1
|
Çelik G, Healy SA, Stolte S, Mayer P, Markiewicz M. Daphnia magna as an Alternative Model for (Simultaneous) Bioaccumulation and Chronic Toxicity Assessment─Controlled Exposure Study Indicates High Hazard of Heterocyclic PAHs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8984-8996. [PMID: 40305857 PMCID: PMC12080252 DOI: 10.1021/acs.est.5c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Testing the bioaccumulation and chronic toxicity of (highly) hydrophobic compounds is extremely challenging, but crucial for hazard assessment. Fish are used as a model organism in these tests, but have many limitations, including a long time to reach steady-state, difficulty in maintaining constant exposure, and ethical concerns. We developed a method for the (simultaneous) assessment of chronic reproductive toxicity and bioaccumulation using Daphnia magna as a model organism. As test chemicals, we selected heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs), which are often persistent and show high acute aquatic toxicity, raising concerns about their long-term effects. In this study, we developed a robust passive dosing method to maintain constant exposure in chronic toxicity and bioaccumulation tests of four heterocyclic PAHs in Daphnia magna. Passive dosing maintained stable exposure concentrations in the ng to μg L-1 range, even after reusing disks up to three times. All chemicals were toxic to Daphnia magna with EC10 values between 0.1 and 15 μg L-1. Bioaccumulation tests showed that steady-state was not reached, and the uptake rate constant (k1) could not be reliably determined due to complex exposure routes (both via water and diet). However, depuration rates in Daphnia magna were about 2 orders of magnitude higher than in fish, which is advantageous in the assessment of highly hydrophobic compounds. We propose to use the depuration rate constant (k2), which is independent of the uptake route, as an indicator of bioaccumulation potential. The k2 thresholds for Daphnia magna were estimated to identify (very) bioaccumulative compounds by correlating k2 values with bioconcentration factors (BCFs) for Daphnia magna and applying fish BCF thresholds. We suggest that a Daphnia magna bioaccumulation test can be used as a screening tool to trigger further bioaccumulation testing in fish, as it offers higher throughput, is more ethical, and reaches steady-state faster. However, further validation with reference test protocols and substances is essential.
Collapse
Affiliation(s)
- Göksu Çelik
- Dresden
University of Technology, Institute of Water
Chemistry, Bergstr. 66, D-01062 Dresden, Germany
- University
of Vienna, Centre for Microbiology and Environmental
Systems Science, Environmental Geosciences EDGE, 1090 Vienna, Austria
| | - Schylar Alexandra Healy
- Dresden
University of Technology, Institute of Water
Chemistry, Bergstr. 66, D-01062 Dresden, Germany
| | - Stefan Stolte
- Dresden
University of Technology, Institute of Water
Chemistry, Bergstr. 66, D-01062 Dresden, Germany
| | - Philipp Mayer
- Technical
University of Denmark, Department of Environmental
and Resource Engineering, DK-2800 Kongens Lyngby, Denmark
| | - Marta Markiewicz
- Dresden
University of Technology, Institute of Water
Chemistry, Bergstr. 66, D-01062 Dresden, Germany
| |
Collapse
|
2
|
Kong J, Yan S, Cao X, Zhang Y, Ran C, Chen X, Yang S, Li S, Zhang L, He H. Quantitative source apportionment and health risk assessment for polycyclic aromatic hydrocarbon and their derivatives in indoor dust from housing and public buildings of a mega-city in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137057. [PMID: 39754876 DOI: 10.1016/j.jhazmat.2024.137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively. The total concentrations observed in residences and station halls were higher than in student dormitory and offices. The primary source of PAHs and d-PAHs was identified as coal combustion by self-organizing map combined with receptor models, including principal component analysis-multiple linear regression (PCA-MLR) and positive matrix factorization (PMF). Compared with PCA-MLR, PMF demonstrated superior performance and was recommended as the preferred model for quantitative source analysis. PAHs and d-PAHs in indoor dust may pose a high incremental lifetime carcinogenic risk (˃ 1 × 10-4) through inhalation and dermal exposure based on Monte Carlo simulation. PAH derivatives posed a risk of 70 % of the total target compounds, although their concentration only accounted for 30 %. Notably, children exhibited a higher risk through ingestion than adults, which can be attributed to hand-to-mouth and object-to-mouth contact behaviors. This work helps to understand PAHs and d-PAHs in urban indoor dust from both outdoor environments and indoor activities, offering an innovative perspective for tracing indoor environmental pollution sources and risks.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Sirui Yan
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Yuteng Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Chengling Ran
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China.
| |
Collapse
|
3
|
Ren Y, Wang Y, Wang Y, Ning X, Li G, Sang N. Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136855. [PMID: 39700954 DOI: 10.1016/j.jhazmat.2024.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of emerging environmental contaminants that exhibit high toxicity compared to parent PAHs. In addition to carcinogenic, teratogenic and mutagenic effects, recent studies show their potential to cause endocrine disruption, but the reports are controversial. In this study, we employed hormone receptors (ERα/AR/GRα/TRβ)-mediated dual luciferase reporter gene assay and molecular docking, and found that five typical OPAHs exhibited agonistic activity towards hormone receptors, and hydrogen bonding and hydrophobic interactions were the primary binding forces involved in OPAHs-receptor interactions. Then, we developed a weighted scoring system coupled with computerized screening and clarified that 1,2-benzanthraquinone (BAQ) had the strongest hormonal effects, while anthraquinone (AQ) exhibited the weakest effects. Using the in vivo exposure model, we clarified that BAQ induced hormone receptor-coupled developmental toxicity in zebrafish larvae, evidenced by increased expression of androgen receptors and key genes involved in hormone synthesis, pericardial edema and reduced body length. Importantly, we successfully constructed androgen response element-enhanced green fluorescent protein (ARE-EGFP) transient transfection zebrafish embryos, and confirmed the androgenic potency of BAQ, but not AQ. These findings highlight the endocrine-disrupting effects in the risk management of OPAHs.
Collapse
Affiliation(s)
- Ying Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| | - Yang Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| |
Collapse
|
4
|
Wang J, Deng Y, Huang Z, Li DA, Zhang X. Identification of driving factors for heavy metals and polycyclic aromatic hydrocarbons pollution in agricultural soils using interpretable machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178384. [PMID: 39778453 DOI: 10.1016/j.scitotenv.2025.178384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
This study integrated data-driven interpretable machine learning (ML) with statistical methods, complemented by knowledge-driven discrimination diagrams, to identify the primary driving factors of heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) contamination in agricultural soils influenced by complex sources in a rapidly industrializing region of a megacity in southern China. First, the statistical characteristics of the concentrations of HMs and PAHs, and their correlations with the environmental covariates were explored. Three ML models and a statistical model comprising multiple environmental variable predictors were developed and assessed to predict the concentration of HMs in the agricultural soil. The Shapley Additive Explanations (SHAP) tool was introduced to reveal the influences of the main driving factors on pollutant concentrations. In addition, knowledge-based discrimination diagrams were adopted to discriminate the potential sources of the PAHs. Our findings indicated that Cd, Hg and Cu could be effectively predicted by the LightGBM and RF models. The identification of pollution drivers revealed that traffic emission, industry activity and irrigation significantly contributed to the pollution of Cd, Hg, Cu and high-ring PAHs in the study area, while the soil nature properties including SOM and pH also played crucial roles in influencing the HM and PAH concentrations. This work introduced an innovative approach to leverage ML for understanding complex urban soil pollution, thereby setting a precedent for data-driven environmental protection strategies to mitigate the pollution of HMs and PAHs. Future research is encouraged to optimize the models, enhance the prediction accuracy, and incorporate a broader range of influential parameters.
Collapse
Affiliation(s)
- Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China.
| | - Zaoquan Huang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China
| | - De' An Li
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China
| | - Xiaolu Zhang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China
| |
Collapse
|
5
|
Li L, Wang Y, Tan H, Xiong X. Pollutant emission during pyrolysis of waste wind turbine blades: Nitrogen-containing components and polycyclic aromatic hydrocarbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123159. [PMID: 39527875 DOI: 10.1016/j.jenvman.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Serious attention was lacked for various pollutants formed in both gas and tar phase during pyrolysis recycling of waste wind turbine blades (WWTB), especially for components of carcinogenic bisphenol A (BPA) and potentially toxic polycyclic aromatic hydrocarbons (PAHs) in tar. Pyrolysis temperature within 400-600 °C would significantly impact pollutant formations. Additionally, CO2 had a potential to mitigate pollutants emission as an economic alternative for N2. This article investigated the influence of these factors on nitrogenous and PAHs components during WWTB pyrolysis through fixed bed and thermogravimetric experiments. The results showed that NO2 was dominated in nitrogen containing pollutants and was related to the evolution of pyrrole nitrogen oxides. It was found 550 °C as a turning temperature, at which the polycondensation reaction appeared significantly. This resulted in a markedly increase for toxic N-PAHs in tar. At this temperature, CO2 could be used to mitigate nitrogen pollutants. 25% CO2 reduced NOX emission about 26% and selectively promoted NH3 releasing to over 4.3 times and depressed HCN generating to 0.6 times. Moreover, the primary depolymerization product of organic pact in WWTB was BPA. Increasing residence time, temperature and CO2 concentration were beneficial for converting hazardous BPA to high valued P-Isopropenylphenol (IPP). The value of IPP:BPA could increase to over 2 in this experiment. It was aimed to provide not only an evaluation for the yield and migration of pollutants, but also an cleaner recycling solution through graded pyrolysis WWTB to mitigate pollution and maximize the value of by-products.
Collapse
Affiliation(s)
- Liangyu Li
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yibin Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Houzhang Tan
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiaohe Xiong
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Wang S, He P, Wu X, Zan F, Yuan Z, Zhou J, Xu M. It's time to reevaluate the list of priority polycyclic aromatic compounds: Evidence from a large urban shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173988. [PMID: 38889819 DOI: 10.1016/j.scitotenv.2024.173988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Monitoring only 16 priority PAHs (Pri-PAHs) may greatly underestimate the pollutant load and toxicity of polycyclic aromatic compounds (PACs) in aquatic environments. There is an urgent need to reevaluate the list of priority PACs. To determine which PACs deserve priority monitoring, the occurrence, sources, and toxicity of 78 PACs, including 24 parent PAHs (Par-PAHs), 49 alkylated PAHs (Alk-PAHs), 3 oxygenated PAHs (OPAHs), carbazole, and dibenzothiophene were investigated for the first time in Lake Chaohu sediments, China. Concentrations of ∑Par-PAHs, ∑Alk-PAHs, and ∑OPAHs ranged from 35 to 165, 3.4-26, and 7.7-26 ng g-1, respectively. Concentrations of 16 Pri-PAHs have decreased by 1-2 orders of magnitude compared to a decade ago, owing to the effective implementation of PAHs emission control measures. Comparisons with the sediment quality guidelines indicated that 16 Pri-PAHs have negligible adverse effects on benthic organisms. Positive matrix factorization (PMF) model results showed that coal combustion was the major source of PACs (accounting for 23.5 %), followed by traffic emissions (23.4 %), petroleum volatilization (21.9 %), wood/biomass combustion (18.2 %), and biological/microbial transformation (13.1 %). The toxicity of PACs was assessed by calculating the BaP toxic equivalent concentrations (TEQBaP) and toxic units. It was found that Par-PAHs were the predominant toxic substances. In addition, monomethyl-BaPs, OPAHs, BeP, and 7,12-DMBaA should be prioritized for monitoring due to their noticeable contributions to overall toxicity. The contributions of different sources to the toxicity of PACs were determined based on PMF model results and TEQBaP values, which revealed that combustion sources mainly contributed to the comprehensive toxicity of PACs in Lake Chaohu sediments.
Collapse
Affiliation(s)
- Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui 241000, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengpeng He
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Fengyu Zan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jiale Zhou
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Miaoqing Xu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
7
|
Ma L, Li Y, Shang L, Ma Y, Sun Y, Ji W. Preparation of two amphiphilic dendritic small molecule gelators based on poly (aryl ether) modified silica-based chromatographic stationary phases and molecular shape recognition for shape-restricted isomers. J Chromatogr A 2024; 1733:465249. [PMID: 39178658 DOI: 10.1016/j.chroma.2024.465249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Geometric isomers tend to have similar polarities and differ only in molecular shape. Vigorously developing new stationary phases to meet the requirements for the separation of isomers that have similar physicochemical properties is still an urgent topic in separation science. Poly (arylene ether)-based dendrimers are known for their multifunctional branched peripheral structures and high self-assembly properties. In this paper, two amphiphilic dendritic organic small molecule gelling agents based on poly (aryl ether), PAE-ANT and PAE-PA, were prepared and conjugated to the silica surface. SiO2@PAE-ANT and SiO2@PAE-PA were used as HPLC stationary phases for the separation of non-polar shape-restricted isomers. Both stationary phases have very high molecular shape selectivity for isomers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), tocopherols and carotenoids. Separation of cis-trans geometric isomers such as diethylstilbestrol and polar compounds such as monosubstituted benzenes and anilines can also be achieved. These two columns offer more flexible selectivity and higher separation performance than commercial C18 and phenyl columns. There is a difference in molecular shape selectivity between the two stationary phases for the same analyte test probes. SiO2@PAE-ANT showed slightly better linear selectivity for non-polar shape-restricted isomers compared to SiO2@PAE-PA with Janus-type PAE-PA bonding phase. This separation behavior may be attributed to the ordered spatial structure formed by the gel factor on the surface of the stationary phase and the combined effect of multiple weak interaction centers (hydrophobic, hydrophilic, hydrogen bonding and π-π interactions). It was also possible to separate nucleoside and nucleobase strongly polar compounds well in the HILIC mode, suggesting that hydrophilic groups in PAE-ANT and PAE-PA are involved in the interactions, reflecting their amphiphilic nature. The results show that the ordered gelation of dendritic organic small molecule gelators on the SiO2 surface, along with multiple carbonyl-π, π-π and other interactions, play a crucial role in the separating shape-restricted isomers. The integrated and ordered functional groups serve as the primary driving force behind the exceptionally high molecular shape selectivity of SiO2@PAE-ANT and SiO2@PAE-PA phases. Alterations in the structure of dendritic organic small molecule gelators can impact both molecular orientation and recognition ability, while changes in the type of functional groups influences the separation mechanism of shape-restricted isomers.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Le Shang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Bomfim Bahia PV, Brandão BDRL, Machado ME. Deep eutectic solvent for the extraction of polycyclic aromatic compounds in fuel, food and environmental samples. Talanta 2024; 277:126418. [PMID: 38879948 DOI: 10.1016/j.talanta.2024.126418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Polycyclic aromatic compounds (PACs) encompass a wide variety of organic analytes that have mutagenic and carcinogenic potentials for human health and are recalcitrant in the environment. Evaluating PACs levels in fuel (e.g., gasoline and diesel), food (e.g., grilled meat, fish, powdered milk, fruits, honey, and coffee) and environmental (e.g., industrial effluents, water, wastewater and marine organisms) samples are critical to determine the risk that these chemicals pose. Deep eutectic solvents (DES) have garnered significant attention in recent years as a green alternative to traditional organic solvents employed in sample preparation. DES are biodegradable, have low toxicities, ease of synthesis, low cost, and a remarkable ability to extract PACs. However, no comprehensive assessment of the use of DESs for extracting PACs from fuel, food and environmental samples has been performed. This review focused on research involving the utilization of DESs to extract PACs in matrices such as PAHs in environmental samples, NSO-HET in fuels, and bisphenols in foods. Chromatographic methods, such as gas chromatography (GC) and high-performance liquid chromatography (HPLC), were also revised, considering the sensibility to quantify these compound types. In addition, the characteristics of DES and advantages and limitations for PACs in the context of green analytical chemistry principles (GAC) and green profile based on metrics provide perspective and directions for future development.
Collapse
Affiliation(s)
- Pedro Victor Bomfim Bahia
- Universidade Federal da Bahia, Instituto de Química, Programa de Pós-Graduação em Química, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Beatriz Dos Reis Lago Brandão
- Universidade Federal da Bahia, Instituto de Química, Programa de Pós-Graduação em Química, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Maria Elisabete Machado
- Universidade Federal da Bahia, Instituto de Química, Programa de Pós-Graduação em Química, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
9
|
Albarico FPJB, Chen CF, Lim YC, Wang MH, Chen CW, Dong CD. Seasonal dynamics of polycyclic aromatic hydrocarbons in microplankton from Kaohsiung Harbor (Taiwan Strait, northeastern South China Sea). MARINE POLLUTION BULLETIN 2024; 206:116759. [PMID: 39079475 DOI: 10.1016/j.marpolbul.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The impact of polycyclic aromatic hydrocarbons (PAHs) on the marine food web is crucially understudied in the primary trophic system. We evaluated the seasonal dynamics of PAHs in microplankton in a polluted environment (Taiwan), northeastern South China Sea. Replicate size-fractionated microplankton (55-1000 μm) were freeze-dried, and PAHs were extracted with a 1:1 v/v ratio of acetone: n-hexane, then analyzed using GC-MS. Total PAHs ranged between 68 and 2548 ng/g dw in microplankton, greatest during spring (130-2548 ng/g), followed by autumn (135-772 ng/g) and summer (44-423 ng/g). Spatial distribution varied through seasons but was higher in the southern part (S6 > S4 > S5 > S2 > S3 > S1 > S7), dominated by higher-ring PAHs from mixed pyrogenic and petrogenic sources. PAHs are significantly correlated with environmental factors, especially in colder seasons and lower salinity areas. Suspended matter and plankton influenced PAH transport and partitioning seasonally. Plankton's PAHs seasonal changes and environmental influences are revealed in an anthropic environment.
Collapse
Affiliation(s)
- Frank Paolo Jay B Albarico
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
10
|
Zhang F, Zhang D, Lou H, Li X, Fu H, Sun X, Sun P, Wang X, Bao M. Distribution, sources and ecological risks of PAHs and n-alkanes in water and sediments of typically polluted estuaries: Insights from the Xiaoqing River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121471. [PMID: 38878581 DOI: 10.1016/j.jenvman.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Xiaoyue Li
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
11
|
Zhang X, Wang Z, Lu Y, Wei J, Qi S, Wu B, Cheng S. Sustainable Remediation of Soil and Water Utilizing Arbuscular Mycorrhizal Fungi: A Review. Microorganisms 2024; 12:1255. [PMID: 39065027 PMCID: PMC11279267 DOI: 10.3390/microorganisms12071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Phytoremediation is recognized as an environmentally friendly technique. However, the low biomass production, high time consumption, and exposure to combined toxic stress from contaminated media weaken the potential of phytoremediation. As a class of plant-beneficial microorganisms, arbuscular mycorrhizal fungi (AMF) can promote plant nutrient uptake, improve plant habitats, and regulate abiotic stresses, and the utilization of AMF to enhance phytoremediation is considered to be an effective way to enhance the remediation efficiency. In this paper, we searched 520 papers published during the period 2000-2023 on the topic of AMF-assisted phytoremediation from the Web of Science core collection database. We analyzed the author co-authorship, country, and keyword co-occurrence clustering by VOSviewer. We summarized the advances in research and proposed prospective studies on AMF-assisted phytoremediation. The bibliometric analyses showed that heavy metal, soil, stress tolerance, and growth promotion were the research hotspots. AMF-plant symbiosis has been used in water and soil in different scenarios for the remediation of heavy metal pollution and organic pollution, among others. The potential mechanisms of pollutant removal in which AMF are directly involved through hyphal exudate binding and stabilization, accumulation in their structures, and nutrient exchange with the host plant are highlighted. In addition, the tolerance strategies of AMF through influencing the subcellular distribution of contaminants as well as chemical form shifts, activation of plant defenses, and induction of differential gene expression in plants are presented. We proposed that future research should screen anaerobic-tolerant AMF strains, examine bacterial interactions with AMF, and utilize AMF for combined pollutant removal to accelerate practical applications.
Collapse
Affiliation(s)
- Xueqi Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
| | - Zongcheng Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
| | - Yebin Lu
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; (Y.L.); (J.W.); (S.Q.)
| | - Jun Wei
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; (Y.L.); (J.W.); (S.Q.)
| | - Shiying Qi
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; (Y.L.); (J.W.); (S.Q.)
| | - Boran Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (X.Z.); (Z.W.); (B.W.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
12
|
Tong Y, Wu Y, Nie L, Jiang L, Zhou Q. High enrichment and measurement of heterocyclic aromatic hydrocarbons from environmental waters with magnetic resorcinol-formaldehyde nanocomposites coupled with high performance liquid chromatography. Talanta 2024; 273:125864. [PMID: 38452592 DOI: 10.1016/j.talanta.2024.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Heterocyclic aromatic hydrocarbons are concerned pollutants with carcinogenic toxicity, which exist universally in various environmental matrices and have great harm to environmental and human health. In present work, magnetic resorcinol-formaldehyde composites (Fe3O4@SiO2@R-F) were fabricated via aldol condensation reaction under alkaline condition. The prepared magnetic materials were examined and analyzed with Fourier transform infrared spectroscopy and other related instruments. The Fe3O4@SiO2@R-F composites were utilized to develop an efficient magnetic solid phase extraction (MSPE) method for extracting six heteropolyclic aromatic hydrocarbons from environmental water samples including carbazole (CB), 7-methylquinoline (7-MQL), 9-methylcarbazole (9-MCB), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The analytes were analyzed by high performance liquid chromatography-ultraviolet variable wavelength detector (HPLC-VWD). The main factors affecting MSPE were optimized. With the optimal parameters, 9-MCB and 4-MDBT have good linearity over the concentration range of 0.1-300 μg L-1, and 7-MQL, CB, DBT and 4,6-DMDBT have good linearity over the concentration range of 0.5-300 μg L-1. The limits of detection were over the concentration range of 0.012-0.031 μg L-1. This method was successfully employed to measure real waters, and the spiked recoveries ranged from 89.4% to 99.9%. The results confirmed that the developed method was reliable, robust and could be employed as a usefully alternate way for analyzing such pollutants in waters.
Collapse
Affiliation(s)
- Yayan Tong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
13
|
Wang Z, Liu Y, Zhang A, Yang L, Wei C, Chen Y, Liu Z, Li Z. Occurrence characteristics, environmental trend, and source analysis of polycyclic aromatic hydrocarbons in the water environment of industrial zones. ENVIRONMENTAL RESEARCH 2024; 245:118053. [PMID: 38160976 DOI: 10.1016/j.envres.2023.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The middle reaches of the Yellow River are rich in energy resources, with the Kuye River, a first-class river in this region, serving as a vital hub for the coal chemical industry within China. This study investigated the occurrence patterns, environmental trends, and ecological risks associated with polycyclic aromatic hydrocarbons (PAHs) in the Kuye River Basin, offering insights into the environmental dynamics of regions. The findings indicated that the river sediments primarily contained PAHs with medium to high-molecular weights, exhibiting levels ranging from 402.92 ng/g dw to 16,783.72 ng/g dw, while water bodies predominantly featured PAHs with low to medium molecular weights, ranging from 299.34 ng/L to 10,930.9 ng/L. The source analysis of PAHs indicated that industrial and traffic exhaust emissions were the primary contributors to PAHs in the Kuye basin, with sediments serving as a secondary release source based on fugacity fraction. The content of PAHs in sediment correlated closely with the environmental factors, and the PAHs inventory of the basin was 19.97 tons. The increased overall PAH concentration in the basin posed significant ecological and public health concerns, necessitating urgent attention.
Collapse
Affiliation(s)
- Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yiping Chen
- Institute of Earth Environment, Chinese Academy of Sciences, Yan Xiang Road. No.97, Xi'an, 710061, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
14
|
Wei L, Lv J, Zuo P, Li Y, Yang R, Zhang Q, Jiang G. The occurrence and sources of PAHs, oxygenated PAHs (OPAHs), and nitrated PAHs (NPAHs) in soil and vegetation from the Antarctic, Arctic, and Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169394. [PMID: 38135091 DOI: 10.1016/j.scitotenv.2023.169394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Although the fate of PAHs in the three polar regions (Antarctic, Arctic, and Tibetan Plateau) has been investigated, the occurrence and contamination profiles of PAH derivatives such as oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) remain unclear. Some of them are more toxic and can be transformed from PAHs in environment. This study explored and compared the concentrations composition profiles and potential sources of PAHs, OPAHs, and NPAHs in soil and vegetation samples from the three polar regions. The total PAH, OPAH, and NPAH concentrations were 3.55-519, n.d.-101, and n.d.-1.10 ng/g dry weight (dw), respectively. The compounds were dominated by three-ring PAHs, and the most abundant individual PAH and OPAH were phenanthrene (PHE) and 9-fluorenone (9-FO), respectively. The sources of PAHs and their derivatives were qualitatively analyzed by the diagnostic ratios and quantified using the positive matrix factorization (PMF) model. The ratios of PAH derivatives to parent PAHs (9-FO/fluorene and 9,10-anthraquinone/anthracene) were significantly higher in the Antarctic samples than in the Arctic and TP samples, implying a higher occurrence of secondary OPAH and NPAH formation in the Antarctic region. To our knowledge, this is the first comparative study that simultaneously investigated the contamination profiles of PAHs and their derivatives in the three polar regions. The findings of this study provide a scientific basis for the development of risk assessment and pollution control strategies in these fragile regions.
Collapse
Affiliation(s)
- Lijia Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jingya Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peijie Zuo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Çelik G, Stolte S, Markiewicz M. NSO-heterocyclic PAHs - Controlled exposure study reveals high acute aquatic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132428. [PMID: 37690200 DOI: 10.1016/j.jhazmat.2023.132428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Environmental occurrence and hazardous nature of heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) has the potential to threaten the health of aquatic ecosystems. Here, we investigate the acute toxicity of heterocyclic PAHs (log KOW 3.7-6.9) to aquatic organisms: marine bacteria (Aliivibrio fischeri), freshwater green algae (Raphidocelis subcapitata), and water fleas (Daphnia magna) using passive dosing to maintain stable exposure. The membrane-water partition coefficient (KMW) of the heterocycles was measured to elucidate its relationship with toxicity. Our findings show that the tested heterocycles had little inhibitory effect on A. fischeri, while most compounds were highly toxic to R. subcapitata and D. magna. Toxicity generally increased with increasing KMW values, and nonpolar narcosis was identified as the most likely mode of toxic action of the heterocycles. Comparison of standard protocols with passive dosing emphasizes the importance of maintaining a constant concentration during toxicity testing, as very high losses occurred in standard tests and passive dosing experiments revealed higher toxicities. These results indicate a potentially high risk to aquatic life and call for more in-depth investigation of the (eco)toxic effects of NSO-PAHs.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany.
| |
Collapse
|
16
|
Wang Z, Liu YJ, Yang L, Yang ZZ, Zhang AN, Li ZH, Liu Z. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Kaokaowusu river sediments near a coal industrial zone. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6853-6867. [PMID: 36566469 DOI: 10.1007/s10653-022-01454-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
This study systematically analyzed the contents, compositions, and sources of polycyclic aromatic hydrocarbons (PAHs) in river sediments near an important energy and chemical base in northwest China. In addition, their possible adverse effects on the ecology and human health were assessed. The PAH concentrations in this study area ranged from 2641.28 to 16783.72 (ng/g dw). PAHs of medium molecular weight (3-ring and 4-ring) showed the largest proportion, followed by PAHs of higher molecular weight (5-ring and 6-ring). The results of molecular diagnostic ratios and principal component analysis revealed that PAHs in the region have complex sources, with incomplete combustion of local fossil fuels and traffic exhaust factors being the main sources. The total toxic equivalent concentration of PAHs varied from 10.05 to 760.26 ng/g, and according to the sediment quality guidelines, PAHs have high potential ecological risk in the lower reaches of the river. The mean effect range-median quotient for the region was 0.46, and the combined ecological risk was at moderate to high levels (21% probability of toxicity). The lifetime carcinogenic risks for adults and children exposed to PAHs were 2.95 × 10-3 and 1.87 × 10-2, respectively, which are much higher than the limit of 10-4, indicating moderate to high potential cancer risks. Therefore, the local government should consider taking some environmental remediation measures. This study can provide theoretical support for pollution prevention measures and ecological restoration strategies for rivers in resource-rich areas.
Collapse
Affiliation(s)
- Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong Jun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhuang Zhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai Ning Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi Hua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
17
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
18
|
Zhang Q, Gao M, Sun X, Wang Y, Yuan C, Sun H. Nationwide distribution of polycyclic aromatic hydrocarbons in soil of China and the association with bacterial community. J Environ Sci (China) 2023; 128:1-11. [PMID: 36801025 DOI: 10.1016/j.jes.2022.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/18/2023]
Abstract
Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has raised great environmental concerns. However, the information on national wide distribution of PAHs in soil as well as their effect on soil bacterial community are limited. In this study, 16 PAHs were measured in 94 soil samples collected across China. The total concentration of 16 PAHs (∑PAHs) in soil ranged from 74.0 to 17,657 ng/g (dry weight basis), with a median value of 200 ng/g. Pyrene was the major soil PAH, with a median concentration of 71.3 ng/g. Soil samples from Northeast China had a higher median concentration of ∑PAHs (1,961 ng/g) than those from other regions. Petroleum emission and wood/grass/coal combustion were potential sources for soil PAHs based on diagnostic ratios and positive matrix factors analysis. A nonnegligible ecological risk (hazard quotients > 1) was found in over 20% of soil samples analyzed and the highest median total HQs value (8.53) was found in soils from Northeast China. The effect of PAHs on bacterial abundance, α-diversity, and β-diversity was limited in the soils surveyed. Nevertheless, the relative abundance of some members in genera Gaiella, Nocardioides, and Clostridium was significantly correlated with the concentrations of some PAHs. Especially, the bacterium Gaiella Occulta showed potential in indicating soil contamination by PAH, which is worth further exploration.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinhui Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chaolei Yuan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
19
|
Chen W, Xian W, He G, Xue Z, Li S, Li W, Li Y, Zhang Y, Yang X. Occurrence and spatiotemporal distribution of PAHs and OPAHs in urban agricultural soils from Guangzhou City, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114767. [PMID: 36917879 DOI: 10.1016/j.ecoenv.2023.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of polycyclic aromatic hydrocarbon (PAH) derivatives in the environment is of growing concern because they exhibit higher toxicity than their parent PAHs. This study evaluated the large-scale occurrence and spatiotemporal distribution of 16 PAHs and 14 oxygenated PAHs (OPAHs) in urban agricultural soils from seven districts of Guangzhou City, China. Linear correlation analysis was conducted to explore the relationship between PAH and OPAH occurrence and a series of parameters. The compositional analysis, principal component analysis, diagnostic ratios, and principal component analysis coupled with a multiple linear regression model were used to identify the sources of PAHs and OPAHs in the soils. The average concentrations of ΣPAHs and ΣOPAHs (59.6 ± 31.1-213 ± 115.5 μg/kg) during the flood season were significantly higher than those during the dry season (42.1 ± 13.3-157.2 ± 98.2 μg/kg), which were due to relatively strong wet deposition during the flood season and weak secondary reactions during the dry season. Linear correlation analysis showed that soil properties, industrial activities, and agricultural activities (r = 0.27-0.96, p < 0.05) were responsible for the spatial distribution of PAHs during the dry season. The PAH distribution was mainly affected by precipitation during the flood season. The concentrations of ΣOPAHs were only related to the soil properties during the dry season because their occurrence was sensitive to secondary reactions, climate and meteorological conditions, and their water solubility. Our results further showed that coal combustion and traffic emissions were the dominant origins of PAHs and OPAHs during both the seasons. Wet deposition and runoff-induced transport also contributed to PAH and OPAH occurrence during the flood season. The results of this study can improve our understanding of the environmental risks posed by PAHs and OPAHs.
Collapse
Affiliation(s)
- Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weixuan Xian
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Guiying He
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhongye Xue
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaomin Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenyan Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
20
|
Wu Y, Hu Q, Zeng X, Xu L, Liang Y, Yu Z. Co-occurrence of polycyclic aromatic hydrocarbons and their oxygenated derivatives in indoor dust from various microenvironments in Guangzhou, China: levels, sources, and potential human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57006-57016. [PMID: 36930318 DOI: 10.1007/s11356-023-26476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
For decades, the presence and potential health risk of polycyclic aromatic hydrocarbons (PAHs) in indoor dust have been extensively investigated while with limited attention to oxygenated PAHs (OPAHs). In this study, we collected 45 indoor dust from four microenvironments in Guangzhou City, China, and then focused on the co-occurrence of 16 PAHs and 8 OPAHs and their potential carcinogenic risk to humans. The ΣPAHs concentrations, dominated by 4-6 ring PAHs, ranged from 1761 to 14,290 ng/g (mean of 6058 ng/g) without significant difference in the different microenvironments (Tukey, p > 0.05). The OPAHs were observed with concentrations from 250 to 5160 ng/g (mean of 1646 ng/g), and anthraquinone (AQ) was identified as the main OPAHs with significantly high levels in the residential environment than in instrumental rooms. Notably, AQ dominated over the other target analytes in dust in this study. Our results indicated that PAHs and OPAHs in indoor dust were from outdoor environments, which mainly originated from vehicular exhaust and biomass/coal combustion. A potential cancer risk of PAHs and OPAHs to local adults and children was observed via inhalation, ingestion, and dermal absorption, with the main contribution from benzo[a]pyrene and dibenz[a,h]anthracene.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Qiongpu Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Liang Xu
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330029, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
21
|
Kong J, Han M, Cao X, Cheng X, Yang S, Li S, Sun C, He H. Sedimentary spatial variation, source identification and ecological risk assessment of parent, nitrated and oxygenated polycyclic aromatic hydrocarbons in a large shallow lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160926. [PMID: 36543273 DOI: 10.1016/j.scitotenv.2022.160926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/16/2023]
Abstract
Because polycyclic aromatic compounds (PACs) are persistent, universal, and toxic pollutants, understanding the potential source and ecological risk thereof in lakes is critical to the safety of the aquatic environment. Here, a total of 25 sedimentary samples were collected from Lake Taihu, China, in 2018. The total concentrations of 16 parent polycyclic aromatic hydrocarbons (PAHs), 15 nitrated PAHs (NPAHs), nine oxygenated PAHs (OPAHs), and five hydroxy-PAHs (OH-PAHs) ranged from 294 to 1243, 3.0 to 54.5, 188 to 1897, and 8.3 to 51.7 ng/g dw, with the most abundant compounds being fluoranthene, 1,8-dinitropyrene, 6H-Benzo[cd]pyren-6-one, and 2-phenylphenol, respectively. The spatial distribution of PACs in sediments of Lake Taihu showed elevated concentrations from east to west due to economic development and transportation. The positive correlations between most paired PAHs indicate that these compounds likely originated from similar sources. The total organic carbon and organic matter contents affected the distribution characteristics of PACs in sediments. Diagnostic ratios, principal component analysis-multiple linear regression (PCA-MLR), and positive matrix factorization (PMF) were integrated to identify the sources. PACs had various sources including combustion, petroleum leakage, traffic emissions, hydroxyl metabolism, and other oxidation pathways in sediments of Lake Taihu. The PMF (R2 > 0.9824), which showed better optimal performance compared with PCA-MLR (R2 > 0.9564) for PAHs and derivatives, is recommended as the preferred model for quantitative source analysis. Ecological risk assessment showed that the risk quotient values of OPAHs in sediments were much higher than those of other PACs and should be given special attention.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, PR China.
| |
Collapse
|
22
|
Zhang S, Li H, He R, Deng W, Ma S, Zhang X, Li G, An T. Spatial distribution, source identification, and human health risk assessment of PAHs and their derivatives in soils nearby the coke plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160588. [PMID: 36470383 DOI: 10.1016/j.scitotenv.2022.160588] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The coking industry can generate large amounts of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, which may negatively impact the environment and human health. In this study, soils nearby a typical coking plant were sampled to assess the impact of coke production on the surrounding residential areas and human health. The mean concentration of PAHs and their derivatives in residential area soils nearby the coke plant was 4270 ng/g dw, which was 1 order of magnitude higher than that observed in areas far from the coke plant and approximately 4 times lower than that revealed the coke plant. In addition, the results showed that coking processing area was the most contaminant area of the coke plant (mean: 74.4 μg/g dw), where was also the main source of pollutants in residential areas. In terms of vertical soils in coking plant, the maximum levels of chemicals (mean: 205 μg/g dw) were presented at the leakage of underground pipelines, where were much higher than those in surface soils, and decreased with the increase of depth. The analysis of variance (ANOVA) results showed obvious differences in the concentrations of 6-nitrochrysene between the plant, residential areas and control areas. Meanwhile, 6-nitrochrysene had potential cancer risk (CR) for human in the coking site. Thus, 6-nitrochrysene was the most noteworthy PAH derivatives. Furthermore, the CR (mean: 5.94 × 10-5) and toxic equivalent quantities (TEQs) (mean: 14.8 μg·TEQ/g) of PAHs and their derivatives was assessed in this study. This finding suggested that PAHs and their derivatives especially those extremely toxic chemicals (Nitro-PAHs (NPAHs) and Br/Cl-PAHs (XPAHs)) might pose a potential health risk to residents nearby the coke plant. The current study provides further insights into the pollution characteristics of PAHs and their derivatives in coke plants and potential risks to the workers and surrounding residents.
Collapse
Affiliation(s)
- Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rujian He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
23
|
Almouallem W, Michel J, Dorge S, Joyeux C, Trouvé G, Le Nouen D. A comparative study of the sorption of O-PAHs and PAHs onto soils to understand their transport in soils and groundwater. J Environ Sci (China) 2023; 124:61-75. [PMID: 36182167 DOI: 10.1016/j.jes.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivates (O-PAHs) are identified in soils and groundwater of industrialized sites and contribute to the risk for Humans and the Environment. Nevertheless, data are scarce in literature concerning their retention and transfer in soils and no soil - water partition coefficients are available for these compounds. Sorption of two PAHs, fluorene and acenaphthene and two O-PAHs, 9H-fluorenone and dibenzofuran onto two soils with different organic carbon contents was evaluated and compared by determining their sorption isotherms. Effect of ionic strength and liquid to solid ratio, on fluorene and fluorenone sorption was also evaluated. Sorption equilibrium is achieved within less than 24 hr of mixing and linear sorption models best fit the isotherm data. Acenaphthene and dibenzofuran are similarly sorbed onto the soil. KD of fluorene is higher than the one of fluorenone, showing a smaller affinity of fluorenone towards the solid phase. This means that O-PAH could form larger contamination plumes in groundwater than PAHs. Decreasing the L/S ratio from 100 to 50 and 30, increases the sorption of fluorenone onto the soil by 56% and 67% respectively, while the sorption of fluorene is slightly increased. Increasing the ionic strength of the aqueous phase also modifies the sorption of fluorenone, contrary to the sorption of fluorene which is slightly affected.
Collapse
Affiliation(s)
- W Almouallem
- French National Institute for Industrial and Environment and Risks, Direction Sites & Territoires, Verneuil en Halatte, F-60550, France; University of Haute-Alsace, Laboratoire Gestion des Risques et Environnement (LGRE) UR2334, Mulhouse, France; University of Strasbourg, 67000 Strasbourg, France; University of Haute-Alsace, Laboratoire d'Innovation Moléculaire et Applications (LIMA) UMR 7042 CNRS, Mulhouse, France
| | - J Michel
- French National Institute for Industrial and Environment and Risks, Direction Sites & Territoires, Verneuil en Halatte, F-60550, France
| | - S Dorge
- University of Haute-Alsace, Laboratoire Gestion des Risques et Environnement (LGRE) UR2334, Mulhouse, France; University of Strasbourg, 67000 Strasbourg, France
| | - C Joyeux
- University of Strasbourg, 67000 Strasbourg, France; University of Haute-Alsace, Laboratoire d'Innovation Moléculaire et Applications (LIMA) UMR 7042 CNRS, Mulhouse, France
| | - G Trouvé
- University of Haute-Alsace, Laboratoire Gestion des Risques et Environnement (LGRE) UR2334, Mulhouse, France; University of Strasbourg, 67000 Strasbourg, France.
| | - D Le Nouen
- University of Strasbourg, 67000 Strasbourg, France; University of Haute-Alsace, Laboratoire d'Innovation Moléculaire et Applications (LIMA) UMR 7042 CNRS, Mulhouse, France
| |
Collapse
|
24
|
Liu Y, He Y, Liu Y, Liu H, Tao S, Liu W. Source identification and ecological risks of parent and substituted polycyclic aromatic hydrocarbons in river surface sediment-pore water systems: Effects of multiple factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159921. [PMID: 36343826 DOI: 10.1016/j.scitotenv.2022.159921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Substituted polycyclic aromatic hydrocarbons (SPAHs) have shown higher health and ecological risks than the corresponding parent PAHs (PPAHs) from laboratory studies, their variations in freshwater system, especially in surface sediment and pore water, remain inadequate understanding. In this study, we revealed the coexistence, ecological risk, and multiple factors affecting variations and sources of PPAHs and SPAHs (nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs)) in the surface sediment-pore water system from a typical urban river in Northern China. The concentration ranges of Σ26PPAHs, Σ10NPAHs, and Σ4OPAHs in the surface sediments were 153.0-5367.4, not detected (N.D.)-105.4, and 42.2-1177.0 ng·g-1 dry weight, and fell within 0.6-38.8, N.D.-297.9, and N.D.-212.6 ng·mL-1 in the pore waters. The t-distributed stochastic neighbor embedding (SNE) coupled with the partitioning around medoids (PAM) elucidated spatiotemporal the variations in PAHs, emphasizing the impacts of industrial activities and sewage discharges. Besides the geochemical and hydrochemical conditions, SPAHs were affected by the potential secondary formation, especially during the wet season. The method comparisons indicated the advantages of principal component analysis-multivariate linear regression (PCA-MLR) and n-alkanes model on source identification. PAHs mainly originated from fossil fuel combustion and vehicular exhaust. The top risk quotient (RQ) values for PAHs occurred in the urban and industrial sections. A majority of the surface sediment samples emerged with low to moderate exposure risks, while all the pore water samples showed high exposure risks. The RQs of OPAHs were significantly higher (p < 0.01) than those of PPAHs. The results suggested the secondary formation of SPAHs as an important role in ecological risks of PAHs in the urban river system.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong He
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - HuiJuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Çelik G, Beil S, Stolte S, Markiewicz M. Environmental Hazard Screening of Heterocyclic Polyaromatic Hydrocarbons: Physicochemical Data and In Silico Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:570-581. [PMID: 36542499 DOI: 10.1021/acs.est.2c06915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are frequently found in the environment yet, compared to homocyclic PAHs, little attention has been paid to their environmental behavior and a comprehensive hazard assessment has not been undertaken. Surprisingly, the physicochemical data necessary to perform at least a screening-level assessment are also limited. To address this, we began by experimentally determining the physicochemical properties of heterocyclic PAHs, namely, water solubility (Sw), n-octanol-water partition coefficients (Kow), and organic carbon-water partition coefficients (Koc). The physicochemical data obtained in this study allowed for the development of clear structure-property relationships and evaluation of the predictive power of in silico models including conductor-like screening model for realistic solvation, the poly-parameter linear solvation energy relationship, and the quantitative structure-property relationship. Finally, heterocyclic and homocyclic PAHs were evaluated in terms of persistence, bioaccumulation, mobility, and toxicity to perform a screening-level comparative hazard assessment by integrating the data and evidence from multiple sources.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| |
Collapse
|
26
|
Yu C, Zhang J, Luo X, Zhang J. Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Zhang H, Yuan L, Xue J, Wu H. Polycyclic aromatic hydrocarbons in surface water and sediment from Shanghai port, China: spatial distribution, source apportionment, and potential risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7973-7986. [PMID: 36048385 DOI: 10.1007/s11356-022-22706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The spatial distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) were systematically investigated in Shanghai port, one of the most important hubs in international trade. The 16 priority PAHs in surface water and sediment were determined. Total concentrations of 16 PAHs (Σ16PAHs) ranged from 140.6 to 647.4 ng/L in surface water and from 12.7 to 573.2 ng/g (dry weight, dw) in sediment, respectively. The 2-ring and 3-ring PAHs with low molecular weight were main components in water, while the 3-ring and 4-ring PAHs were abundant in sediment. Flu was the main component of the Σ16PAHs in water and sediment. According to the source apportionment, the PAHs in water mostly originated from combustion of fossil fuels and petroleum and petroleum combustion were the main contributors to the PAHs in sediment. The results obtained from potential risk assessment indicate that the PAHs in surface water present a moderate ecological risk, whereas the PAHs in sediment show low ecological risk indicating a less possibility of toxic pollution.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
28
|
Li R, Ren K, Su H, Wei Y, Su G. Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158408. [PMID: 36057313 DOI: 10.1016/j.scitotenv.2022.158408] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have reported the occurrence of liquid crystal monomers (LCMs) in sediment, indoor dust, hand wipes, and human serum samples; however, information regarding their contamination status in soil is currently unavailable. The concentrations of 39 target LCMs were determined in n = 96 surface soil samples collected from five different urban functional zones including agricultural, scenic, industrial, commercial, and residential zones. We observed that 76 of 96 surface soil samples contained at least 19, 13, 16, 19, and 14 of the 39 target LCMs that were detectable in samples from agricultural, scenic, industrial, commercial, and residential zones, respectively. The LCMs in the samples from the agricultural zone exhibited the highest mean concentrations of 12.9 ng/g dry weight (dw), followed by those from commercial (5.23 ng/g dw), residential (3.30 ng/g dw), industrial (2.48 ng/g dw), and scenic zones (0.774 ng/g dw). Furthermore, strong and statistically significant (p < 0.05) correlations were observed for several pairs of LCMs (3cH2B vs. 5bcHdFB in the agricultural zone; 5bcHdFB vs. 2bcHdFB, 5bcHdFB vs. 3cH2B in the commercial zone; 5bcHdFB vs. 2bcHdFB in the industrial zone), indicating that they might have similar commercial applications and sources. Based on a newly established database containing 1173 LCMs, suspect screening was applied to discover other LCMs in these 96 soil samples using gas chromatograph coupled with quadrupole-time-of-flight mass spectrometry (GC-QTOF/MS). We tentatively identified 51 LCM formulas with 69 chemical structures. Collectively, this study provides the first evidence for the occurrence of LCMs in soil samples, and suggests that LCMs could be widely distributed across all five urban functional zones.
Collapse
Affiliation(s)
- Rongrong Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
29
|
Ji L, Li W, Li Y, He Q, Bi Y, Zhang M, Zhang G, Wang X. Spatial Distribution, Potential Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Soils under Different Land-Use Covers of Shanxi Province, North China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911949. [PMID: 36231245 PMCID: PMC9565183 DOI: 10.3390/ijerph191911949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and pose a serious threat to the soil ecosystem. In order to better understand the health risks for residents exposed to PAH-contaminated soil, 173 surface soil samples were collected in Shanxi Province, China, to detect the levels of 16 priority PAHs. The spatial distribution patterns of PAHs were explored using interpolation and spatial clustering analysis, and the probable sources of soil PAHs were identified for different land-use covers. The results indicate that the soil Σ16 PAH concentration ranged from 22.12 to 1337.82 ng g-1, with a mean of 224.21 ng g-1. The soils were weakly to moderately contaminated by high molecular weight PAHs (3-5 ring) and the Taiyuan-Linfen Basin was the most polluted areas. In addition, the concentration of soil PAHs on construction land was higher than that on other land-use covers. Key sources of soil PAHs were related to industrial activities dominated by coal burning, coking, and heavy traffic. Based on the exposure risk assessment of PAHs, more than 10% of the area was revealed to be likely to suffer from high carcinogenic risks for children. The study maps the high-risk distribution of soil PAHs in Shanxi Province and provides PAH pollution reduction strategies for policy makers to prevent adverse health risks to residents.
Collapse
Affiliation(s)
- Li Ji
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wenwen Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- Correspondence: ; Tel.: +86-351-699-8256
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Minghua Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
30
|
Zhao L, Zhou M, Zhao Y, Yang J, Pu Q, Yang H, Wu Y, Lyu C, Li Y. Potential Toxicity Risk Assessment and Priority Control Strategy for PAHs Metabolism and Transformation Behaviors in the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10972. [PMID: 36078713 PMCID: PMC9517862 DOI: 10.3390/ijerph191710972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, 16 PAHs were selected as the priority control pollutants to summarize their environmental metabolism and transformation processes, including photolysis, plant degradation, bacterial degradation, fungal degradation, microalgae degradation, and human metabolic transformation. Meanwhile, a total of 473 PAHs by-products generated during their transformation and degradation in different environmental media were considered. Then, a comprehensive system was established for evaluating the PAHs by-products' neurotoxicity, immunotoxicity, phytotoxicity, developmental toxicity, genotoxicity, carcinogenicity, and endocrine-disrupting effect through molecular docking, molecular dynamics simulation, 3D-QSAR model, TOPKAT method, and VEGA platform. Finally, the potential environmental risk (phytotoxicity) and human health risks (neurotoxicity, immunotoxicity, genotoxicity, carcinogenicity, developmental toxicity, and endocrine-disrupting toxicity) during PAHs metabolism and transformation were comprehensively evaluated. Among the 473 PAH's metabolized and transformed products, all PAHs by-products excluding ACY, CHR, and DahA had higher neurotoxicity, 152 PAHs by-products had higher immunotoxicity, and 222 PAHs by-products had higher phytotoxicity than their precursors during biological metabolism and environmental transformation. Based on the TOPKAT model, 152 PAH by-products possessed potential developmental toxicity, and 138 PAH by-products had higher genotoxicity than their precursors. VEGA predicted that 247 kinds of PAH derivatives had carcinogenic activity, and only the natural transformation products of ACY did not have carcinogenicity. In addition to ACY, 15 PAHs produced 123 endocrine-disrupting substances during metabolism and transformation. Finally, the potential environmental and human health risks of PAHs metabolism and transformation products were evaluated using metabolic and transformation pathway probability and degree of toxic risk as indicators. Accordingly, the priority control strategy for PAHs was constructed based on the risk entropy method by screening the priority control pathways. This paper assesses the potential human health and environmental risks of PAHs in different environmental media with the help of models and toxicological modules for the toxicity prediction of PAHs by-products, and thus designs a risk priority control evaluation system for PAHs.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Mengying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
31
|
Migration Behavior and Influencing Factors of Petroleum Hydrocarbon Phenanthrene in Soil around Typical Oilfields of China. Processes (Basel) 2022. [DOI: 10.3390/pr10081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Petroleum spills and land contamination are becoming increasingly common around the world. Polycyclic aromatic hydrocarbons (PAHs) and other pollutants found in petroleum are constantly migrating underground, making their migration in soil a hot research topic. Therefore, it is of great significance to evaluate the migratory process of petroleum hydrocarbons in petroleum-polluted soil to clarify its ecological and environmental risks. In this study, Phenanthrene (PHE) was used as a typical pollutant of PAHs. The soil was gathered from three typical oilfields in China, and a soil column apparatus was built to simulate the vertical migration of PHE in the soil. The migration law and penetration effect of PHE in various environmental conditions of soil were investigated by varying the ionic strength (IS), pH, particle size, and type of soil. According to the literature, pH has no discernible effect on the migration of PHE. The migration of PHE was adversely and positively linked with changes in IS and soil particle size, respectively. The influence of soil type was mainly manifested in the difference of organic matter and clay content. In the Yanchang Oilfield (YC) soil with the largest soil particle size and the least clay content, the mobility of PHE was the highest. This study may reveal the migration law of PAHs in soils around typical oilfields, establish a new foundation for PAH migration in the soil, and also provide new ideas for the management and control of petroleum pollution in the soil and groundwater.
Collapse
|
32
|
Ren K, Su G. Characteristic fragmentations of nitroaromatic compounds (NACs) in Orbitrap HCD and integrated strategy for recognition of NACs in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155106. [PMID: 35398140 DOI: 10.1016/j.scitotenv.2022.155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Nitroaromatic compounds (NACs) are high of concern due to their mutagenicity, and carcinogenicity to organisms. Here, we attempted to establish a novel searching-validation-evaluation workflow that is tailored to recognize unknown NACs in environmental samples using liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (LC-Orbitrap-HRMS). We studied the fragmentation process of NAC standards in Orbitrap higher-energy collision dissociation (HCD) cells and observed that the mass loss of NO was the most prevalent among all NAC standards at both low and medium levels of collision energy. Thus, neutral loss of NO was considered as a diagnostic fragment of nitro groups and was used to screen out NACs in environmental samples. This technique is mass-loss-dependent, which enhances the recognition efficiency of NACs. Candidates exported from the PubChem compound database were further evaluated to obtain possible structures. This strategy was applied for the analysis of 24 surface soil, and we tentatively discovered two novel NACs in the analyzed samples. The semi-quantification results demonstrated that the concentrations of novel NACs were comparable to those of the ten targeted NACs in soil samples. This study provides an integrated strategy for the recognition of known and unknown NACs, which could be extended to other environmental matrices.
Collapse
Affiliation(s)
- Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
33
|
Ning W, Wang H, Gong S, Zhong C, Yang C. Simple sulfone-bridged heterohelicene structure realizes ultraviolet narrowband thermally activated delayed fluorescence, circularly polarized luminescence, and room temperature phosphorescence. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Xu G, Geng S, Cao W, Zuo R, Teng Y, Ding A, Fan F, Dou J. Vertical distribution characteristics and interactions of polycyclic aromatic compounds and bacterial communities in contaminated soil in oil storage tank areas. CHEMOSPHERE 2022; 301:134695. [PMID: 35472616 DOI: 10.1016/j.chemosphere.2022.134695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic compound (PAC) contamination in soil as a result of oil spills is a serious issue because of the huge global demand for fossil energy. This study assessed the vertical variation in polycyclic aromatic hydrocarbons (PAHs), derivatives of PAHs (dPAHs) and bacterial community structure in deep soil with long-term contamination by oil spillage. Our results suggest that the content of total PACs ranged from 1196.6 μg/kg to 14980.9 μg/kg and decreased with depth at all sites. PAHs were the most abundant PACs, with a mean concentration of 6640.7 μg/kg, followed by oxygenated PAHs (mean 156.3 μg/kg) and nitrated PAHs (mean 33.4 μg/kg). PAHs are mainly low molecular weight PACs such as naphthalene, fluorene and phenanthrene, while derivatives of PAHs are all low molecular weight PACs and mainly oxygenated PAHs. Low molecular weight PAHs were an important source of dPAHs under specific conditions. The bacterial community structure showed higher bacterial diversity and lower bacterial richness in shallow soil (2-6 m in depth) than in deep soil (8-10 m in depth). Spearman's analysis confirmed that dramatic bacterial community shifts are a response to contamination. At the genus level, the presence of PACs highly selected for Pseudomonas, belonging to Proteobacteria. Moreover, functional predictions based on Tax4Fun revealed that soil with long-term contamination had a strong potential for PAC degradation. In addition, statistical analysis showed that oxidation-reduction potential (Eh) was closely related to variations of bacterial community composition and function. Finally, Ramlibacter, Pseudomonas, Pseudonocardia, c_MB-A2-108, f_Amb-16S-1323, and Qipengyuania were identified by cooccurrence network analysis as keystone taxa contributing to the maintenance of bacterial ecological function. Together, our results provide evidence of tight bacterial effects of PAHs and dPAHs and a more complete understanding of the fate of PACs in deep contaminated soils.
Collapse
Affiliation(s)
- Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Cao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, PR China
| | - Rui Zuo
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yanguo Teng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|