1
|
Zhao Y, Zou K, Meng X, Shen L, Qiu G, Wang Y, Zhao H. Study on bioleaching methods and microbial-mineral interaction of ion-adsorption type rare earth ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125422. [PMID: 40252422 DOI: 10.1016/j.jenvman.2025.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Rare earth elements (REEs) are non-renewable strategic resources that are highly important for national security and development. However, the efficient and environmentally friendly mining and utilization of REEs face major challenges. Bioleaching is a clean process with the potential to replace environmentally hazardous chemical extraction methods. The present study investigated the effects of three bioleaching methods by Aspergillus niger on the extraction of ion-adsorption rare earth ore. In addition, the interaction between strain and minerals was explored by combining various characterization methods (XRD, FT-IR, Raman and SEM-EDS) and untargeted metabolomics. These findings indicated that the three-step bioleaching method was the most effective. Aspergillus niger leaches REEs through both direct action of the strain and indirect action of metabolites without destroying the mineral structure. Direct leaching (one-step and two-step methods) has been demonstrated to affect the cell morphology and structure of Aspergillus niger. Furthermore, Aspergillus niger had a certain adsorption capacity for REEs. Metabolomics analysis revealed that Aspergillus niger exhibited a regulatory response to environmental stresses during direct bioleaching, modulating tryptophan metabolism (one-step method) and the biosynthesis of secondary metabolites (two-step method). Bioleaching enables the recovery of REEs through environmentally friendly (readily biodegradable and non-toxic) metabolites produced by microbial growth, providing a green pathway for the sustainable mining of ion-adsorption rare earth ores.
Collapse
Affiliation(s)
- Yu Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Kui Zou
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Xiaoyu Meng
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Li Shen
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Guanzhou Qiu
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Yunyan Wang
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hongbo Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
2
|
Liang Y, Gao B, Zhang X, Yi H, Li J, Zhang W. Combined addition of γ-PGA and DCD facilitates phytoremediation of heavy metals and carbon sequestration: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124746. [PMID: 40054352 DOI: 10.1016/j.jenvman.2025.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
A field study examined the impact of γ-polyglutamic acid (γ-PGA), both alone and in combination with dicyandiamide (DCD), on the phytoremediation of soil contaminated with Cd, Pb, and Zn. This study focused on the heavy metal (HM) accumulation, and soil CO2 and N2O emissions in Cosmos sulphureus and Pennisetum americanum × P. purpureum, and soil microbial communities. The findings indicated that the application of γ-PGA, either alone or in combination with DCD, increased plant yield and HM bioavailability in the soil, leading to improved HM uptake by plants. For P. americanum × P. purpureum, compared to CK treatment, the combined addition of γ-PGA and DCD increased the Cd, Pb, and Zn extraction by 131.4%, 80.6%, and 99.7%, respectively. Compared to γ-PGA alone, the combined addition of γ-PGA and DCD reduced the soil N2O emission and global warming potential by 26.4% and 39.1%, respectively. P. americanum × P. purpureum treated with γ-PGA and DCD achieved C sequestration of 829 kg ha-1. Moreover, the application of γ-PGA, alone or in combination with DCD, increased the abundance of soil microbes. Bacteria (Proteobacteria, Actinobacteriota, and Firmicutes) as well as fungi (Basidiomycota and Mortierellomycota) contributed to HM accumulation and resistance to stress by altering soil enzyme activities, C and N fractions. Additionally, Acidobacteriota and Patescibacteria are beneficial to reducing soil GHG emissions and GWP in P. americanum × P. purpureum soil treated with γ-PGA and DCD. In conclusion, P. americanum × P. purpureum with the combined addition of γ-PGA and DCD increased HM extraction and total C sequestration in the plant-soil system. This approach offers a scientific basis and promising approach for integrating phytoremediation with C sequestration.
Collapse
Affiliation(s)
- Yexi Liang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China.
| | - Haifeng Yi
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Junjiang Li
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Wenying Zhang
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
3
|
Mai X, Tang J, Tang J, Zhu X, Yang Z, Liu X, Zhuang X, Feng G, Tang L. Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil. J Environ Sci (China) 2025; 149:1-20. [PMID: 39181626 DOI: 10.1016/j.jes.2024.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Controlling heavy metal pollution in agricultural soil has been a significant challenge. These heavy metals seriously threaten the surrounding ecological environment and human health. The effective assessment and remediation of heavy metals in agricultural soils are crucial. These two aspects support each other, forming a close and complete decision-making chain. Therefore, this review systematically summarizes the distribution characteristics of soil heavy metal pollution, the correlation between soil and crop heavy metal contents, the presence pattern and migration and transformation mode of heavy metals in the soil-crop system. The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined, which provides important guidance for an in-depth understanding of the characteristics of heavy metal pollution in farmland soils and the assessment of the environmental risk. Soil remediation strategies involve multiple physical, chemical, biological and even combined technologies, and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils. Finally, the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected. This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
Collapse
Affiliation(s)
- Xurui Mai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Juexuan Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xinyue Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhenhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xi Liu
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Xiaojie Zhuang
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Guang Feng
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
4
|
Menhas S, Hayat K, Lin D, Shahid M, Bundschuh J, Zhu S, Hayat S, Liu W. Citric acid-driven cadmium uptake and growth promotion mechanisms in Brassica napus. CHEMOSPHERE 2024; 368:143716. [PMID: 39515533 DOI: 10.1016/j.chemosphere.2024.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.5 mM) on Brassica napus grown in Cd-contaminated (30 mg kg-1) growth medium through a controlled pot experiment. Cd exposure alone significantly impaired various plant physiological parameters in B. napus. Whereas CA application significantly (p < 0.05) enhanced physiological attributes, Cd detoxification and tolerance by modulating key genes involved in photosynthesis and Cd transport, including the metal-transporting P1B-type ATPases (Cd/zinc heavy metal-transporting ATPase 1; HMA1) and light-harvesting chlorophyll a/b-binding 3 (LHCB3). Notably, CA application increased Cd accumulation in stems and leaves by 4% and 35%, respectively, enhancing bioconcentration factors (BCF) by 12% in stems and 40% in leaves while reducing root BCF by 10%. This translocation was facilitated by the upregulation of HMA4, HMA2, and plant Cd resistance (PCR2) genes in plant leaves, improving Cd mobility within the plant. Furthermore, CA induced a 34% increase in phytochelatins and a 32% upregulation in metallothioneins, accompanied by a significant reduction in oxidative stress markers, including a 40% decrease in hydrogen peroxide and a 44% decline in malondialdehyde levels in leaves. Enhanced antioxidant enzyme activity and osmolyte accumulation further contributed to improved Cd detoxification/sequestration in leaves, reduced oxidative stress, and improved photosynthetic efficiency, resulting in enhanced plant biomass production and Cd tolerance. Transcriptomic analysis showed that CA treatment substantially influenced the expression of 12,291 differentially expressed genes (DEGs), with 750 common genes consistently downregulated in CK vs Cd treatment group but upregulated in Cd vs Cd-CA treatment group. Additionally, CA modulated 11 DEGs associated with 32 gene ontologies in the citrate pathway under Cd stress, highlighting its targeted regulatory effect on metabolic pathways involved in Cd stress response. This study offers novel insights into the synergistic role of CA in promoting plant growth and regulating Cd uptake in B. napus, highlighting its potential to enhance phytoremediation strategies.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Kashif Hayat
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Daohui Lin
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia; Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia
| | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Sikandar Hayat
- College of Medicine, Xian International University, Xian, 710000, Shaanxi, PR China
| | - Weiping Liu
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China
| |
Collapse
|
5
|
Zhu X, Ju W, Beiyuan J, Chao H, Zhang Z, Chen L, Cui Q, Qiu T, Zhang W, Huang M, Shen Y, Fang L. Bacterial consortium amendment effectively reduces Pb/Cd bioavailability in soil and their accumulation in wheat. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122789. [PMID: 39369534 DOI: 10.1016/j.jenvman.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Microbial remediation can maintain the sustainability of farmlands contaminated with heavy metals (HMs). However, the effects of bacterial consortium on crop growth and potential risks under HM stress, as well as its mechanisms, are still unclear compared with a single microorganism. Here, we investigated the effect of a bacterial consortium consisting of some HMs-resistant bacteria, including Bacillus cereus, Bacillus thuringiensis, and Herbaspirillum huttiense, on plant growth promotion and inhibition of Pb/Cd accumulation within different contaminated soil-wheat systems through pot experiments. The results showed that microbial inoculation alleviated HMs-induced growth inhibition by activating antioxidant enzymes and inhibiting lipid peroxidation, and enhanced plant growth in the bacterial consortium. Compared to a single strain (Bacillus cereus, Bacillus thuringiensis, or Herbaspirillum huttiense), the bacterial consortium was more conducive to improving root development and reducing the content of available HMs in soil (4.5-10.3%) and its transfer to shoot (4.3-8.4%). Moreover, bacterial consortium significantly increased soil enzyme activities and available nutrients, resulting in nearly twice that of a single strain on the effect of soil quality and plant growth. Correlation analysis and least square path analysis showed that the bacterial consortium could significantly reduce the HMs-enrichment/transport from soil to shoot than a single strain by regulating soil available HMs and biochemical properties, as well as the parameters for plant growth. This study emphasizes that bacterial consortium promotes the growth of the crop wheat and reduces the risk of HMs entering human food chain, further providing an effective strategy for the safe production of food crops in contaminated soils.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Materials Engineering, Shanxi College of Technology, Shuozhou, 036000, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Huang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
6
|
Chi Y, Ma X, Zhang X, Wang R, Zhang D, Chu S, Zhao T, Zhou P, Zhang D. Plant growth promoting endophyte modulates soil ecological characteristics during the enhancement process of cadmium phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122206. [PMID: 39197342 DOI: 10.1016/j.jenvman.2024.122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024]
Abstract
Endophyte assisted phytoremediation of cadmium (Cd) contaminated soil represents a promising strategy. However, the precise soil ecological regulatory mechanisms by which endophyte enhance the Cd phytoextraction remain unclear. Here, we employed the plant growth promoting endophyte (PGPE) Pseudomonas sp. E3, which has been validated to effectively enhance Cd extraction in Solanum nigrum L., to investigate its regulatory mechanism on soil ecology. The results demonstrated that while PGPE inoculation resulted in minimal alterations to the physicochemical properties of the bulk soil, it led to a notable increase in acid phosphatase activity by 17.86% and urease activity by 24.85% in the rhizosphere soil. This, in turn, significantly raised the available nitrogen and phosphorus contents by 16.93% and 21.27%, respectively, in the rhizosphere soil. Additionally, PGPE inoculation effectively replenished the bioavailable fractions of Fe and Cd, which had been depleted due to root uptake. Importantly, the inoculation specifically augmented the abundance of biomarkers p_Patescibacteria, f_Saccharimonadales, and g_Saccharimonadales in the rhizosphere soil. These biomarkers exhibited a significant positive correlation with the available nutrient and metal element contents. Moreover, the co-occurrence network analysis demonstrated that the inoculation resulted in a simplified bacterial community network, which may have facilitated community synergism by displacing bacteria with a negative association. This regulation appears to occur independently of PGPE colonization. Overall, our findings suggested that PGPE also exerts a regulatory influence on soil ecological features, significantly aiding hyperaccumulators in nutrient acquisition and heavy metal accumulation.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ting Zhao
- Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Takada S, Yamagishi Y, Tanaka YK, Anan Y, Nagasawa S, Iwase H, Ogra Y. Identification of Tellurium Metabolite in Broccoli Using Complementary Analyses of Inorganic and Organic Mass Spectrometry. Chem Res Toxicol 2024; 37:1210-1217. [PMID: 38855932 DOI: 10.1021/acs.chemrestox.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tellurium (Te) is a chalcogen element like sulfur and selenium. Although it is unclear whether Te is an essential nutrient in organisms, unique Te metabolic pathways have been uncovered. We have previously reported that an unknown Te metabolite (UKTe) was observed in plants exposed to tellurate, a highly toxic Te oxyanion, by liquid chromatography-inductively coupled plasma mass spectrometer (LC-ICP-MS). In the present study, we detected UKTe in tellurate-exposed broccoli (Brassica oleracea var. italica) by LC-ICP-MS and identified it as gluconic acid-3-tellurate (GA-3Te) using electrospray ionization mass spectrometer with quadrupole-Orbitrap detector and tandem MS analysis, the high-sensitivity and high-resolution mass spectrometry for organic compounds. We also found that GA-3Te was produced from one gluconic acid and one tellurate molecule by direct complexation in an aqueous solution. GA-3Te was significantly less toxic than tellurate on plant growth. This study is the first to identify the Te metabolite GA-3Te in plants and will contribute to the investigation of tellurate detoxification pathways. Moreover, gluconic acid, a natural and biodegradable organic compound, is expected to be applicable to eco-friendly remediation strategies for tellurate contamination.
Collapse
Affiliation(s)
- Shohei Takada
- Graduate School of Medical and Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yoshikazu Yamagishi
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumi Anan
- Faculty of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi, Kumamoto 862-8502, Japan
| | - Sayaka Nagasawa
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Hirotaro Iwase
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
8
|
Xu L, Dai H, Wei S, Skuza L, Shi J. High-efficiency combination washing agents with eco-friendliness simultaneously removing Cd, Cu and Ni from soil of e-waste recycling site: A lab-scale experiment. CHEMOSPHERE 2024; 357:142047. [PMID: 38621485 DOI: 10.1016/j.chemosphere.2024.142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Soil washing technology plays an important role in the removal of heavy metals, and the efficacy of this process depends on the washing agent used. Due to the difficulty in treating soils contaminated by multiple heavy metals, there is still a need for further exploration of efficient washing agents with low environmental impact. Although single washing agents, such as chelators, can also effectively remove heavy metals from soil, combining efficient washing agents and determining their optimal washing conditions can effectively improve their removal efficiency for multiple heavy metals in soil simultaneously. Based on the previous research, the present study was carried out to combine different types of washing agents to remediate contaminated soils at a commonly e-waste recycling site. The objectives were to investigate their efficient washing conditions and assess the impact of the washing process on the speciation distribution and pollution level associated with heavy metals in soil. The results showed that the combination of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and FeCl3 at a ratio of 6:4 exhibited the most effective removal of Cd, Cu and Ni from the contaminated soil at an e-waste recycling site. Under optimal washing conditions, with a soil-to-liquid ratio of 1:20 and a washing time of 48 h, the removal rates of Cd, Cu and Ni were 96.72%, 69.91% and 76.08%, respectively. It needed to be emphasized that the combination washing agents were able to remove most of the acid-soluble, reducible and oxidizable fractions of heavy metals, and even the removal rates of the stable residual fraction (e.g., of Cd) was at a relatively high level. In addition, the washing process significantly reduced the pollution level associated with heavy metals in soil. This study aid in the development of combined efficient washing agents and explores optimal washing strategies for the remediation of Cd, Cu, and Ni-contaminated soil at e-waste recycling sites. The findings may play a role in enhancing the remediation capabilities for soils contaminated with multiple heavy metals, due to its characteristics of and high-efficiency and environmental friendliness.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-Resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built by Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Ding S, Liang Y, Wang M, Hu R, Song Z, Xu X, Zheng L, Shen Z, Chen C. Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134110. [PMID: 38522194 DOI: 10.1016/j.jhazmat.2024.134110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Novel combination strategies of nanomaterials (NMs) and plant growth-promoting bacteria (PGPB) may facilitate soil remediation and plant growth. However, the efficiency of the NM-PGPB combination and interactions among NMs, PGPB, and plants are still largely unknown. We used multiwalled carbon nanotubes (MWCNTs) and zero-valent iron (nZVI) combined with Bacillus sp. PGP5 to enhance the phytoremediation efficiency of Solanum nigrum on heavy metal (HM)-contaminated soil. The NM-PGPB combination showed the best promoting effect on plant growth, which also had synergistic effects on the bioaccumulation of HMs in S. nigrum. The MWCNT-PGP5 combination increased the Cd, Pb, and Zn removal efficiency of S. nigrum by 62.03%, 69.44%, and 61.31%, respectively. The underlining causes of improved plant growth and phytoremediation by NMs-PGPB combination were further elucidated. NM application promoted PGPB survival in soil. Compared with each single application, the combined application minimized disturbance to plant transcription levels and rhizosphere microbial community, resulting in the best performance on soil remediation and plant growth. The NM-PGPB-induced changes in the microbial community and root gene expression were necessary for plant growth promotion. This work reveals the "less is more" advantage of the NM-PGPB combination in soil remediation, providing a new strategy for soil management.
Collapse
Affiliation(s)
- Shifeng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinping Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingshuo Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoning Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Wang R, Xu Z, Chen S, Su J, Huang Y, Hu Y. Tradeoffs between pH, dissolved organic carbon, and mineral ions regulate cadmium uptake by Solanum hyperaccumulators in calcareous soil. ENVIRONMENTAL RESEARCH 2024; 248:118393. [PMID: 38309564 DOI: 10.1016/j.envres.2024.118393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Soil solution pH and dissolved organic carbon (DOC) influence cadmium (Cd) uptake by hyperaccumulators but their tradeoff in calcareous soils is unclear. This study investigated the mechanisms of Solanum nigrum L. and Solanum alatum Moench in calcareous soil using a combination of concentration gradient experiments (0.6-100 mg Cd kg-1) and soil solution composition analysis. The results showed that the soil solution pH of S. nigrum remained stable despite Cd stress. On average, the soil solution pH of S. alatum was 0.23 units higher than that of S. nigrum, although pH decreased significantly under high Cd stress. In addition, the concentrations of potassium (K) and calcium (Ca) in the soil solution of S. nigrum increased and decreased under low and high levels of Cd stress, respectively. In S. alatum, the K and Ca concentrations in the soil solution generally increased with increasing Cd stress levels. Moreover, the level of DOC in the soil solution of both plants was higher under Cd stress compared to the control, and a gradually increasing trend with Cd stress level was observed in S. alatum. Consequently, the bioconcentration factors of the roots (2.62-19.35) and shoots (1.20-9.59) of both plants were >1, while the translocation factors were <1, showing an obstacle of Solanum hyperaccumulators in transferring Cd into their aboveground parts. Redundancy analysis revealed that the Cd concentration in S. nigrum roots was significantly negatively correlated with the soil solutions of K and Ca. In contrast, Cd concentrations in S. alatum roots and shoots were significantly positively correlated with soil solution DOC, K, and Ca but negatively correlated with pH. Our results suggest that calcareous soil neutralizes the acidity of released protons but does not affect cation exchange, inhibiting DOC in assisting the translocation of Cd within plants.
Collapse
Affiliation(s)
- Rui Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Chen
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yu Huang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Mu X, Li B, Liu W, Qiao Y, Huang C, Yang Y, Zhang M, Wang X, Liu Y, Yin Y, Wang K. Responses and resistance capacity of Solanum nigrum L. mediated by three ecological category earthworms in metal-[Cd-As-Cu-Pb]-contaminated soils of North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171427. [PMID: 38432362 DOI: 10.1016/j.scitotenv.2024.171427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Earthworms play vital functions affecting plant growth and metal accumulation from downground to aboveground. Soil metal mobilization may be combined with use of earthworm and hyperaccumulator-Solanum nigrum to improve its remediation efficiency. Understanding the effects of specific-species earthworm belonging to different ecological categories on mechanisms underlying of S. nigrum is critical for metal-polluted remediation. However, seldom studies concerned earthworm-assisted phytoremediation of metal contaminated soil in Northern China. This study investigated the effects of earthworm (Eisenia fetida, Amynthas hupeiensis and Drawida gisti) on S. nigrum with exposure to uncontaminated and [Cd-As-Cu-Pb]-contaminated soil (referred to as S0 and S1) for 60 days, respectively. In S1 soil, A. hupeiensis (anecic) had stronger effects on growth and metal accumulation in the organs (root, stem, and leaf) of S. nigrum than D. gisti (endogeic) and E. fetida (epigeic), attributing to their ecological category. The BAF values of S. nigrum were generally ranking in Cd (0.66-5.13) > As (0.03-1.85) > Cu (0.03-0.06) > Pb (0.01-0.05); the BAFCd values were ranking in leaf (2.34-5.13) > root (1.96-4.14) > stem (0.66-1.33); BAFAs, BAFCu, and BAFPb were root (0.04-1.63) > stem (0.01-0.09) ≈ leaf (0.01-0.06). A. hupeiensis decreased the TF values of S. nigrum from the roots to the shoots. Co-effects of metal stress and earthworm activity on metal uptake by shoots suggested that A. hupeiensis increased the uptake of As, Cu, and Pb (by 56.3 %, 51.5 %, and 16.2 %, p < 0.05), but not Cd, which appeared to remain steady for prolonged durations. Alterations in the integrated biomarker response index version 2 (IBRv2) values demonstrated that A. hupeiensis (12.65) improved the resistance capacity (stimulated GSH, SnGS1, and SnCu-SOD) of S. nigrum under metal-containing conditions, compared with E. fetida and D. gisti (IBRv2 were 9.61 and 9.11). This study may provide insights into the patterns of 'soil-earthworm-plant system' on improving remediation efficiency of S. nigrum, from the perspective of earthworm ecological niche partitioning.
Collapse
Affiliation(s)
- Xiaoquan Mu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Caide Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Menghan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Xinru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Yanan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Yue Yin
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
| | - Kun Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
12
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
13
|
Song J, Chen Y, Mi H, Xu R, Zhang W, Wang C, Rensing C, Wang Y. Prevalence of antibiotic and metal resistance genes in phytoremediated cadmium and zinc contaminated soil assisted by chitosan and Trichoderma harzianum. ENVIRONMENT INTERNATIONAL 2024; 183:108394. [PMID: 38128385 DOI: 10.1016/j.envint.2023.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Heavy metal in soil have been shown to be toxic with high concentrations and acts as selective pressure on both bacterial metal and antibiotic resistance determinants, posing a serious risk to public health. In cadmium (Cd) and zinc (Zn) contaminated soil, chitosan (Chi) and Trichoderma harzianum (Tri) were applied alone and in combination to assist phytoremediation by Amaranthus hypochondriacus L. Prevalence of antibiotic and metal resistance genes (ARGs and MRGs) in the soil was also evaluated using metagenomic approach. Results indicated that the phytoremediation of Cd and Zn contaminated soil was promoted by Chi, and Tri further reinforced this effect, along with the increased availability of Cd and Zn in soil. Meanwhile, combination of Chi and Tri enhanced the prevalence of ARGs (e.g., multidrug and β-lactam resistance genes) and maintained a high level of MRGs (e.g., chromium, copper) in soil. Soil available Zn and Cd fractions were the main factors contributing to ARGs profile by co-selection, while boosted bacterial hosts (e.g., Mitsuaria, Solirubrobacter, Ramlibacter) contributed to prevalence of most MRGs (e.g., Cd). These findings indicate the potential risk of ARGs and MRGs propagation in phytoremediation of metal contaminated soils assisted by organic and biological agents.
Collapse
Affiliation(s)
- Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, Xi'an 710000, Shaanxi, PR China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, Xi'an 710000, Shaanxi, PR China.
| | - Huizi Mi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Risheng Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, Xi'an 710000, Shaanxi, PR China
| | - Wenshuang Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Chao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, Xi'an 710000, Shaanxi, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, Xi'an 710000, Shaanxi, PR China
| |
Collapse
|
14
|
Manzoor M, Shafiq M, Gul I, Kamboh UR, Guan DX, Ali Alazba A, Tomforde S, Arshad M. Enhanced lead phytoextraction and soil health restoration through exogenous supply of organic ligands: Geochemical modeling". JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119435. [PMID: 37890401 DOI: 10.1016/j.jenvman.2023.119435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Phytoremediation of lead (Pb) contaminated soil is a green technology to reduce Pb exposure and root exudates-derived organic acids play a vital role in this treatment process. In this study, Pb hyperaccumulator Pelargonium hortorum was chosen to investigate root-induced organic acid secretions and their subsequent role in Pb phytoextraction. In the first step, root exudation of P. hortorum was investigated in hydroponic experiments (0.2X Hoagland solution) under control and Pb stress conditions. Possible chemical interactions between Pb and the observed root exudates were then analyzed using Visual MINTEQ modeling. In the next step, the effects of the exogenous application of organic acids on Pb phytoextraction and soil enzymatic activities were studied in a pot experimental setup. Results indicated significant exudation of malic acid > citric acid > oxalic acid > tartaric acid in root exudates of P. hortorum under 50 mg L-1 Pb. Visual MINTEQ modeling results revealed that organic acids directly affect Pb dissolution in the nutrient solution by modulation of solution pH. Experimental results revealed that malic acid and citric acid significantly increased available Pb contents (7.2- and 6.7-folds) in the soil with 1500 mg kg-1 Pb contamination. Whereas, in shoot and root, the highest increase in Pb concentration was observed with citric acid (2.01-fold) and malic (3.75-fold) supplements, respectively. Overall, Pb uptake was notably higher when malic acid was applied (2.8-fold) compared to other organic acids, followed by citric acid (2.7-fold). In the case of soil enzymatic activities, oxalic acid significantly improved dehydrogenase, alkaline phosphatase, and microbial biomass by 1.6-, 1.4- and 1.3-folds, respectively. The organic acids were successful in reviving enzyme activity in Pb-contaminated soil, and might thus be used for long-term soil regeneration.
Collapse
Affiliation(s)
- Maria Manzoor
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan; Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universit, 24118, Kiel, Germany; College of Environmental and Resource Sciences, Zhejiang University, China.
| | - Muhammad Shafiq
- Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Iram Gul
- Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan
| | - Usman Rauf Kamboh
- The Intelligent System Group at Christian-Albrechts-Universit at zu Kiel, Germany
| | - Dong-Xing Guan
- College of Environmental and Resource Sciences, Zhejiang University, China
| | - Abdulrahman Ali Alazba
- Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Sven Tomforde
- The Intelligent System Group at Christian-Albrechts-Universit at zu Kiel, Germany
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
15
|
Sur IM, Hegyi A, Micle V, Gabor T, Lăzărescu AV. Influence of the Extraction Solution on the Removal of Heavy Metals from Polluted Soils. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6189. [PMID: 37763466 PMCID: PMC10532594 DOI: 10.3390/ma16186189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Soil pollution with heavy metals is a problem for the whole geosystem. The aim of the research is to identify new solutions for extracting heavy metals from polluted soils so that they can be further exploited. To this end, investigations of the physicochemical characteristics of the soil sample under study were carried out. Following the analyses, the soil was characterised as lute-coarse sand (UG) with a strongly acidic pH (4.67), a hygroscopicity coefficient (CH = 4.8% g/g), and a good supply of nutrients: nitrogen (Nt): 0.107%; mobile phosphorus (PAL): 6 mg kg-1 and mobile potassium (KAL): 26 mg kg-1, but is low in humus (2.12%). The metal content of the soil was determined by atomic absorption spectrometry (AAS), and the analyses showed high concentrations of metals (Pb: 27,660 mg kg-1; Cu: 5590 mg kg-1; Zn: 2199 mg kg-1; Cd: 11.68 mg kg-1; Cr: 146 mg kg-1). The removal of metals (Pb, Cu, Zn, Cd, and Cr) from polluted soil by different extraction agents (water, humus, malic acid, chitosan, and gluconic acid) was investigated. Metal extraction experiments were carried out in a continuous orbital rotation-oscillation stirrer at a solid/liquid/ (S/L ratio; g:mL) of 1:4, at two concentrations of extraction solution (1% and 3%), and at different stirring times (2, 4, 6, and 8 h). The yield of the extraction process is very low for all proposed extraction solutions. The maximum values of extraction efficiency are: 0.5% (Pb); 3.28% (Zn); and 5.72% (Cu). Higher values were obtained in the case of Cr (11.97%) in the variant of using humus 3% as an extraction solution at a stirring time of 6 h. In the investigated experimental conditions, the best removal efficiencies were obtained in the case of cadmium (26.71%) when using a 3% malic acid solution. In conclusion, it is considered that, from case to case, the type of extraction solution as well as the nature of the metal influence the mechanism of the depollution process, i.e., the capacity of the fine soil granules to free themselves from the pollutant metal that has adhered to them, and further research is considered necessary in the future.
Collapse
Affiliation(s)
- Ioana Monica Sur
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
| | - Andreea Hegyi
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
| | - Valer Micle
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
| | - Timea Gabor
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
| | | |
Collapse
|
16
|
Huang J, Ye J, Gao W, Liu C, Price GW, Li Y, Wang Y. Tea biochar-immobilized Ralstonia Bcul-1 increases nitrate nitrogen content and reduces the bioavailability of cadmium and chromium in a fertilized vegetable soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161381. [PMID: 36621509 DOI: 10.1016/j.scitotenv.2022.161381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Pyrolytic biochar (PL-BC, pyrochar) and hydrothermal biochar (HT-BC, hydrochar) derived from branches and leaves of tea plants had different pH, electrical conductivity (EC), total carbon nitrogen content, BET surface area, total pore volume, average pore diameter, and functional groups. HT-BC had a larger specific surface area and more functional groups than PL-BC. Ralstonia Bcul-1 (R-B) was the dominant and functional bacteria in a fertilized vegetable soil supplemented with TBB-immobilized R-B (TBB + R-B). R-B vitality was more closely related to BET surface area, total pore volume, and functional groups of tea-based biochar (TBB: PL-BC and HT-BC). R-B was able to maintain high oxidase activity. R-B and TBB + R-B can increase the activities of urease and peroxidase in vegetable soil playing an essential role in the biotransformation of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N). TBB was able to simultaneously increase the content of NO3--N and NH4+-N, and TBB + R-B also significantly increased NO3--N content but decreased NH4+-N content in a fertilized vegetable soil. These results indicated that R-B promoted nitrification in the soil, i.e. conversion of NH4+-N into NO3--N, by enhancing the activities of urease and peroxidase. R-B had high adsorption capacity for cadmium (Cd) and chromium (Cr) (Cd&Cr: Cd and Cr). Moreover, TBB + R-B was able to convert weak acid extractable and reducible Cd&Cr into a more stable residual fraction and oxidizable Cd&Cr. The overall effect of the treatments was to reduce plant uptake of Cd&Cr by cabbage. TBB + R-B significantly promoted R-B growth, changed inorganic nitrogen speciation, increased NO3--N supply, reduced Cd&Cr bioavailability, and decreased plant tissue Cd&Cr content.
Collapse
Affiliation(s)
- Jiaqing Huang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Jing Ye
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Wenhui Gao
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Cenwei Liu
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - G W Price
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Yanchun Li
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Yixiang Wang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China.
| |
Collapse
|
17
|
Shi X, Wang S, He W, Wang Y. Lead accumulation and biochemical responses in Rhus chinensis Mill to the addition of organic acids in lead contaminated soils. RSC Adv 2023; 13:4211-4221. [PMID: 36760272 PMCID: PMC9892687 DOI: 10.1039/d2ra07466d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Adding organic acid is an effective approach to assist phytoremediation. The effects of organic acids on phytoremediation efficiency are unknown in Rhus chinensis. This study aimed to evaluate the effect of citric acid (CA) and oxalic acid (OA) on the lead phytoremediation potential of R. chinensis with significantly inhibited growth in Pb-contaminated soil. The experimental pot culture study evaluated the long-term physiological response and metal accumulation patterns of R. chinensis grown in varying Pb-treated soil, and examined the effects of 0.5 and 1.0 mmol L-1 CA and OA on the growth, oxidative stress, antioxidant system, and Pb subcellular distribution of R. chinensis grown in pots with 1000 mg kg-1 Pb. Compared with the control, the biomass, leaf area, root morphological parameters, and chlorophyll concentration of R. chinensis decreased, whereas the carotenoid, malondialdehyde, H2O2, and O2˙- concentrations, and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity increased under Pb stress. A copious amount of Pb was taken up and mainly stored in the cell walls of the roots. The application of CA and OA increased plant growth. The highest shoots and roots biomass increase recorded was 44.4 and 61.2% in 1.0 mmol L-1 OA and 0.5 mmol L-1 CA treatment, respectively. The presence of CA and OA increased SOD, POD, and CAT activities and decreased the H2O2, O2˙- and malondialdehyde content. A concentration of 0.5 mmol L-1 CA significantly increased the Pb concentration in the organs. The other organic acid treatments changed root Pb concentrations slightly while increasing shoot Pb concentrations. The translocation factor values from organic acid treatments were increased by 38.8-134.1%. Our results confirmed that organic acid could alleviate the toxicity of stunted R. chinensis and improve phytoremediation efficiency.
Collapse
Affiliation(s)
- Xiang Shi
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry Hangzhou 311400 China
| | - Shufeng Wang
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry Hangzhou 311400 China
| | - Wenxiang He
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry Hangzhou 311400 China .,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University Hangzhou 311300 China
| | - Yangdong Wang
- Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry Hangzhou 311400 China
| |
Collapse
|
18
|
You M, Wang L, Zhou G, Wang Y, Wang K, Zou R, Cao W, Fan H. Effects of microbial agents on cadmium uptake in Solanum nigrum L. and rhizosphere microbial communities in cadmium-contaminated soil. Front Microbiol 2023; 13:1106254. [PMID: 36687578 PMCID: PMC9849675 DOI: 10.3389/fmicb.2022.1106254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Solanum nigrum L. (S. nigrum) and microbial agents are often used for the remediation of cadmium (Cd)-contaminated soil; however, no studies to date have examined the efficacy of using various microbial agents for enhancing the remediation efficiency of Cd-contaminated soil by S. nigrum. Here, we conducted greenhouse pot experiments to evaluate the efficacy of applying Bacillus megaterium (BM) along with citric acid (BM + CA), Glomus mosseae (BM + GM), and Piriformospora indica (BM + PI) on the ability of S. nigrum to remediate Cd-contaminated soil. The results showed that BM + GM significantly increased the Cd accumulation of each pot of S. nigrum by 104% compared with the control. Application of microbial agents changed the soil microbial communities. Redundancy analysis showed that the activities of Catalase (CAT) and urease (UE), soil organic matter, available N and total Cd were the main influencing factors. By constructing the microbial co-occurrence networks, the soil microbe was divided into four main Modules. BM + GM and BM + PI significantly increased the relative abundance of Module#1 and Module#3, respectively, when compared with the control. Additionally, Module#1 showed a significant positive correlation with translocation factor (TF), which could be regarded as the key microbial taxa. Further research found that Ascomycota, Glomeromycota, Proteobacteria, and Actinobacteria within Module#1 were also significantly correlated with TF, and these key species enriched in BM + GM. Overall, our findings indicate that the BM + GM treatment was the most effective for the remediation of Cd pollution. This treatment method may further affect the rhizosphere microbial community by affecting soil indicators, which might drive the formation of Module#1, thus greatly enhancing the Cd remediation capacity of S. nigrum.
Collapse
Affiliation(s)
- Meng You
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yikun Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Weidong Cao, ✉
| | - Hongli Fan
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Hongli Fan, ✉
| |
Collapse
|
19
|
Zhao R, Huang L, Peng X, Fan L, Chen S, Qin P, Zhang J, Chen A, Huang H. Effect of different amounts of fruit peel-based activator combined with phosphate-solubilizing bacteria on enhancing phytoextraction of Cd from farmland soil by ryegrass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120602. [PMID: 36379291 DOI: 10.1016/j.envpol.2022.120602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To improve the uptake of heavy metals by plants and increase the effectiveness of phytoextraction, chelating agents are employed to change the speciation of heavy metals in soil and increase their bioavailability. However, the effect of a single activator is limited. In recent years, compound activators have been applied widely to improve phytoextraction efficiency. In this study, a fruit peel-based activator (OG) was prepared, containing a mixture of orange peel extracts and tetrasodium glutamate diacetate (GLDA) (1.6% v/v) in a ratio of 1:1 (v/v). The pot experiment was used to investigate the effects of different amounts of OG combined with phosphate-solubilizing bacteria (Acinetobacter pitti, AP) on the extraction of Cd from farmland soil by ryegrass (Lolium perenne L). The results indicated that the addition of OG and AP increased the pH and EC of the soil and improved the content of nutrient elements in the soil. The optimal combination of the application rates of OG and AP improved the growth of ryegrass and enhanced the phytoextraction of Cd. Redundancy analysis (RDA) showed that total soil nitrogen had the greatest influence on phytoextraction, with a contribution rate of 85.3%, followed by pH, with a contribution rate of 7.7%. Total nitrogen, pH, available phosphorus, alkaline nitrogen, and total organic matter were correlated positively with plant Cd, soil Cd decrease ratio, and the bioaccumulation factor but negatively with total Cd and available Cd. Based on the findings of this study, it is feasible to apply the fruit peel-based activator (amended with GLDA) and phosphate-solubilizing bacteria to enhance phytoextraction of Cd, which will provide a valuable reference for the treatment of heavy metal-contaminated soils and the reutilization of fruit peel waste. When applying the compound activator, it is recommended to consider the influence of the additional amount of compound activator on the extraction efficiency.
Collapse
Affiliation(s)
- Rule Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liuhui Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lingjia Fan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shuofu Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
20
|
Zhang C, Yang B, Wang H, Xu X, Shi J, Qin G. Metal tolerance capacity and antioxidant responses of new Salix spp. clones in a combined Cd-Pb polluted system. PeerJ 2022; 10:e14521. [PMID: 36545381 PMCID: PMC9762249 DOI: 10.7717/peerj.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate the physiochemical characteristics of two new clones, Salix matsudana 'J172' (A7) and Salix matsudana 'Yankang1' (A64) in combined Cd-Pb contaminated systems, a hydroponic experiment was designed. The plant biomass, photosynthesis, antioxidant responses and the accumulation of metals in different plant parts (leaf, stem, and root) were measured after 35-day treatments with Cd (15, 30 µM) and Pb (250, 500 µM). The results showed that exposure to Cd-Pb decreased the biomass but increased the net photosynthetic rate for both A7 and A64, demonstrating that photosynthesis may be one of the metabolic processes used to resist Cd-Pb stress. Compared with control, roots exposed to Cd-Pb had higher activity of superoxide dismutase and more malondialdehyde concentrations, which indicated the roots of both clones were apt to be damaged. The concentrations of soluble protein were obviously higher in the roots of A64 than A7, indicating the roles of the antioxidative substance were different between two willow clones. Soluble protein also had significant relationship with translocation factors from accumulation in roots of A64, which illustrated it played important roles in the tolerance of A64 roots to heavy metals. The roots could accumulate more Pb rather than transport to the shoots compared with Cd. The tolerance index was more than 85% on average for both clones under all the treatments, indicating their tolerance capacities to the combined stress of Cd and Pb are strong under the tested metal levels. Both clones are the good candidates for phytoremediation of Cd and Pb by the root filtration in the combined contamination environment.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China,Shaanxi Key Laboratory of Land Consolidation, Xi’an, Chian,Chang’an University, Xi’an, China
| | - Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, China
| | - Jiaxing Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Guanghua Qin
- Shandong Academy of Forestry, Jinan, Shandong province, China
| |
Collapse
|
21
|
Yang Q, Xie J, Liu H, Fang Z. The addition of exogenous low-molecular-weight organic acids improved phytoremediation by Bidens pilosa L. in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76766-76781. [PMID: 35670943 DOI: 10.1007/s11356-022-20686-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Enhancing the uptake and enrichment of heavy metals in plants is one of the important means to strengthen phytoremediation. In the present study, citric acid (CA), tartaric acid (TA), and malic acid (MA) were applied to enhance phytoremediation by Bidens pilosa L. in Cd-contaminated soil. The results showed that by the addition of appropriate concentrations of CA, TA, and MA, the values of the bioconcentration factor increased by 77.98%, 78.33%, and 64.49%, respectively, the translocation factor values increased by 16.45%, 12.61%, and 5.73%, respectively, and the values of the phytoextraction rates increased by 169.21%, 71.28%, and 63.11%, respectively. The minimum fluorescence values of leaves decreased by 31.62%, 0.28%, and 17.95%, while the potential efficiency of the PSII values of leaves increased 117.87%, 2.25%, and 13.18%, respectively, when CA, TA, and MA with suitable concentration were added. Redundancy analysis showed that CA and MA in plants were significantly positively correlated with plant growth, photosynthesis, and other indicators, whereas TA showed a negative correlation with most indicators. Moreover, CA addition could significantly increase the abundances of Azotobacter, Pseudomonas, and other growth-promoting bacteria, and the abundance values of Actinophytocola and Ensifer were improved in TA treatments. Therefore, our results demonstrated that low-molecular-weight organic acids could enhance phytoremediation, and exogenous CA could significantly improve the phytoremediation of Cd-contaminated soil by Bidens pilosa L.
Collapse
Affiliation(s)
- Qing Yang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Junting Xie
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
22
|
Dai H, Wei S, Grzebelus D, Skuza L, Jia J, Hou N. Mechanism exploration of Solanum nigrum L. hyperaccumulating Cd compared to Zn from the perspective of metabolic pathways based on differentially expressed proteins using iTRAQ. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129717. [PMID: 35961076 DOI: 10.1016/j.jhazmat.2022.129717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
It is challenging to determine the mechanism involved in only Cd hyperaccumulation by Solanum nigrum L. owing to the uniqueness of the process. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to explore the mechanism by which S. nigrum hyperaccumulates Cd by comparing the differentially expressed proteins (DEPs) for Cd and Zn accumulation (non-Zn hyperaccumulator). Based on the comparison between the DEPs associated with Cd and Zn accumulation, the relative metabolic pathways reflected by 17 co-intersecting specific proteins associated with Cd and Zn accumulation included phagosome, aminoacyl-tRNA biosynthesis, and carbon metabolism. Apart from the 17 co-intersecting specific proteins, the conjoint metabolic pathways reported by 21 co-intersecting specific proteins associated with Cd accumulation and 30 co-intersecting specific proteins associated with Zn accumulation, the most differentially expressed metabolic pathways might cause Cd TF (Translocation factor)> 1 and Zn TF< 1, including protein export, ribosome, amino sugar, and nucleotide sugar metabolism. The determined DEPs were verified using qRT-PCR with the four key proteins M1CW30, A0A3Q7H652, A0A0V0IFB9, and A0A0V0IAC4. The plasma membrane H+-ATPase protein was identified using western blotting. Some physiological indices for protein-related differences indirectly confirmed the above results. These results are crucial to further explore the mechanisms involved in Cd hyperaccumulation.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources And Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow 31-120, Poland
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin 71-415, Poland
| | - Jibao Jia
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nan Hou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources And Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
23
|
Dai H, Wei S, Twardowska I, Hou N, Zhang Q. Cosmopolitan cadmium hyperaccumulator Solanum nigrum: Exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115878. [PMID: 36056491 DOI: 10.1016/j.jenvman.2022.115878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The non-essential element cadmium (Cd) is one of the most problematic priority soil pollutants due to multitude of pollution sources, mobility in the environment and high toxicity to all living organisms. This strongly limits also the number and occurrence of species - Cd hyperaccumulators to be used for soil phytoremediation. However, efficient Cd hyperaccumulator Solanum nigrum L. appeared to commonly occur worldwide as a representative of Solanum nigrum complex of a great taxonomic diversity. This led to the idea that the search among different ecotypes of Solanum nigrum L. may result in the identifying the most efficient Cd hyperaccumulator without applying to soil any additional measures such as chemical ligands. In this first pioneering comparative study, three randomly selected ecotypes of S. nigrum L. ssp. nigrum from Shenyang (SY) and Hanzhong (HZ) in China, and Kyoto (KY) in Japan were used in pot experiments at soil treatments from 0 to 50 mg Cd kg-1. The Cd accumulation capacity appeared to represent KY > HZ > SY range, KY ecotype accumulating up to 73%, and HZ ecotype up to 67% bigger total Cd load than SY ecotype. At Cd content in soil up to 10 mg kg-1, no significant effect on the all ecotype biomass, photosynthetic activities, contents of first line defense antioxidant enzymes (CAT, SOD, GPX), and scavenging antioxidants ASA, GSH, was observed. At Cd in soil>10 mg kg-1all these parameters showed decreasing, and cell damage indicator MDA increasing trend, however total accumulated Cd load further increased up to 30 mg kg Cd in soil in all ecotypes in the same KY > HZ > SY sequence. The study proved the great potential of enhancing Cd accumulation capacity of S. nigrum species by selecting the most efficient ecotypes among commonly occurring representatives of S. nigrum complex worldwide. Moreover, these first comparative experiments convinced that the cosmopolitan character and great variety of species/subspecies belonging to Solanum nigrum complex all over the world opens the new area for successful soil phytoremediation with the use of the most appropriate eco/genotypes of S. nigtum as a tool for the best Cd-contaminated soil management practice.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, 41-819, Zabrze, Poland.
| | - Nan Hou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Qing Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
24
|
Yan Y, Qi F, Zhang L, Zhang P, Li Q. Enhanced Cd adsorption by red mud modified bean-worm skin biochars in weakly alkali environment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Cai X, Fu J, Li X, Peng L, Yang L, Liang Y, Jiang M, Ma J, Sun L, Guo B, Yu X. Low-molecular-weight organic acid-mediated tolerance and Pb accumulation in centipedegrass under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113755. [PMID: 35689889 DOI: 10.1016/j.ecoenv.2022.113755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/01/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 μM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jingyi Fu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liqi Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yahao Liang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
26
|
Guan H, Dong L, Zhang Y, Bai S, Yan L. GLDA and EDTA assisted phytoremediation potential of Sedum hybridum 'Immergrunchen' for Cd and Pb contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1395-1404. [PMID: 35166632 DOI: 10.1080/15226514.2022.2031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exogenous application of chelants is a common way to enhance the phytoextraction of heavy metals. A pot experiment was conducted to investigate the influences of cadmium (Cd), lead (Pb), Cd and Pb, L-glutamic acid N, N-diacetic acid (GLDA) and ethylene diamine tetraacetate (EDTA) on the growth, Cd and Pb accumulation of Sedum hybridum 'Immergrunchen'. The results showed that Sedum hybridum 'Immergrunchen' had a high tolerance to Pb treatment, followed by Cd-Pb treatment. The plant was sensitive to Cd stress. EDTA treatment was more harmful to plant growth than that of GLDA treatment. The optimal Cd concentration of shoot and root reached 27.6 mg·kg-1 and 32.6 mg·kg-1, 757 mg·kg-1 and 1,025 mg·kg-1for Pb accumulation at 100-1,500 mg·kg-1. The maximum Cd and Pb phytoextraction from 3 mmol·kg-1 GLDA treatment were 1.40 and 1.73 times as much as that of the control, 1.21 and 1.02 times under 6 mmol·kg-1 EDTA treatment. Therefore, the enhanced phytoremediation of GLDA to Cd and Pb co-contaminated soil was better than that of EDTA. GLDA-assisted phytoextraction of Cd and Pb by Sedum hybridum 'Immergrunchen' can be considered as a promising way to phytoremediate Cd and Pb co-contaminated soil.
Collapse
Affiliation(s)
- Haiyan Guan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Yan Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Shubing Bai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| |
Collapse
|