: 35929397 DOI: 10.1002/jat.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
The purpose of this paper is to explore the current research status, hot topics, and future prospects in the field of graphene and its derivatives toxicity. In the article, the Web of Science Core Collection database was used as the data source, and the CiteSpace and VOSviewer were used to conduct a visual analysis of the last 10 years of research on graphene and its derivatives toxicity. A total of 8573 articles were included, and we analyzed the literature characteristics of the research results in the field of graphene and its derivatives toxicity, as well as the distribution of authors and co-cited authors; the distribution of countries and institutions; the situation of co-cited references; and the distribution of journals and categories. The most prolific countries, institutions, journals, and authors are China, the Chinese Academy of Sciences, RSC Advances, and Wang, Dayong, respectively. The co-cited author with the most citations was Akhavan, Omid. The five research hotspot keywords in the field of graphene and its derivatives toxicity were "nanomaterials," "exposure," "biocompatibility," "adsorption," and "detection." Frontier topics were "facile synthesis," "antibacterial activity," and "carbon dots." Our study provides perspectives for the study of graphene and its derivatives toxicity and yields valuable information and suggestions for the development of graphene and its derivatives toxicity research in the future.
Collapse
Affiliation(s)
- Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jinfang Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15238-15250. [PMID: 36196869 PMCID: PMC9671040 DOI: 10.1021/acs.est.2c03333] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The rapid development of nanomaterials (NMs) and the emergence of new multicomponent NMs will inevitably lead to simultaneous exposure of organisms to multiple engineered nanoparticles (ENPs) at varying exposure levels. Understanding the joint impacts of multiple ENPs and predicting the toxicity of mixtures of ENPs are therefore evidently of importance. We reviewed the toxicity of mixtures of ENPs to a variety of different species, covering algae, bacteria, daphnia, fish, fungi, insects, and plants. Most studies used the independent-action (IA)-based model to assess the type of joint effects. Using co-occurrence networks, it was revealed that 53% of the cases with specific joint response showed antagonistic, 25% synergistic, and 22% additive effects. The combination of nCuO and nZnO exhibited the strongest interactions in each type of joint interaction. Compared with other species, plants exposed to multiple ENPs were more likely to experience antagonistic effects. The main factors influencing the joint response type of the mixtures were (1) the chemical composition of individual components in mixtures, (2) the stability of suspensions of mixed ENPs, (3) the type and trophic level of the individual organisms tested, (4) the biological level of organization (population, communities, ecosystems), (5) the exposure concentrations and time, (6) the endpoint of toxicity, and (7) the abiotic field conditions (e.g., pH, ionic strength, natural organic matter). This knowledge is critical in developing efficient strategies for the assessment of the hazards induced by combined exposure to multiple ENPs in complex environments. In addition, this knowledge of the joint effects of multiple ENPs assists in the effective prediction of hybrid NMs.
Collapse
Affiliation(s)
- Fan Zhang
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
| | - Zhuang Wang
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing210044, People’s Republic of China
| | - Willie J. G. M. Peijnenburg
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
- Centre
for Safety of Substances and Products, National
Institute of Public Health and the Environment (RIVM), Bilthoven3720 BA, The Netherlands
- Email for W.J.G.M.P.:
| | - Martina G. Vijver
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
| |
Collapse
|
22
|
Dai J, Feng H, Shi K, Ma X, Yan Y, Ye L, Xia Y. Electrochemical degradation of antibiotic enoxacin using a novel PbO 2 electrode with a graphene nanoplatelets inter-layer: Characteristics, efficiency and mechanism. CHEMOSPHERE 2022; 307:135833. [PMID: 35948101 DOI: 10.1016/j.chemosphere.2022.135833] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A novel PbO2 electrode was fabricated by adding graphene nanoplatelets (GNP) inter-layer into β-PbO2 active layer (called GNP-PbO2) and utilized to degradation of antibiotic enoxacin (ENO). The GNP-PbO2 electrode had a much rougher surface than the typical PbO2 electrode, with smaller crystal size and lower charge-transfer resistance at the electrode/electrolyte interface. Notably, the GNP inter-layer increased the oxygen evolution potential of PbO2 electrode (2.05 V vs. SCE), which was very beneficial to inhibit oxygen evolution and promote ·OH production. The relatively best operating parameters for ENO removal and energy efficiency were current density of 20 mA cm-2, initial pH of 7, initial ENO concentration of 100 mg L-1 and electrode distance of 4 cm. Furthermore, indirect radical oxidation was found to be the main way during electrolysis process. Based on the observed analysis of intermediate products, the main reaction pathways of ENO included hydroxylation, defluorination and piperazine ring-opening. Finally, combinating with the electro-oxidation capability, stability and safety evaluation, we can conclude that GNP-PbO2 is a promising anode for treatment of various organic pollutants in wastewater.
Collapse
Affiliation(s)
- Jingsong Dai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kefan Shi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ling Ye
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
23
|
Sun M, Ren Z, Wei T, Huang Y, Zhang X, Zheng Q, Qin T. Preparation, characterization and immune activity of Codonopsis pilosula polysaccharide loaded in chitosan-graphene oxide. Int J Biol Macromol 2022; 221:1466-1475. [PMID: 36070821 DOI: 10.1016/j.ijbiomac.2022.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the effects of chitosan graphene oxide Codonopsis pilosula polysaccharide (CS-GO-CPP) complex on the immune function of macrophage cells (RAW264.7). In this experiment, chitosan (CS) was combined with graphene oxide (GO) by electrostatic action to prepare CS-GO nanocomposites, and it was used as a carrier to load Codonopsis pilosula polysaccharide (CPP) onto CS-GO to prepare CS-GO-CPP. Using infrared spectroscopy detection, zeta potential detection, and thermogravimetric analysis, we conduct a preliminary analysis of the structure of CS-GO-CPP. Macrophages were employed to evaluate CS-GO-CPP immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. The results showed that compared with CPP, CS-GO-CPP did not change the basic structure of polysaccharide, and its thermal stability was improved. 0.78- 12.5 μg·mL-1 of CS-GO-CPP could significantly promote the phagocytic activity of RAW264.7 cells (P < 0.05) and significantly increase NO content, IL-4 and IFN-γ secretion, the expression of CD40, CD86, and F4/80 (P < 0.05). CS-GO-CPP might activate the NF-κB signaling pathway and induce the nuclear translocation of NF-κB p65. In conclusion, CS-GO-CPP has a capacity to activate RAW264.7 cells for an improvement of immunomodulation activities, which might be through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongyuan Huang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
24
|
Li X, Yan Y, Li X, Mu L, Zhao J, Yao M, Hu X. Humic acids alleviate the toxicity of reduced graphene oxide modified by nanosized palladium in microalgae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113794. [PMID: 35738107 DOI: 10.1016/j.ecoenv.2022.113794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown. In this study, reduced graphene oxide modified by nanosized Pd (Pd/rGO) was incubated with humic acid (HA) under light irradiation for 56 d to explore the effects of NOM on the physicochemical transformations (e.g., defects, surface charges and dispersity) and biological toxicity (e.g., growth inhibition, oxidative stress and ultrastructural damage on algae cells) of Pd/GFMs. The results revealed that HA increased the defects and dispersity of Pd/rGO. Growth inhibition, damage to cellular ultrastructures, and oxidative stress in microalgae cells were induced by Pd/rGO, and corresponding defense responses (e.g., superoxide dismutase, peroxidase and glutathione) were activated. HA diminished the above defense responses in microalgae triggered by Pd/rGO by regulating GSH metabolism and the alanine biosynthesis pathway. In the presence of HA, cell wall damage (i.e., hole formation) caused by exposure to Pd/rGO was restored, and the plasmolysis area was reduced by 28.6 %. In addition, growth inhibition, lipid peroxidation, loss of mitochondrial membrane potential and ROS formation induced by 1.0 mg/L MoS2NPs were decreased by 1.4-65.6 %, 13.9-26.1 %, 21.8-58.3 % and 9.6-16.1 %, respectively. These findings highlight the need to consider the effects of HA on the environmental transformation and biological toxicity of Pd/GFMs, which presents significant implications for the management of Pd/GFMs.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yan Yan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Agro-product Safety, Key Laboratory for Environmental Factor Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingqi Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
25
|
Zhao X, Yan J, Yang T, Xiong P, Zheng X, Lu Y, Jing K. Exploring engineering reduced graphene oxide-titanium dioxide (RGO-TiO 2) nanoparticles treatment to effectively enhance lutein biosynthesis with Chlorella sorokiniana F31 under different light intensity. BIORESOURCE TECHNOLOGY 2022; 348:126816. [PMID: 35134526 DOI: 10.1016/j.biortech.2022.126816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The Chlorella sorokiniana F31 is a promising lutein producer with high lutein content. Herein, different graphene/TiO2 nanoparticles (NPs) were designed and synthesized by hydrothermal method. Through the UV-vis diffuse reflectance spectra (DRS) analysis, the results showed that RGO-TiO2 NPs can effectively expand visible light absorption compared with TiO2 NPs. Subsequently, the effects of these NPs on light utilization and lutein accumulation of C. sorokiniana F31 were investigated, and the RGO-TiO2 NPs treatment exhibited the higher lutein production and content than that of TiO2 and control group. As the optimal RGO-TiO2 (0.5 wt%) NPs concentration of 50 mg/L and light intensity of 211 μmol/m2/s, the supreme lutein content (15.55 mg/g), production (77.2 mg/L) and productivity (12.87 mg/L/d) were achieved. The performances are higher than most of reported values in previous study, indicated that RGO-TiO2 (0.5 wt%) NPs treatment is a promised strategy to enhance microalgal growth and lutein accumulation.
Collapse
Affiliation(s)
- Xunrui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiangtao Yan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tongtong Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pan Xiong
- Department of Chemistry and Applied Chemistry, Changji University, Xinjiang 831100, China
| | - Xin Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| | - Keju Jing
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China.
| |
Collapse
|