1
|
Sun H, Ye L, Yang M, Su G. High-resolution mass spectrometry recognized Tetrabromobisphenol A bis (2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) as a contaminant in sediment from a flame retardant manufacturing factory. WATER RESEARCH 2025; 283:123783. [PMID: 40373377 DOI: 10.1016/j.watres.2025.123783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/28/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Information on contamination status of tetrabromobisphenol, and triazine-based novel brominated flame retardants (NBFRs) in sediment environment is very rare. Here, by use of high performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (HPLC-Q-Orbitrap/MS), we developed an analytical method for determination of three tetrabromobisphenol, and two triazine-based FRs in sediment samples. By applying this method for analysis of n = 6 sediment samples from a flame retardant manufacturing factory, we observed that total concentrations of 6 NBFRs (∑6NBFRs) ranged from 7.46 to 1020 ng/g dry weight (dw), which were comparable to those (3.83-820 ng/g dw) of n = 11 sediment samples from e-waste recycling area. Both of them were statistically significantly (p < 0.001, one-way ANOVA) higher than those in n = 10 sediment samples from Taihu Lake (1.22-8.22 ng/g dw). With an aim to find novel tetrabromobisphenol, and triazine-based compounds, we further investigated the ionization characteristics and the fragmentation patterns in ionization source of six target NBFRs. We observed that debromination, ether bond breakage, and the breakage of inter-benzene ring C-C and C-S bonds were the main in-source fragmentation pathways for TBBPA/S derivatives. On the basis of the observed ionization characteristics and an in-house suspect screening list, we tentatively identified 71 NBFR formulas, of which ten TBBPA/S derivatives and one triazine-based BFRs were found for the first time in sediments. Among these NBFR formulas, tetrabromobisphenol A bis (2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is high of concern due to its male reproductive toxicity according to a recent study, and fully confirmed by comparing unique LC and HRMS characteristics of sediment sample with authentic standard. The work probably provides an opportunity for the structural identification of unknown TBBPA/S derivatives in environmental samples, and reports the occurrence of TBBPA-DBMPE in real environment.
Collapse
Affiliation(s)
- Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mengkai Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
2
|
Liu C, Zhang L, Li S, Zhou R, Wu W, Liu Y, Shu M, Li W, Li X. Resveratrol attenuates Cr(VI)-induced disorders of glycolipid metabolism by regulating HNF1b/GPX1 in mice. Mol Cell Endocrinol 2025; 595:112408. [PMID: 39542080 DOI: 10.1016/j.mce.2024.112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Epidemiological studies have indicated that exposure to hexavalent chromium (Cr(VI)) is associated with increased morbidity in the population. Resveratrol (Res) is a polyphenolic compound known for its role in mitigating oxidative stress and inflammation. In this study, we investigated the effects of resveratrol on Cr(VI)-induced disorders of glycolipid metabolism and elucidated its mechanisms. Male C57BL/6 mice were exposed to resveratrol and Cr(VI) for 45 days. Cr(VI) exposure led to elevated blood glucose levels, impaired glucose tolerance and insulin resistance, oxidative and inflammatory responses, and alterations in glycolipid metabolism molecules such as PCK1 and SREBP1, along with inhibition of HNF1b and GPX1. Resveratrol pretreatment increased the expression of HNF1b and GPX1, reduced oxidative and inflammatory responses, and ultimately ameliorated Cr(VI)-induced glycolipid metabolism disorders. These findings suggest potential new targets for the prevention and treatment of dysglycolipidosis.
Collapse
Affiliation(s)
- Chen Liu
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Limin Zhang
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Siqi Li
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Ruixi Zhou
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Wenbo Wu
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Yumei Liu
- Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China
| | - Ming Shu
- Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China
| | - Wanwei Li
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China.
| | - Xiaohong Li
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
3
|
Zheng N, Wang X, Zhang Y, Hua J, Zhu B, Zhou Y, Xu Z, Luo L, Han J, Yang L, Zhou B. Mechanistic Insights into 1,2-bis(2,4,6-tribromophenoxy)ethane-Induced Male Reproductive Toxicity in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8251-8263. [PMID: 38695612 DOI: 10.1021/acs.est.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 μg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.
Collapse
Affiliation(s)
- Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lijun Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Xue J, Li X, Chi Y, Gao L, Zhang Y, Wang Y, Zhao M, Wei J, Shi Z, Zhou X. Decabromodiphenyl ether induces the chromosome association disorders of spermatocytes and deformation failures of spermatids in mice. J Environ Sci (China) 2024; 138:531-542. [PMID: 38135418 DOI: 10.1016/j.jes.2023.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 12/24/2023]
Abstract
The environmental presence of decabromodiphenyl ether (BDE-209), which is toxic to the male reproductive system, is widespread. The current study investigated its mechanism of toxicity in mice. The results showed, that BDE-209 induced DNA damage, decreased the expression of the promoter of meiosis spermatogenesis- and oogenesis-specific basic helix-loop-helix 1 (Sohlh1), meiosis related-factors Lethal (3) malignant brain tumor like 2 (L3MBTL2), PIWI-like protein 2 (MILI), Cyclin-dependent kinase 2 (CDK2), Cyclin A, synaptonemal complex protein 1 (SYCP1) and synaptonemal complex protein 3 (SYCP3), and caused spermatogenic cell apoptosis, resulting in a decrease in sperm quantity and quality. Furthermore, BDE-209 downregulated the levels of anaphase-promoting complex/cyclosome (APC/C), increased the expression of PIWI-like protein 1 (MIWI) in the cytoplasm of elongating spermatids, and decreased the nuclear levels of RING finger protein 8 (RNF8), ubiquitinated (ub)-H2A/ub-H2B, and Protamine 1 (PRM1)/Protamine 2 (PRM2), while increasing H2A/H2B nuclear levels in spermatids. The reproductive toxicity was persistent for 50 days following the withdrawal of BDE-209 exposure. The results suggested that BDE-209 inhibits the initiation of meiosis by decreasing the expression of Sohlh1. Furthermore, the reduced expression of L3MBTL2 inhibited the formation of chromosomal synaptonemal complexes by depressing the expression of meiosis regulators affecting the meiotic progression and also inhibited histone ubiquitination preventing the replacement of histones by protamines, by preventing RNF8 from entering nuclei, which affected the evolution of spermatids into mature sperm.
Collapse
Affiliation(s)
- Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yafei Chi
- Laboratory Animal Center, Capital Medical University, Beijing 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Zhang Y, Xie J, Ouyang Y, Li S, Sun Y, Tan W, Ren L, Zhou X. Adverse outcome pathways of PBDEs inducing male reproductive toxicity. ENVIRONMENTAL RESEARCH 2024; 240:117598. [PMID: 37939807 DOI: 10.1016/j.envres.2023.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants, they are easily released into environment and causing adverse effects to the ecosystem and human health. This review aims to summarize the research status of PBDEs-induced male reproductive toxicity and its mechanisms at various levels such as molecular/cellular, tissue/organ and individual/population. The Adverse Outcome Pathways (AOPs) diagram showed that PBDEs-induced reactive oxygen species (ROS) production, disruptions of estrogen receptor-α (ERα) and antagonism of androgen receptor (AR) were defined as critical molecular initiating events (MIEs). They caused key events (KEs) at the molecular and cellular levels, including oxidative stress, increased DNA damage, damaging mitochondria, increased glycolipid levels and apoptosis, depletion of ectoplasmic specialization and decreased Leydig cells numbers. These in turn lead to followed KEs at the tissue or organ levels, such as the impaired spermatogenesis, impaired blood-testis barrier and reduced testosterone synthesis and function. As a result, reproductive system-related adverse outcomes (AOs) were reported, such as the decreased sperm quantity or quality, shorten male anogenital distance and cryptorchidism in individual and reduced reproduction of the population. This review assembled information on the mechanisms of male reproductive toxicity induced by PBDEs, and constructed a causal mechanism relationship diagram from different levels using the an AOP framework to provide theoretical basis for ecological risk assessment and environmental management of PBDEs. The AOP framework makes it possible to develop risk management strategies based on toxicity mechanisms and support for development of Integrated Approach to Testing and Assessment (IATA) which are available for regulatory purposes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yixin Ouyang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yulin Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weilun Tan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
7
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
8
|
Sarkar D, Midha P, Shanti SS, Singh SK. A comprehensive review on the decabromodiphenyl ether (BDE-209)-induced male reproductive toxicity: Evidences from rodent studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165938. [PMID: 37541514 DOI: 10.1016/j.scitotenv.2023.165938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants (BFRs), are employed in various manufactured products to prevent fires, slow down their spread and reduce the resulting damages. Decabromodiphenyl ether (BDE-209), an example of PBDEs, accounts for approximately 82 % of the total production of PBDEs. BDE-209 is a thyroid hormone (TH)-disrupting chemical owing to its structural similarity with TH. Currently, increase in the level of BDE-209 in biological samples has become a major issue because of its widespread use. BDE-209 causes male reproductive toxicity mainly via impairment of steroidogenesis, generation of oxidative stress (OS) and interference with germ cell dynamics. Further, exposure to this chemical can affect metabolic status, sperm concentration, epigenetic regulation of various developmental genes and integrity of blood-testis barrier in murine testis. However, the possible adverse effects of BDE-209 and its mechanism of action on the male reproductive health have not yet been critically evaluated. Hence, the present review article, with the help of available literature, aims to elucidate the reproductive toxicity of BDE-209 in relation to thyroid dysfunction in rodents. Further, several crucial pathways have been also highlighted in order to strengthen our knowledge on BDE-209-induced male reproductive toxicity. Data were extracted from scientific articles available in PubMed, Web of Science, and other databases. A thorough understanding of the risk assessment of BDE-209 exposure and mechanisms of its action is crucial for greater awareness of the potential threat of this BFR to preserve male fertility.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Parul Midha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shashanka Sekhar Shanti
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Ding Y, Chen Y, Feng W, Huang G, Dong M, Zhao T, Chen N, Yang L, Mao G, Wu X. Persistent immune injury induced by short-term decabromodiphenyl ether (BDE-209) exposure to female middle-aged Balb/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111325-111343. [PMID: 37814044 DOI: 10.1007/s11356-023-30148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Decabromodiphenyl ether (BDE-209), widely used in various industries for its excellent flame-retardant performance, could be enriched in humans and is closely associated with immune impairment. In addition, immune system is gradually declined and becoming more sensitive to environmental pollutants in the ageing process. Therefore, the immunotoxicity of BDE-209 (4, 40, and 400 mg/kg/day) to middle-aged mice and its recovery and susceptibility was first to be comprehensively investigated in this study. The results showed that BDE-209 exposure could lead to oxidative injury to immune organs (spleen, thymus, and liver), impair humoral (immunoglobulins), cellular (lymphopoiesis), and non-specific immunity, and disturb the expressions of the genes related to Th1/Th2 balance (T helper cells) in the middle-aged mice. In addition, Integrated Biomarker Response (IBR) indicated that BDE-209-induced immune impairment was challenging to self-regulated, and even exacerbated after 21 days of recovery and oxidative injury in immune organs could be the main reason. Furthermore, factorial analysis showed that middle-aged mice exposed to BDE-209 suffered from greater immune impairment than adult mice, and the immune impairment in aged mice is more difficult to be self-repaired than that in adult mice. It can be seen that the aged tend to suffer from BDE-209-induced persistent immune impairment and health threats.
Collapse
Affiliation(s)
- Yangyang Ding
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- The Laboratory Animal Research Center of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guijuan Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingyue Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Na Chen
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
11
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
12
|
Wei Y, Geng W, Zhang T, He H, Zhai J. N-acetylcysteine rescues meiotic arrest during spermatogenesis in mice exposed to BDE-209. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50952-50968. [PMID: 36807852 DOI: 10.1007/s11356-023-25874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
Deca-bromodiphenyl ethers (BDE-209) has been widely used in electronic devices and textiles as additives to flame retardants. Growing evidence showed that BDE-209 exposure leads to poorer sperm quality and male reproductive dysfunction. However, the underlying mechanisms of BDE-209 exposure caused a decline in sperm quality remains unclear. This study aimed to evaluate the protective effects of N-acetylcysteine (NAC) on meiotic arrest in spermatocytes and decreased sperm quality in BDE-209-exposed mice. In the study, mice were treated with NAC (150 mg/kg BW) 2 h before administrated with BDE-209 (80 mg/kg BW) for 2 weeks. For the in vitro studies, spermatocyte cell line GC-2spd cells were pretreated with NAC (5 mM) 2 h before treated with BDE-209 (50 μM) for 24 h. We found that pretreatment with NAC attenuated the oxidative stress status induced by BDE-209 in vivo and in vitro. Moreover, pretreatment with NAC rescued the testicular histology impairment and decreased the testicular organ coefficient in BDE-209-exposed mice. In addition, NAC supplement partially promoted meiotic prophase and improved sperm quality in BDE-209-exposed mice. Furthermore, NAC pretreatment effectively improved DNA damage repair by recovering DMC1, RAD51, and MLH1. In conclusion, BDE-209 caused spermatogenesis dysfunction related to the meiotic arrest medicated by oxidative stress, decreasing sperm quality.
Collapse
Affiliation(s)
- Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
- Department of Health Supervision, Administrative Committee of Hefei Xinzhan High-Tech Industrial Development Zone, Wenzhong Rd 999, Hefei, 230000, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
13
|
Li S, Che S, Chen S, Ruan Z, Zhang L. Hesperidin partly ameliorates the decabromodiphenyl ether-induced reproductive toxicity in pubertal mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90391-90403. [PMID: 35871201 DOI: 10.1007/s11356-022-20944-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Many materials use polybrominated diphenyl ethers (PBDEs) as flame retardants. As one of the most common congeners of PBDEs, decabromodiphenyl ether (PBDE-209) is reported to harm reproductive health. However, little is known research on attenuating the reproductive toxicity induced by PBDE-209. The present study aimed to investigate the effects of hesperidin against PBDE-209-induced reproductive toxicity in male mice. Pubertal male C57BL/6 J mice were exposed to PBDE-209 groups (20, 100, 500 mg/kg·bw) and hesperidin groups (100 mg/kg·bw PBDE-209 + 100 mg/kg·bw hesperidin) for 8 weeks. The results showed that PBDE-209 increased the amount of abnormal morphological sperms and decreased the sex hormone levels. PBDE-209 induced the histopathological lesions of seminiferous tubules and blood-testis barrier in mice testis. Expressions of apoptosis-associated proteins and mRNA (Bax, Bcl-2, etc.) were altered by the PBDE-209 treatment. PBDE-209 prominently increased the malondialdehyde (MDA) levels, the biomarker of oxidative stress. Hesperidin treatment partly alleviated PBDE-209-induced histopathological lesions and apoptosis in mice testis. These findings suggested that hesperidin partly protects against PBDE-induced reproductive toxicity in pubertal mice. We conclude that more work needs to be done to explore the appropriate dosage of hesperidin or find other drugs to protect against the reproductive toxicity of PBDEs.
Collapse
Affiliation(s)
- Shiqi Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Sunni Chen
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
14
|
Xue J, Li X, Liu J, Zhang Y, Sang Y, Zhou G, Ren L, Jing L, Shi Z, Wei J, Zhou X. Decabromodiphenyl ethane induces male reproductive toxicity by glycolipid metabolism imbalance and meiotic failure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114165. [PMID: 36228355 DOI: 10.1016/j.ecoenv.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a typical flame retardant found in various electrical and textile items. DBDPE is abundantly available in the surrounding environment and wild animals based on its persistence and bioaccumulation. DBDPE has been shown to cause apoptosis in rat spermatogenic cells, resulting in reproductive toxicity. However, the toxicity of DBDPE on the male reproductive system and the potential mechanisms are still unclear. This study evaluated the effect of DBDPE on the reproductive system in male SD rats and demonstrated the potential mechanisms of reproductive toxicity. DBDPE (0, 5, 50, and 500 mg/kg/day) was administered via gavage to male SD rats for 28 days. DBDPE caused histopathological changes in the testis, reduced sperm quantity and motility, and raised the malformation rate in rats, according to the findings. Furthermore, it caused DNA damage to rat testicular cells. It inhibited the expressions of spermatogenesis-and oogenesis-specific helix-loop-helix transcription factor 1 (Sohlh1), piwi-like RNA-mediated gene silencing 2 (MILI), cyclin-dependent kinase 2 (CDK2), and CyclinA, resulting in meiotic failure, as well as the expressions of synaptonemal complex proteins 1 and 3 (SYCP1 and SYCP3), leading to chromosomal association disorder in meiosis and spermatocyte cycle arrest. Moreover, DBDPE induced glycolipid metabolism disorder and activated mitochondria-mediated apoptosis pathways in the testes of SD rats. The quantity and quality of sperm might be declining due to these factors. Our findings offer further evidence of the harmful impact of DBDPE on the male reproductive system.
Collapse
Affiliation(s)
- Jinglong Xue
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiangyang Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yue Zhang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guiqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China
| | - Li Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
15
|
Potential Biochemical Pesticide-Synthesis of Neofuranocoumarin and Inhibition the Proliferation of Spodoptera frugiperda Cells through Activating the Mitochondrial Pathway. Toxins (Basel) 2022; 14:toxins14100677. [PMID: 36287946 PMCID: PMC9612269 DOI: 10.3390/toxins14100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Furanocoumarins, the secondary metabolites of plants, are considered to be natural insecticides and fungicides because they prevent the invasion of plant pathogenic microorganisms and the predation of herbivorous insects. In this study, novel 2-arylfuranocoumarin derivatives were designed to synthesize by condensation, esterification, bromination, and Wittig reaction. The results showed an excellent photosensitive activity of 2-thiophenylfuranocoumarin (I34). Cell Counting Kit-8 detected that I34 could inhibit the proliferation of Spodoptera frugiperda (Sf9) cells in a time- and concentration-dependent manner under ultraviolet A (UV-A) light for 3 min. The inverted microscope revealed that cells treated with I34 swelled, the membrane was ruptured, and apoptotic bodies appeared. The flow cytometry detected that I34 could induce apoptosis of Sf9 cells, increase the level of intracellular reactive oxygen species (ROS), decrease the mitochondrial membrane potential, and block cell cycle arrest in the G2/M phase. Transmission electron microscopy detected cell mitochondrial cristae damage, matrix degradation, and mitochondrial vacuolation. Further enzyme activity detection revealed that the enzyme activities of apoptosis-related proteins caspase-3 and caspase-9 increased significantly (p < 0.05). Finally, Western blotting analysis detected that the phosphorylation level of Akt and Bad and the expression of the apoptosis inhibitor protein Bcl-XL were inhibited, cleaved-PARP and P53 were increased, and cytochrome C was released from the mitochondria into the cytoplasm. Moreover, under UV-A irradiation, I34 promoted the increase in ROS in Sf9 cells, activated the mitochondrial apoptotic signal transduction pathway, and finally, inhibited cell proliferation. Thus, novel furanocoumarins exhibit a potential application prospect as a biochemical pesticide.
Collapse
|
16
|
Zhang Z, Hu M, Xuan D, Wu L, Zhang Y, He G, Zhou Y. Physiologically based pharmacokinetic (PBPK) modeling of BDE-209 following oral exposure in Chinese population. Food Chem Toxicol 2022; 169:113416. [PMID: 36096292 DOI: 10.1016/j.fct.2022.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
The wide usage of decabromodiphenyl ether (BDE-209) as additive brominated flame retardant has caused its widespread occurrence in the environment and high exposure risk in humans. Estimating its internal exposure dose and reconstruction of external exposure dose using physiologically based pharmacokinetic (PBPK) modelling approach is a key step in the risk assessment of BDE-209. However, the PBPK model for BDE-209 is currently unavailable. This study has established two oral permeability-limited PBPK models of BDE-209 without enterohepatic recirculation (EHR) (model 1) and with EHR (model 2) for Chinese population. Using the in vitro experiments, the average binding of BDE-209 to human plasma protein (99.64% ± 2.97%) was obtained. Moreover, blood sample analysis and systematic literature review were performed to obtain internal and external exposure data of BDE-209 used for model calibration and validation. The predictions of both models were within 2-fold of the observed, and a longer half-life of serum BDE-209 was observed in model 2 than model 1. Based on the models, a human biomonitoring guidance value (HBM-GV) of 93.61 μg/g lw was derived for BDE-209, and there is no health risk found for Chinese population currently. This study provides new quantitative assessment tools for health risk assessment of BDE-209.
Collapse
Affiliation(s)
- Zhichun Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Man Hu
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Dongliang Xuan
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Linying Wu
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Yanfei Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Gengsheng He
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| |
Collapse
|
17
|
Zhang T, He H, Wei Y, Geng W, Zhai J. Vitamin C supplementation rescued meiotic arrest of spermatocytes in Balb/c mice exposed to BDE-209. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113846. [PMID: 35853364 DOI: 10.1016/j.ecoenv.2022.113846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Deca-brominated diphenyl ether (BDE-209) is a ubiquitous industrial chemical as brominated flame retardant (BFRs). Exposure to BDE-209 has been clearly associated with male reproductive disorders. However, the meiotic arrest mechanism of spermatocytes exposed to BDE-209 is still unclear. The present work aimed to explore the protective effect of vitamin C on BDE-209-induced meiotic arrest of spermatocytes and its possible mechanism. Vitamin C (100 mg/kg BW) was administered to BDE-209-exposed (80 mg/kg BW) male Balb/c mice once daily by intraperitoneal injection for 2 weeks. Our results showed that vitamin C played male reproductive protection effects as showed by attenuated BDE-209-induced testicular damage, and reduced sperm abnormality rate. Vitamin C also attenuated BDE-209-induced increase in SOD and MDA in testes and GC-2 spd cells. Moreover, vitamin C promoted meiotic prophase in BDE-209-induced mice, with suppressed γ-H2AX, restored DMC1, RAD51, and crossover marker MLH1 levels, and prevented BDE-209-induced DNA impairment. In addition, vitamin C supplementation also interfered with BDE-209-induced upregulation of testicular H3K4me3 through inhibition of KDM5s capacity and decreasing ferrous ion concentration. Furthermore, ferrous sulfate pretreatment could partially restore the expression of H3K4me3 via maintaining the concentration of ferrous ions. Taken together, vitamin C exerts a potential therapeutic agent for preventing BDE-209-induced reproductive toxicity with meiotic arrest, which is attributed to its antioxidant and electron donor properties, as well as, modulation of ferrous ion levels and demethylation of H3K4me3.
Collapse
Affiliation(s)
- Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|