1
|
Hou M, Li C, Zhang Y, Jia Y, Xu X, Shan S, Jiang W, Bahetibieke G, Ren L, Xiang Y. Phosphorylation-mediated cadmium and manganese selectivity uptake of SaNRAMP5 in nightshade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70058. [PMID: 40038192 DOI: 10.1111/tpj.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Identifying the selectivity of cadmium (Cd) and manganese (Mn) in transporters has long been a challenging scientific issue. Here, we identified the gene SaNRAMP5 from Solanum americanum, an orthologue of OsNRAMP5. SaNRAMP5 is predominantly expressed in root and localizes to the plasma membrane (PM). Knockout of SaNRAMP5 significantly reduced Cd accumulation in nightshade, while its overexpression in Arabidopsis increased Cd uptake in roots. Given the close relationship between nightshade and vegetables like potatoes, tomatoes, eggplants, and peppers, we compared the Cd absorption capabilities of NRAMP5 homologs in these species. Our results indicated that SaNRAMP5 exhibited a greater Cd uptake capacity than its homologs within the Solanaceae family. Interestingly, the Mn uptake capacities of these NRAMP5s varied independently of their Cd uptake capacities. Amino acid sequence analysis revealed that the N-terminal STNP residues, which mediate phosphorylation in SaNRAMP5, are crucial for the selective uptake of Cd and Mn. Mutating these STNP residues to a non-phosphorylatable form, SaNRAMP5(AANP), resulted in reduced Cd uptake without affecting Mn uptake. Conversely, StNRAMP5 and SlNRAMP5, which naturally lack STNP residues, demonstrated enhanced Cd uptake upon the introduction of STNP but not AANP. Notably, neither the introduction of STNP nor AANP affected their Mn uptake capacities. The reduced Cd uptake of SaNRAMP5(AANP) without compromising Mn uptake was attributed to alterations in PM localization due to continuous Cd exposure, rather than Mn exposure. Our findings provide novel insights into phosphorylation-mediated selective uptake of Cd and Mn, paving the way for engineering low-Cd crops without compromising yield.
Collapse
Affiliation(s)
- Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chunli Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Yuanbo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Yuxin Jia
- Key Laboratory for Potato Biology of Yunnan Province, the CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming, 650500, China
| | - Xinyi Xu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyao Shan
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wenhui Jiang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Gulinaer Bahetibieke
- Ili Kazakh Autonomous Prefecture institute of Agricultural Science, Yili, 835000, Xinjiang, China
| | - Lei Ren
- Ili Kazakh Autonomous Prefecture institute of Agricultural Science, Yili, 835000, Xinjiang, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
2
|
Zhu Y, Che R, Dong Z, Guo T, He X, Li J, Wang F. Metabolomics reveals the potential mechanism of La(III) promoting enrichment of Sodium hydrogen arsenate and Roxarsone in Solanum nigrum L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175990. [PMID: 39245378 DOI: 10.1016/j.scitotenv.2024.175990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The rare earth element lanthanum (La(III)) has been found to effectively enhance crop yields and improve plant growth and development. Arsenic (As), as a class of toxic metals widely found in the environment, poses a serious threat to both ecological and human health. Research on the application of La(III) in phytoremediation to enhance remediation efficiency is currently lacking. This study examined the impact of La(III) on physiological and biochemical indicators of Solanum nigrum L. (S. nigrum) exposed to Sodium hydrogen arsenate (SA) and Roxarsone (ROX) treatments under hydroponic conditions. Results indicated that La(III) treatment increased S. nigrum's aboveground As transport capacity by 58.68 %-213 % compared to no La(III) application. Additionally, foliar spraying of La(III) significantly inhibited the expression of toxic metabolites in the root system of S. nigrum, reducing Benzamide by 99.79 % under SA treatment and ZON by 87.72 % under ROX treatment. La(III) is likely to promote the transport of toxins and nutrients within and out of cells by activating ABC transporters, thereby enhancing S. nigrum's arsenic tolerance and metabolic activity. These findings provide molecular-scale insights into La(III) enhancement of the resilience of hyper-enriched plants and the remediation potential of contaminated sites.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xin He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
3
|
Wang R, Yang X, Chi Y, Zhang X, Ma X, Zhang D, Zhao T, Ren Y, Yang H, Ding W, Chu S, Zhou P. Regulation of hydrogen rich water on strawberry seedlings and root endophytic bacteria under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1497362. [PMID: 39640989 PMCID: PMC11617194 DOI: 10.3389/fpls.2024.1497362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Salt stress could lead to plant growth barriers and crop yield reduction. Strawberries are sensitive to salt stress, and improving salt tolerance is important for strawberry production. This study aimed to explore the potential of hydrogen-rich water (HRW) to enhance salt tolerance in strawberries. Through pot experiments, we investigated how HRW affects plant growth, ion absorption, osmotic stress, oxidative stress, antioxidant enzyme levels, hormone levels, and root endophytic bacteria in strawberry seedlings under salt stress. The results showed that under 100 mM NaCl treatment, 50% and 100% HRW treatments significantly increased strawberry biomass by 0.29 g and 0.54g, respectively, wherein, 100% HRW significantly increased the shoot and root length by 15.34% and 24.49%, respectively. In addition, under salt stress the absorption of K+ by strawberry seedlings was increased with the HRW supplement, while the absorption of Na+ was reduced. Meanwhile, HRW treatment reduced the transfer of Na+ from root to shoot. Furthermore, under salt stress, HRW treatment increased the relative water content (RWC) by 12.35%, decreased the electrolyte leakage rate (EL) by 7.56%. HRW modulated phytohormone levels in strawberry seedlings, thereby alleviating the salt stress on strawberries. Moreover, HRW was found to promote plant growth by altering the diversity of bacteria in strawberry roots and recruiting specific microorganisms, such as Tistella. Our findings indicate that HRW could help restore the microecological homeostasis of strawberry seedlings, thus further mitigating salt stress. This study provides a novel perspective on the mechanisms by which HRW alleviates salt stress, thereby enriching the scientific understanding of hydrogen's applications in agriculture.
Collapse
Affiliation(s)
- Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Ting Zhao
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Haiyan Yang
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| |
Collapse
|
4
|
Wang J, Chen X, Chu S, Hayat K, Chi Y, Liao X, Zhang H, Xie Y, Zhou P, Zhang D. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of solanum nigrum L. to cadmium stress. BMC PLANT BIOLOGY 2024; 24:567. [PMID: 38880885 PMCID: PMC11181532 DOI: 10.1186/s12870-024-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.
Collapse
Affiliation(s)
- Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
- Guizhou University, Guiyang, 550025, China
| | - Hongliang Zhang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Yuangui Xie
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China.
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
He D, Guo T, Dong Z, Li J, Wang F. Rare earth elements applied to phytoremediation: Enhanced endocytosis promotes remediation of antimony contamination with different valence levels in Solanum nigrum L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172253. [PMID: 38599400 DOI: 10.1016/j.scitotenv.2024.172253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Antimony (Sb) pollution poses a noteworthy risk to human health and ecosystem sustainability, therefore effective, eco-friendly, and widely accepted restoration methods are urgently needed. This study introduces a new approach of using La(III) foliar application on Solanum nigrum L. (S. nigrum), a cadmium hyperaccumulator, to improve its photosynthetic and root systems under Sb stress, resulting in a higher biomass. Notably, La(III) also enhances endocytosis in root cells, facilitating efficient and non-selective remediation of both Sb(III) and Sb(V) forms. The absorption of Sb by root cell endocytosis was observed visually with a confocal laser scanning microscope. The subcellular distribution of Sb in the cell wall of S. nigrum is reduced. And the antioxidant enzyme activity system is improved, resulting in an enhanced Sb tolerance in S. nigrum. Based on the existing bibliometric analysis, this paper identified optimal conditions for S. nigrum to achieve maximum translocation and bioconcentration factor values for Sb. The foliar application of La(III) on plants treated with Sb(III), Sb(V), and a combination of both resulted in translocation factor values of 0.89, 1.2, 1.13 and bioconcentration factor values of 11.3, 12.81, 14.54, respectively. Our work suggests that La(III)-enhanced endocytosis of S. nigrum root cells is a promising remediation strategy for Sb-contaminated environments.
Collapse
Affiliation(s)
- Ding He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Ting Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Zhongtian Dong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
6
|
Rehman A, Rahman SU, Li P, Shah IH, Manzoor MA, Azam M, Cao J, Malik MS, Jeridi M, Ahmad N, Alabbosh KF, Liu Q, Khalid M, Niu Q. Modulating plant-soil microcosm with green synthesized ZnONPs in arsenic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134130. [PMID: 38555668 DOI: 10.1016/j.jhazmat.2024.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.
Collapse
Affiliation(s)
- Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Qunlu Liu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Wang R, Xu Z, Chen S, Su J, Huang Y, Hu Y. Tradeoffs between pH, dissolved organic carbon, and mineral ions regulate cadmium uptake by Solanum hyperaccumulators in calcareous soil. ENVIRONMENTAL RESEARCH 2024; 248:118393. [PMID: 38309564 DOI: 10.1016/j.envres.2024.118393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Soil solution pH and dissolved organic carbon (DOC) influence cadmium (Cd) uptake by hyperaccumulators but their tradeoff in calcareous soils is unclear. This study investigated the mechanisms of Solanum nigrum L. and Solanum alatum Moench in calcareous soil using a combination of concentration gradient experiments (0.6-100 mg Cd kg-1) and soil solution composition analysis. The results showed that the soil solution pH of S. nigrum remained stable despite Cd stress. On average, the soil solution pH of S. alatum was 0.23 units higher than that of S. nigrum, although pH decreased significantly under high Cd stress. In addition, the concentrations of potassium (K) and calcium (Ca) in the soil solution of S. nigrum increased and decreased under low and high levels of Cd stress, respectively. In S. alatum, the K and Ca concentrations in the soil solution generally increased with increasing Cd stress levels. Moreover, the level of DOC in the soil solution of both plants was higher under Cd stress compared to the control, and a gradually increasing trend with Cd stress level was observed in S. alatum. Consequently, the bioconcentration factors of the roots (2.62-19.35) and shoots (1.20-9.59) of both plants were >1, while the translocation factors were <1, showing an obstacle of Solanum hyperaccumulators in transferring Cd into their aboveground parts. Redundancy analysis revealed that the Cd concentration in S. nigrum roots was significantly negatively correlated with the soil solutions of K and Ca. In contrast, Cd concentrations in S. alatum roots and shoots were significantly positively correlated with soil solution DOC, K, and Ca but negatively correlated with pH. Our results suggest that calcareous soil neutralizes the acidity of released protons but does not affect cation exchange, inhibiting DOC in assisting the translocation of Cd within plants.
Collapse
Affiliation(s)
- Rui Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Chen
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yu Huang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
9
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Li X, Liang LM, Hua ZB, Zhou XK, Huang Y, Zhou JH, Cao Y, Liu JJ, Liu T, Mo MH. Eco-friendly management of Meloidogyne incognita in cadmium-contaminated soil by using nematophagous fungus Purpureocillium lavendulum YMF1.683: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2024; 244:117930. [PMID: 38103771 DOI: 10.1016/j.envres.2023.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Zhi-Bin Hua
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xin-Kui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jin-Hua Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer, 650202, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Liu J, Wang L, Lin J, Yuan W, Li L, Peng YK, Xiong X, Cao H, Wei X, Ouyang Q, Lippold H, Wang J, Lin K. Applying thallium isotopic compositions as novel and sensitive proxy for Tl(I)/Tl(III) transformation and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169542. [PMID: 38141990 DOI: 10.1016/j.scitotenv.2023.169542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Thallium is a rare metal known for its highly toxic nature. Recent research has indicated that the precise determination of Tl isotopic compositions using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP MS) provides new opportunities for understanding Tl geochemical behavior. While isotopic fractionation of Tl derived from anthropogenic activities (e.g., mining, smelting) have been reported, there is limited information regarding Tl influenced by both natural weathering processes and anthropogenic origins. Herein, we investigated, for the first time, the Tl isotopic compositions in soils across a representative Tl-rich depth profile from the Lanmuchang (LMC) quicksilver mine (southwest China) in the low-temperature metallogenesis zone. The results showed significant variations in Tl isotope signatures (ε205Tl) among different soil layers, ranging from -0.23 to 3.79, with heavier isotope-205Tl enrichment observed in the bottom layers of the profile (ε205Tl = 2.18-3.79). This enrichment of 205Tl was not solely correlated with the degree of soil weathering but was also partially associated with oxidation of Tl(I) by Fe (hydr)oxide minerals. Quantitative calculation using ε205Tl vs. 1/Tl data further indicated that the Tl enrichment across the soil depth profile was predominantly derived from anthropogenic origins. All these findings highlight that the robustness and reliability of Tl isotopes as a proxy for identifying both anthropogenic and geogenic sources, as well as tracing chemical alterations and redox-controlled mineralogical processes of Tl in soils. The nascent application of Tl isotopes herein not only offers valuable insights into the behavior of Tl in surface environments, but also establishes a framework for source apportionment in soils under similar circumstances.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingfen Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xinni Xiong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Huimin Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qi'en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) Institut für Ressourcenökologie Forschungsstelle, Leipzig, Germany
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|
12
|
Cao X, Chen Q, Xu L, Zhao R, Li T, Ci L. The intrinsic and extrinsic mechanisms regulated by functional carbon nanodots for the phytoremediation of multi-metal pollution in soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132646. [PMID: 37837777 DOI: 10.1016/j.jhazmat.2023.132646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/24/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Functional carbon nanodots (FCNs) were currently demonstrated to regulate plant behavior in the agricultural and environmental areas. However, their regulation mechanisms on the interactions of plant-soil system during phytoremediation remain unrevealed. Here, Solanum nigrum L. was employed to explore the intrinsic and extrinsic mechanisms regulated by FCNs in the phytoremediation of Cd-Pb co-contaminated soils. The mediation of FCNs on metal removal and plant growth showed a hormesis manner, wherein the maximum induction effect was contributed by 15 mg kg-1 FCNs. Cd/Pb removal were enhanced by 8.5% and 31.6%, respectively. Moreover, FCNs reallocate metal distribution in plant by immobilized metals in roots and suppressed metal translocation to leaves. Improving plant growth (by 82.8% for root), stimulating plant hormesis, and activating plant detoxification pathways are the intrinsic mechanism for the phytoremediation smartly regulated by FCNs. Notably, FCNs induced soil enzyme activities that associated with soil nutrients recycling, up-regulated the microbial diversity and the soil immune system, and regulated S. nigrum L. to recruit beneficial microbials in the rhizosphere. The above-mentioned comprehensive improvement of soil micro-environment is the extrinsic mechanism regulated by FCNs. This study provides new insights to evaluate the interactions of nanomaterials with plant-soil system under soil contamination.
Collapse
Affiliation(s)
- Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Liang Xu
- Shandong Taixing Advanced Material Co., LTD., Shandong Energy Group, Jinan 250204, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China.
| |
Collapse
|
13
|
Sevak P, Pushkar B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119504. [PMID: 37956515 DOI: 10.1016/j.jenvman.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Arsenic pollution and its allied impacts on health are widely reported and have gained global attention in the last few decades. Although the natural distribution of arsenic is limited, anthropogenic activities have increased its mobility to distant locations, thereby increasing the number of people affected by arsenic pollution. Arsenic has a complex biogeochemical cycle which has a significant role in pollution. Therefore, this review paper has comprehensively analysed the biogeochemical cycle of arsenic which can dictate the occurrence of arsenic pollution. Considering the toxicity and nature of arsenic, the present work has also analysed the current status of arsenic pollution around the world. It is noted that the south of Asia, West-central Africa, west of Europe and Latin America are major hot spots of arsenic pollution. Bibliometric analysis was performed by using scopus database with specific search for keywords such as arsenic pollution, health hazards to obtain the relevant data. Scopus database was searched for the period of 20 years from year 2003-2023 and total of 1839 articles were finally selected for further analysis using VOS viewer. Bibliometric analysis of arsenic pollution and its health hazards has revealed that arsenic pollution is primarily caused by anthropogenic sources and the key sources of arsenic exposure are drinking water, sea food and agricultural produces. Arsenic pollution was found to be associated with severe health hazards such as cancer and other health issues. Thus considering the severity of the issue, few sustainable remediation technologies such as adsorption using microbes, biological waste material, nanomaterial, constructed wetland, phytoremediation and microorganism bioremediation are proposed for treating arsenic pollution. These approaches are environmentally friendly and highly sustainable, thus making them suitable for the current scenario of environmental crisis.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| |
Collapse
|
14
|
Sadeghi J, Lakzian A, Halajnia A, Alikhani M. Effects of fungal carbon dots application on growth characteristics and cadmium uptake in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108102. [PMID: 39492165 DOI: 10.1016/j.plaphy.2023.108102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
The advancement of nanotechnology has led to the increased use of nanomaterials for the purpose of restoring contaminated soils. However, so far no research has been reported on the interactions of carbon dots with heavy metals (loid)s in phytoremediation. The purpose of this study was to investigate the effect of a new carbon dots derived from fungal exopolysaccharide (EPSs) on the growth and cadmium uptake in maize plants. This research was carried out using a completely randomized design with three replications in a greenhouse condition. Treatments included control, carbon dots (150 mg kg-1), cadmium (50 mg kg-1) and cadmium + carbon dots (50 mg kg-1+150 mg kg-1). The carbon dots synthesized by hydrothermal method from EPSs. The results showed that shoot dry weight and chlorophyll content of maize increased 9.7% and 23.2% in the presence of carbon dots, respectively. Carbon dots improved the chlorophyll content of maize by 24.3% in the cadmium treatment. Cadmium concentration increased (106%) in maize shoot but it decreased in root maize (68%). Carbon dots caused an increase of 5.7 and 6.7 times in the transfer factor and phytoremediation rate of cadmium, respectively. The presence of carbon dots triggered an increase of 77.9% and 39.9% of dissolved organic carbon in non-contaminated and cadmium-contaminated soils, respectively. Soil microbial biomass carbon increased 54.9% and 24.1% carbon dots and cadmium + carbon dots treatments, respectively. The study demonstrates the potential of fungal carbon dots for phytoremediation of heavy metal (loid)s contaminated soils. It also highlights the potential of nanotechnology in environmental remediation efforts.
Collapse
Affiliation(s)
- Jalal Sadeghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Amir Lakzian
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran.
| | - Akram Halajnia
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Mina Alikhani
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| |
Collapse
|
15
|
Ju C, Wang L, You Y, Ma F. NaCl-mediated strategies for the trade-off between Cd bioconcentration and translocation in Solanum nigrum L. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132075. [PMID: 37478593 DOI: 10.1016/j.jhazmat.2023.132075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Salt interference significantly affects the behavior of heavy metals in the environment. This study compared and analyzed the response process, migration, and transformation of cadmium (Cd) in the hyperaccumulator Solanum nigrum (S. nigrum) under different NaCl levels to reveal the interference mechanisms of salt in plant remediation of Cd-contaminated soil. The results showed that Cd and salt stress significantly inhibited the growth of plants. The stress effect had more potent growth inhibition at the root than aboveground, thus inducing changes in the spatial configuration of the plants (decreased root-to-aboveground biomass ratio). Salt could activate Cd in plants, enhancing the inhibitory effect on plant growth. Salt increased Cd bioavailability due to the rhizosphere acidification effect, increasing plants' Cd accumulation. The Cd bioconcentration factor in plant roots peaked during the high Cd-high salt treatment (117.10), but the Cd accumulation of plants peaked during the high Cd-low salt treatment (233.04 μg plant-1). Salt additions and increased Cd concentrations enhanced root compartmentalization, inhibiting Cd transport to the aboveground. Changes in Fourier-transform infrared spectroscopy (FTIR) measurements confirmed that the functional groups in plants provided binding sites for Cd. These findings can help guide the phytoremediation of Cd contamination under saline soil conditions.
Collapse
Affiliation(s)
- Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, People's Republic of China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, People's Republic of China.
| | - Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, People's Republic of China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, People's Republic of China
| |
Collapse
|
16
|
Rather MA, Bhuyan S, Chowdhury R, Sarma R, Roy S, Neog PR. Nanoremediation strategies to address environmental problems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163998. [PMID: 37172832 DOI: 10.1016/j.scitotenv.2023.163998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Ratan Chowdhury
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Rahul Sarma
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Subham Roy
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
17
|
Liu J, Yuan W, Ouyang Q, Bao Z, Xiao J, Xiong X, Cao H, Zhong Q, Wan Y, Wei X, Zhang Y, Xiao T, Wang J. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163404. [PMID: 37059145 DOI: 10.1016/j.scitotenv.2023.163404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Jun Xiao
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an 710061, China
| | - Xinni Xiong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huimin Cao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Yongqi Zhang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Chen X, Chu S, Chi Y, Wang J, Wang R, You Y, Hayat K, Khalid M, Zhang D, Zhou P, Jiang J. Unraveling the role of multi-walled carbon nanotubes in a corn-soil system: Plant growth, oxidative stress and heavy metal(loid)s behavior. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107802. [PMID: 37269820 DOI: 10.1016/j.plaphy.2023.107802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
In the age of nanotechnological advancement, carbon nanotubes (CNTs) are drawing global attention. However, few studies have been published on the crop growth responses to CNTs in heavy metal(loid)s contaminated environments. A pot experiment was conducted to assess the effect of multi-walled carbon nanotubes (MWCNTs) on plant development, oxidative stress, and heavy metal(loid)s behavior in a corn-soil system. Corn (Zea mays L.) seedlings were cultivated in soil containing Cadmium (Cd) and Arsenic (As) that had been primed with 0, 100, 500, and 1000 mg kg-1 MWCNTs. The application of 100 and 500 mg kg-1 MWCNTs improved shoot length by 6.45% and 9.21% after 45 days, respectively. Total plant dry biomass increased by 14.71% when treated with 500 mg kg-1 MWCNTs but decreased by 9.26% when exposed to 1000 mg kg-1 MWCNTs. MWCNTs treatment did not affect Cd accumulation in plants. On the other hand, the bio-concentration factor of As was inversely associated with plant growth (p < 0.05), which was declined in MWCNTs treatments. Oxidative stress was aggravated when plants were exposed to MWCNTs, thus activating the antioxidant enzymes system in the corn. In contrast, TCLP-extractable Cd and As in soil significantly decreased than in the control. Additionally, the soil nutrients were changed under MWCNTs treatments. Our findings also revealed that a particular concentration of MWCNTs can mitigate the toxicity of Cd and As in corn seedlings. Therefore, these results suggest the prospective application of CNTs in agricultural production, ensuring environmental and soil sustainability.
Collapse
Affiliation(s)
- Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Juncai Wang
- Guizhou Academy of Sciences, Guiyang, 550001, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yimin You
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, 130118, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
19
|
He D, Guo T, Peng C, Li J, Wang F. Foliar application of lanthanum promotes growth and phytoremediation potential Solanum nigrum L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117259. [PMID: 36764191 DOI: 10.1016/j.jenvman.2023.117259] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The hormetic effect of rare earth elements (REEs) has been found in a variety of crops and has been promoting crop growth for decades. Spraying leaves with REEs can enhance the endocytosis of plant roots. The non-selectivity of endocytosis is conducive to the direct absorption of environmental pollutants. The hyperaccumulator Solanum nigrum L. (S. nigrum), as a plant with high biomass and heavy metal tolerance, is a good candidate for phytoremediation. La(III), as a typical light REE, also has an obvious hormetic effect on S. nigrum. At 10 μM La(III), the biomass of S. nigrum reached the maximum, which was 89% greater than the control, and La(III) concentration was much lower than the previously reported optimum of 56 μM for general plants. In the present study, enhanced endocytosis after foliar spraying of La(III) was firstly observed in the root cell of hyperaccumulation plants, and La(III) increased the biomass of S. nigrum by improving the photosynthetic system, and promoting nutrient uptake and root development. The antioxidant defense system improved by La(III) contributed to the tolerance of S. nigrum to heavy metals. Applying a reasonable range of La(III) is beneficial to improving S. nigrum growth and tolerance of heavy metals. Compared with spraying deionized water, the translocation factor and bioaccumulation factor value of S. nigrum to cadmium increased by 15% and 21% respectively when spraying 10 μM La(III). Our findings provide a reference for improving hyperaccumulator plant growth and biomass, which improves phytoremediation efficiency.
Collapse
Affiliation(s)
- Ding He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Chunqing Peng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
20
|
Priya AK, Muruganandam M, Ali SS, Kornaros M. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. TOXICS 2023; 11:toxics11050422. [PMID: 37235237 DOI: 10.3390/toxics11050422] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Pollution from heavy metals is one of the significant environmental concerns facing the world today. Human activities, such as mining, farming, and manufacturing plant operations, can allow them access to the environment. Heavy metals polluting soil can harm crops, change the food chain, and endanger human health. Thus, the overarching goal for humans and the environment should be the avoidance of soil contamination by heavy metals. Heavy metals persistently present in the soil can be absorbed by plant tissues, enter the biosphere, and accumulate in the trophic levels of the food chain. The removal of heavy metals from contaminated soil can be accomplished using various physical, synthetic, and natural remediation techniques (both in situ and ex situ). The most controllable (affordable and eco-friendly) method among these is phytoremediation. The removal of heavy metal defilements can be accomplished using phytoremediation techniques, including phytoextraction, phytovolatilization, phytostabilization, and phytofiltration. The bioavailability of heavy metals in soil and the biomass of plants are the two main factors affecting how effectively phytoremediation works. The focus in phytoremediation and phytomining is on new metal hyperaccumulators with high efficiency. Subsequently, this study comprehensively examines different frameworks and biotechnological techniques available for eliminating heavy metals according to environmental guidelines, underscoring the difficulties and limitations of phytoremediation and its potential application in the clean-up of other harmful pollutants. Additionally, we share in-depth experience of safe removing the plants used in phytoremediation-a factor frequently overlooked when choosing plants to remove heavy metals in contaminated conditions.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Muthiah Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus-Rio, 26504 Patras, Greece
| |
Collapse
|
21
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
22
|
Chi Y, You Y, Wang J, Chen X, Chu S, Wang R, Zhang X, Yin S, Zhang D, Zhou P. Two plant growth-promoting bacterial Bacillus strains possess different mechanisms in affecting cadmium uptake and detoxification of Solanum nigrum L. CHEMOSPHERE 2022; 305:135488. [PMID: 35764116 DOI: 10.1016/j.chemosphere.2022.135488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/22/2023]
Abstract
Microorganisms affect cadmium (Cd) extraction by hyperaccumulators to varying degrees, but the potential mechanism has not been completely studied. Here, two plant growth-promoting bacteria (PGPB, Bacillus paranthracis NT1 and Bacillus megaterium NCT-2) were assessed for their influence on Cd uptake by Solanum nigrum L. and their influence mechanisms. The results showed that both two strains could regulate phytohormones secretion, alleviate oxidative stress and promote S. nigrum growth when exposed to Cd (dry weight was significantly increased by 21.51% (strain NCT-2) and 21.23% (strain NT1) compared with the control, respectively). Additionally, strain NCT-2 significantly elevated the translocation factor (TF) and bioconcentration factor (BCF), and thus significantly facilitated total Cd uptake by 41.80% of S. nigrum, whereas strain NT1 significantly reduced the BCF and TF, resulting in insignificant effect on total Cd uptake of S. nigrum compared with the control. Results of qPCR illustrated that the two strains influenced the detoxification of Cd in S. nigrum by affecting the expression of antioxidant enzyme genes and gene PDR2. Moreover, the differential expression of heavy metal transport genes IRT1 and HMA may lead to the difference of Cd accumulation in S. nigrum. Principal component analysis and Pearson correlation coefficient analysis further verified the positive roles of salicylic acid and indole-3-acetic acid on Cd detoxification of S. nigrum, and the positive correlation relationship between transportation of Cd from underground to shoot, plant biomass and Cd uptake. Altogether, our results demonstrated that these two PGPB have great potential in helping plants detoxify Cd and could provide insights into the mechanism of PGPB-assisted phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
23
|
Deng X, Liu R, Hou L. Promotion effect of graphene on phytoremediation of Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74319-74334. [PMID: 35635663 DOI: 10.1007/s11356-022-20765-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Echinacea purpurea (L.) Moench was selected as a remediation plant in this study, and different concentrations of graphene oxide (GO) were added to Cd-contaminated soil. Through pot experiments, the effect of E. purpurea on Cd-contaminated soil was determined at 60 days, 120 days, and 150 days. A preliminary study on the remediation mechanism of GO was explored through changes in the forms of Cd in the rhizosphere soil, soil pH, and soil functional groups. Results showed that the optimal concentration of GO was 0.4 g/kg, and under the condition, the accumulation of Cd in the roots of E. purpurea was as high as 113.69 ± 23.86 mg/kg, and the maximum EF reached 5.87 ± 1.34. Compared with those of the control group, accumulated Cd concentration and EF in the roots increased by 60.34% and 2.32, respectively. Correlation analysis showed that the absorption and accumulation of Cd was negatively correlated with the exchangeable Cd content at 120 days, and the exchangeable Cd was negatively correlated with the relative content of functional groups in the soil with 0.4 g/kg GO (E2). The artificial application of GO to the soil can be used as an effective way to improve the effect of E. purpurea in the remediation of Cd soil pollution, and it has great application potential in the stabilization of plants and vegetations and restoration of high-concentration Cd-contaminated soil.
Collapse
Affiliation(s)
- Xingyu Deng
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Rui Liu
- Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Liqun Hou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 100016, China
| |
Collapse
|
24
|
Qing B, Jiang Y, Chen Y, Chen J, Xie H, Mo Z. Nitrogen modulates early growth and physio-biochemical attributes in fragrant rice grown under cadmium and multiwall carbon nanotubes stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67837-67855. [PMID: 35524851 DOI: 10.1007/s11356-022-20432-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) modulates plant growth, but its impact on the early growth and physio-biochemical characteristics of rice under cadmium (Cd) and multiwall carbon nanotubes (MWCNTs) toxicity has received little attention. In this study, a hydroponic experiment was conducted on two fragrant rice cultivars, e.g., Xiangyaxiangzhan (XYXZ) and Yuxiangyouzhan (YXYZ), grown under two N levels (N and 1/4 N) and various Cd and MWCNTs treatments (CK: without CdCl2 or MWCNTs; Cd: 100 μmol L-1 CdCl2; MWCNTs: 100 mg L-1 MWCNTs; and Cd-MWCNTs: 100 μmol L-1 CdCl2 + 100 mg L-1 MWCNTs). Results showed that when compared to CK, the total dry weight of the Cd and MWCNTs treatments did not change under 1/4 N for both varieties, whereas Cd and Cd-MWCNTs treatments resulted in a significant reduction in total dry weight by 18.78-37.85% for XYXZ and the Cd-MWCNTs treatment resulted in a significant reduction in the total dry weight by 20.24% for YXYZ. The changes in total dry weight were linked to changes in the dry weight of the different parts of the plant. Besides, the antioxidant parameters and the enzymes involved in the nitrogen metabolism changed in different varieties and different plant parts under two N levels and various Cd and MWCNTs treatments. In addition, differences in total dry weight changes at the N levels and various Cd and MWCNTs treatments were identified between the two varieties, and the relations between total dry weight and other investigated parameters indicated that the modulation processes varied between varieties. Overall, N modulates the early growth and physio-biochemical attributes in fragrant rice seedlings under Cd, MWCNTs, and their combined toxicity.
Collapse
Affiliation(s)
- Bowen Qing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiale Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Huijia Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Wang Q, Feng X, Liu Y, Cui W, Sun Y, Zhang S, Wang F. Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128826. [PMID: 35381513 DOI: 10.1016/j.jhazmat.2022.128826] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
A 100-day soil incubation experiment was conducted to explore the effects of conventional (high-density polyethylene, HDPE) and biodegradable (polylactic acid, PLA) microplastics (MPs) and multiwall carbon nanotubes (MWCNTs) on soil geochemical properties and bacterial communities. Generally, soil pH was increased by 10% HDPE and 10% PLA, but decreased by increasing MWCNTs. Soil dissolved organic carbon content was only increased by 10% PLA. NO3--N content was significantly decreased by MPs, with a decrement of 99% by 10% PLA. Similarly, available P content was reduced by 10% MPs. The activities of urease and alkaline phosphatase were stimulated by 10% PLA, but generally inhibited by HDPE. Conversely, FDAse activity was stimulated by HDPE, but inhibited by 10% PLA, whereas invertase activity decreased with increasing MWCNTs. Overall, both MPs and MWCNTs changed soil bacterial diversity. Co-exposure to 10% MPs and MWCNTs of 1 and 10 mg/kg caused the lowest species richness and Shannon indexes. MPs especially at the 10% dose changed bacterial community composition and the associated metabolic pathways, causing the enrichment of specific taxa and functional genes. Our findings show that conventional and biodegradable MPs differently change soil geochemical properties and microbial community structure and functions, which can be further modified by co-existing MWCNTs.
Collapse
Affiliation(s)
- Quanlong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Xueying Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
26
|
Leroy M, Pey B, Jassey VEJ, Liné C, Elger A, Probst A, Flahaut E, Silvestre J, Larue C. Interactive effects of metals and carbon nanotubes in a microcosm agrosystem. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128613. [PMID: 35359102 DOI: 10.1016/j.jhazmat.2022.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).
Collapse
Affiliation(s)
- Mathieu Leroy
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Benjamin Pey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Vincent E J Jassey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Clarisse Liné
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Arnaud Elger
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Anne Probst
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jérôme Silvestre
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Camille Larue
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
27
|
Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. CHEMOSPHERE 2022; 291:132979. [PMID: 34801572 DOI: 10.1016/j.chemosphere.2021.132979] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Phytoremediation is an effective, green and economical technique. Different types of phytoremediation methods can be used for the reduction of heavy metal contaminations, such as phytoextraction, phytovolatilization, phytostabilization and phytofiltration. The biomass of plants and the bioavailability of heavy metals in soil are the key factors affecting the efficiency of phytoremediation. It's worth noting that the low remediation efficiency and the lack of effective disposal methods for contaminated biomass have limited its development and application. At present, biological, physical, chemical, agronomic and genetic approaches have been used to enhance phytoremediation. Disposal methods of contaminated biomass usually include pyrolysis, incineration, composting and compaction. They are effective, but are costly and have security problems. Improper disposal of contaminated biomass can lead to leaching of heavy metals. The leaching possibility of different forms of heavy metal in plants is different. Hence, it has great significance to explore the different forms of heavy metals in plants which can help to explore appropriate disposal methods. According to the challenges of phytoremediation, we put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.
Collapse
Affiliation(s)
- Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiawei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Lin Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
28
|
Chen X, Wang J, You Y, Wang R, Chu S, Chi Y, Hayat K, Hui N, Liu X, Zhang D, Zhou P. When nanoparticle and microbes meet: The effect of multi-walled carbon nanotubes on microbial community and nutrient cycling in hyperaccumulator system. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126947. [PMID: 34481400 DOI: 10.1016/j.jhazmat.2021.126947] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanotubes can potentially stimulate phytoremediation of heavy metal contaminated soil by promoting plant biomass and root growth. Yet, the regulating mechanism of carbon nanotubes on the rhizosphere microenvironment and their potential ecological risks remain poorly characterized. The purpose of this study was to systematically evaluate the effects of multi-walled carbon nanotubes (MCNT) on the diversity and structure of rhizosphere soil bacterial and fungal communities, as well as soil enzyme activities and nutrients, in Solanum nigrum L. (S. nigrum)-soil system. Here, S. nigrum were cultivated in heavy metal(loid)s contaminated soils applied with MCNT (100, 500, and 1000 mg kg-1 by concentration, none MCNT addition as control) for 60 days. Our results demonstrated more significant urease, sucrase, and acid phosphatase activities in MCNT than in control soils, which benefit to promoting plant growth. Also, there were significant reductions in available nitrogen and available potassium contents with the treatment of MCNT, while the organic carbon and available phosphorus were not affected by MCNT application. Notably, the alpha diversity of bacterial and fungal communities in the MCNT treatments did not significantly vary relative to control. However, the soil microbial taxonomic compositions were changed under the application of MCNT. Compared to the control, MCNT application increased the relative abundances of the Micrococcaceae family, Solirubrobacteraceae family, and Conexibacter genus, which were positively correlated with plant growth. In addition, the non-metric multidimensional scaling (NMDS) analysis revealed that the community structure of bacterial and fungal communities did not significantly change among all the treatments, and bacterial community structure was significantly correlated with soil organic carbon. At the same time, sucrase activity had the highest relation to fungal community structure. This study highlighted soil microbes have strong resistance and adaptation ability to carbon nanotubes with existence of plants, and revealed linkage between the rhizosphere microenvironment and plant growth, which well improved our understanding of carbon nanotubes in heavy metal phytoremediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinxin Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|