1
|
Ren J, Ren X, Deng Z, Zhang H, Wang J, Zhang C, Lu F, Shi J. Ecological effects of biochar in heavy metal-contaminated soils from multidimensional perspective: Using meta-analysis. BIORESOURCE TECHNOLOGY 2025:132695. [PMID: 40383313 DOI: 10.1016/j.biortech.2025.132695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
The application of biochar in the remediation of heavy metal-contaminated soil shows great potential, but its comprehensive impacts on metal dynamics and the soil ecosystem have not been quantified. This study conducted a meta - analysis of 496 observations from 41 studies. The results indicated that biochar can significantly decrease the bioavailability of cationic metals, but has limited effect on anionic heavy metals. After application, soil nutrient content and enzyme activity significantly increased. Microbial network analysis revealed enhanced interactions between species, and the reconstruction of the core microbial community indicated a shift in microbial survival strategies from resisting heavy metal stress to nutrient cycling and plant symbiosis. FAPROTAX analysis showed that microbial communities related to nitrogen and sulfur cycles were significantly stimulated. This study explores the role of biochar in restoring soil multifunctionality while addressing metal pollution issues from multiple perspectives, offering key insights for developing targeted soil remediation strategies.
Collapse
Affiliation(s)
- Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Ren
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Fu M, Xu J, Lu T, Ma Q, Luo Y, Feng W, Wang X. Synthesis and Characterization of N-Doped Seaweed Biochar and Removal of Cationic Dyes. ACS OMEGA 2025; 10:18753-18763. [PMID: 40385214 PMCID: PMC12079198 DOI: 10.1021/acsomega.5c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
The development of functional porous carbon materials has attracted great attention in various fields. In this work, N-doped algal biochar (NABc) materials were successfully prepared by an impregnation and calcination methods using Dicyandiamide as a modifier. The specific surface area, average pore volume, and average pore diameter of NABc1%, were 693.92 m2·g-1, 0.162 cm3·g-1 and 6.76 nm, respectively. The high efficiency of NABc1% in adsorbing the cationic dyes rhodamine B and methylene blue from water may be attributed to the rich pore structure of NABc1%. The adsorption experiments show that the removal rates of rhodamine B and methylene blue by NABc1% in 90 min are 99.4 and 96.2%, respectively, which are obviously higher than those before modification. The experimental results of adsorption kinetics show that the adsorption process is more consistent with the quasi-second-order kinetic fitting equation (R 2 = 0.961, 0.998). The results of isothermal adsorption experiments show that the adsorption process is more consistent with the Langmuir equation (R 2 = 0.919, 0.916), indicating that the adsorption of rhodamine B and methylene blue by NABc1% is dominated by a monolayer adsorption process. In addition, the fitting of the intraparticle diffusion model shows that internal diffusion is not the only rate-limiting step. Hence, NABc1% has great potential for practical application as an efficient adsorbent in the field of cationic dye wastewater treatment.
Collapse
Affiliation(s)
- Meiyuan Fu
- Key
Laboratory of Water Pollution Treatment and Resource Reuse of Hainan
Province, Key Laboratory of Soil Pollution Remediation and Resource
Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jia Xu
- Lianghu
School, Daqing, Heilongjiang 163711, China
| | - Tiantian Lu
- Experimental
School of Dezhou Ningjin County New Town, Dezhou, Shandong 253400, China
| | - Qianhui Ma
- Key
Laboratory of Water Pollution Treatment and Resource Reuse of Hainan
Province, Key Laboratory of Soil Pollution Remediation and Resource
Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yun Luo
- Key
Laboratory of Water Pollution Treatment and Resource Reuse of Hainan
Province, Key Laboratory of Soil Pollution Remediation and Resource
Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - Wen Feng
- Key
Laboratory of Water Pollution Treatment and Resource Reuse of Hainan
Province, Key Laboratory of Soil Pollution Remediation and Resource
Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - Xianghui Wang
- Key
Laboratory of Water Pollution Treatment and Resource Reuse of Hainan
Province, Key Laboratory of Soil Pollution Remediation and Resource
Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| |
Collapse
|
3
|
Chen X, Jin X, Zhang C, Jiao Z, Yang Z, Wang K, Li J, Zhang Q. Nitrogen-Doped Weathered Coal for the Efficient Adsorption of Lead: Adsorption Performance and Mechanisms. Molecules 2024; 29:5589. [PMID: 39683748 DOI: 10.3390/molecules29235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The development of widely sourced and efficient adsorbents is crucial for the adsorption of lead from wastewater. A novel adsorbent, N-doped weathered coal (NWC), was prepared in this study using weathered coal as the precursor and triethylenetetramine (TETA) as the N-source. The adsorption performance and behavior of Pb(II) on NWC were investigated using batch adsorption experiments. The results demonstrated that NWC has an efficient adsorption performance towards Pb(II), with a maximum monolayer adsorption capacity of 216.32 mg g-1 (25 °C). The adsorption process was spontaneous and endothermic, and the importance of chemisorption was observed. The adsorption mechanisms of NWC were also analyzed based on its physicochemical structure before and after the Pb(II) adsorption and desorption experiments. The N and O functional groups, acting as electron donors, promoted coordination with Pb(II), making complexation the dominant mechanism. Its contribution to the adsorption mechanism could reach 44.81%. NWC is a promising material for both wastewater treatment and the resource utilization of weathered coal.
Collapse
Affiliation(s)
- Xiaojing Chen
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiaobing Jin
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chi Zhang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zile Jiao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhiping Yang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| | - Ke Wang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| | - Jianhua Li
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| | - Qiang Zhang
- Institute of Eco-Environmental Industry Technology, College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
- Soil Health Laboratory in Shanxi Province, Taiyuan 030031, China
| |
Collapse
|
4
|
Abd El-Moaty HI, El-Dissouky A, Elhusseiny AF, Farag KM, Abu-Khudir R, Alkuwayti MA, Al Abdulsalam NK, Abdel Rahman SM. Low-cost nano biochar: a sustainable approach for drought stress mitigation in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1438893. [PMID: 39600897 PMCID: PMC11588495 DOI: 10.3389/fpls.2024.1438893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
This study tends to reach some objectives of the sustainable development goals, which call for responsible consumption and production and climate action. Long-term global food security is affected by drought and the optimal use of water in agricultural areas under climate change scenarios. Our approach aims to amend soil for cultivation under drought stress and improve plant growth to contribute to food security. In this context, a biochar was prepared from peanut shell and thoroughly examined as a soil enhancer for broad bean cultivation during drought stress. The produced biochar exhibited 0.307 g cm-3 bulk density, 9.6 cmol kg-1 cation exchange capacity, -15.5 mV zeta potential, and an average diameter of 21.86 nm. Surprisingly, the application of biochar increased soil water holding capacity and organic matter by 66% and 220%, respectively. Moreover, its application under drought improved plant growth as indicated by stem height, leaf area index, pod number/plant, pod weight, protein level, chlorophyll content, nutrient levels in leaves, and reduced lipid peroxidation and electrolyte leakage. The principal component and factorial analysis of the current study demonstrated correlations between the physiological response of faba bean plants and soil physiochemical parameters after the application of peanut shell-derived biochar. This study presents promising nano biochar that could be an effective sustainable practice for disposing residual materials.
Collapse
Affiliation(s)
- Heba Ibrahim Abd El-Moaty
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Medicinal and Aromatic Plants Department, Desert Research Center El-Mataria, Cairo, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amel F. Elhusseiny
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Kareem M. Farag
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rasha Abu-Khudir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Najla K. Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Salwa M. Abdel Rahman
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Manawi Y, Al-Gaashani R, Simson S, Tong Y, Lawler J, Kochkodan V. Adsorptive removal of phosphate from water with biochar from acacia tree modified with iron and magnesium oxides. Sci Rep 2024; 14:17414. [PMID: 39075047 PMCID: PMC11286779 DOI: 10.1038/s41598-024-66965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
A novel biochar (BC) from Acacia tortilis trees pruning waste was synthesized and tested for the removal of phosphate from aqueous solutions. The BC was prepared by calcination at 600 °C and doped with Fe3O4 and MgO by hydrothermal process. The presence of iron and magnesium ions in the modified BC was confirmed by EDS analysis and X-ray diffraction (XRD) methods. Both unmodified and doped BCs were tested for phosphate removal from synthetic 1-500 ppm aqueous solutions. While the unmodified BC did not show any significant removal of phosphate from aqueous solutions, the modified BC almost completely removed phosphate from water. The enhancement in removal efficiency is due to an increase in the overall surface charge and surface area of BC as a result of doping with Fe3O4 and MgO salts. The average porosity and BET surface area corresponding to the plain BC increased by more than 20% from 322 to 394 m2/g after modification by impregnation with iron oxide and magnesium oxide. The modificaiton of BC with Fe3O4 and MgO nanoparticles was observed to increase the point of zero electric charge (PZC) from pH 3.4 (corresponding to plain BC) to pH 5.3 (corresponding to modified BC). The adsorption process was very fast and a phosphate removal value of 82.5% was reached only after 30 min of adsorption, while the removal efficiency after 4 h of adsorption was 97.5%. The rapid removal efficiency in short contact time is attributed to the high surface area of BC and strong bonding between the modified BC surface and PO43- ions. The highest adsorption capacity was observed to correspond to 98.5 mg/g which was achieved at PO43- concentration of 500 ppm and pH 8.5. Moreover, after fitting the adsorption data onto four of the most widely used adsorption isotherm models, the adsorption of PO43- onto BC can be better described by the Langmuir isotherm model.
Collapse
Affiliation(s)
- Yehia Manawi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar.
| | - Rashad Al-Gaashani
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Simjo Simson
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Yongfeng Tong
- HBKU Core Labs, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jenny Lawler
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar.
| |
Collapse
|
6
|
Ranaweera KH, Grainger MNC, French A, Sirimuthu N, Mucalo M. Investigation of the Potential of Repurposing Medium-Density Fiberboard Waste as an Adsorbent for Heavy Metal Ion Removal. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3405. [PMID: 39063696 PMCID: PMC11278311 DOI: 10.3390/ma17143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Medium-density fiberboard (MDF) waste generation has increased steadily over the past decades, and therefore, the investigation of novel methods to recycle this waste is very important. The potential of repurposing MDF waste as an adsorbent for the treatment of Cd(II), Cu(II), Pb(II), and Zn(II) ions in water was investigated using MDF offcuts. The highest adsorption potential in single-metal ion solution systems was observed for Pb(II) ions. The experimental data of Pb(II) ions fit well with the Freundlich isotherm and pseudo-second-order kinetic models. Complexation and electrostatic interactions were identified as the adsorption mechanisms. The adsorption behavior of multi-metal ion adsorption systems was investigated by introducing Cd(II) ions as a competitive metal ion. The presence of the Cd(II) ions reduced the adsorption potential of Pb(II) ions, yet the preference for the Pb(II) ions remained. Regeneration studies were performed by using 0.1 M HCl as a regeneration agent for both systems. Even though a significant amount of adsorbed metal ions were recovered, the adsorption potential of the MDF was reduced in the subsequent adsorption cycles. Based on these results, MDF fines have the potential to be used as an economical adsorbent for remediation of wastewater containing heavy metal ions.
Collapse
Affiliation(s)
- Kavitha H. Ranaweera
- School of Science, University of Waikato, Hamilton 3240, New Zealand; (K.H.R.); (M.N.C.G.)
| | - Megan N. C. Grainger
- School of Science, University of Waikato, Hamilton 3240, New Zealand; (K.H.R.); (M.N.C.G.)
| | - Amanda French
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Narayana Sirimuthu
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| | - Michael Mucalo
- School of Science, University of Waikato, Hamilton 3240, New Zealand; (K.H.R.); (M.N.C.G.)
| |
Collapse
|
7
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
8
|
Peng J, Xiao Q, Wang Z, Zhou F, Yu J, Chi R, Xiao C. Mechanistic investigation of Pb 2+ adsorption on biochar modified with sodium alginate composite zeolitic imidazolate framework-8. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31605-31618. [PMID: 38637484 DOI: 10.1007/s11356-024-33320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Qian Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China.
- Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
9
|
Fu M, Ma Q, Luo Y, Feng W, Wang X. Na/N Co-doped Seaweed Biochar Composite for Efficient Removal of Aqueous Pb(II) and Cu(II). Chem Asian J 2024:e202400163. [PMID: 38606886 DOI: 10.1002/asia.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
Pollution from harmful heavy metal ions such as Pb(II) and Cu(II) is causing serious environmental and health problems. In this study, Sodium and nitrogen co-doped porous carbon material (Na/NABc) was successfully prepared from seaweed, sodium hydroxide, and dicyandiamide. The experimental results showed that Na/NABc is an excellent adsorbent for the effective removal of Pb(II) and Cu(II) from water bodies. Specifically, 99.8% of Pb(II) and 64.6% Cu(II) (100 mg/L) were removed within 12 h using 10 mg Na/NABc(10%) at 25 °C. The adsorption of Pb(II) and Cu(II) in aqueous solution by Na/NABc(10%) was efficient and rapid in the first stage. The theoretical maximum removal capacities of Na/NABc for Pb(II) and Cu(II) were 959.6 and 299.1 mg/g, respectively. Pb(II) and Cu(II) ions were adsorbed quickly in the first 60 min, and the kinetics data were generally consistent with a pseudo-second-order model. Na/NABc(10%) had a large distribution coefficient for Pb(II) (8.38 L/mg) and Cu(II) (1.17 L/mg). The possible mechanisms were precipitation, Ion exchange, and surface complexation. The removal rate can reach about 70% after five cycles, and the release of sodium meets the standard. The results of this study demonstrate the potential applicability of Na/NABc(10%) for adsorption of heavy metals from aqueous solution.
Collapse
Affiliation(s)
- Meiyuan Fu
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Qianhui Ma
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yun Luo
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Wen Feng
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Xianghui Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
10
|
Liu Y, Wang T, Song N, Wang Q, Zeng Y, Zhang S, Yu H. Ferrous disulfide and iron nitride sites on hydrochar to enhance synergistic adsorption and reduction of hexavalent chromium. BIORESOURCE TECHNOLOGY 2023; 388:129770. [PMID: 37714497 DOI: 10.1016/j.biortech.2023.129770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, a novel hydrochar containing ferrous disulfide (FeS2) and iron nitride (FeN) was prepared via a one-pot hydrothermal method to enhance the synergistic adsorption and reduction of hexavalent chromium (Cr(VI)). This material (Fe3-SNHC) exhibited a Cr(VI) removal capacity of 431.3 mg·g-1 and high tolerance to coexisting anions at pH 2. Adsorption occurred via monolayer chemisorption. Variation in material structure and density functional theory calculations proved that multiple active sites formed by interactions between heteroatoms improved the chemical inertness of hydrochar. FeN and FeS2 with two electron-donating groups had strong reducing ability to facilitate the conversion of Cr(VI) to trivalent chromium. It was concluded that next to electrostatic adsorption and complexation, synergistic reduction among multiple active sites were the dominant mechanisms involved in the removal Cr(VI). This study shows that Fe3-SNHC is a promising and environment-friendly material for Cr(VI) to remove it from wastewater.
Collapse
Affiliation(s)
- Yuxin Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ningning Song
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ying Zeng
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shaoqing Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
11
|
Li R, Zhang C, Chen WH, Kwon EE, Rajendran S, Zhang Y. Multistage utilization of soybean straw-derived P-doped biochar for aquatic pollutant removal and biofuel usage. BIORESOURCE TECHNOLOGY 2023; 387:129657. [PMID: 37595806 DOI: 10.1016/j.biortech.2023.129657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Biochar is of great importance to realizing solid biowastes reduction and environmental remediation. Modifying biochar for better performance is also of great concern to achieve property improvement. P-doped biochar from soybean straw is prepared for multistage utilization to realize water pollutant removal and biofuel usage. The results suggest that the prepared biochar is adequate for sulfadiazine adsorption and has stable performance under coexisting ions and aquatic pH. Furthermore, the higher heating value of the biochar is close to coal and thus can be an alternative to fossil fuel. The maximum sulfadiazine adsorption amount of P-doped biochar is 252.24 mg·g-1, and the P-doped biochar HHV is 24 MJ·kg-1 which can be an alternative to coal. The greenhouse gas and pollutant emission potential are also considered to explore the environmental impact of P-doped biochar production and usage. Overall, the optimal ratio of soybean straw: K3PO4 is 3:1.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Zhang H, Xu G, Yu Y. Co single atoms anchored on straw biochar as an efficient peroxydisulfate activator for ultrafast removal of antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121983. [PMID: 37301459 DOI: 10.1016/j.envpol.2023.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The removal efficiency of antibiotics decreases at low temperature, which is an urgent problem to be solved in cold regions. This study prepared a low-cost single atom catalyst (SAC) from straw biochar, which can rapidly degrade antibiotics at different temperatures by activating peroxydisulfate (PDS). Co SA/CN-900 + PDS system can degrade 100% of tetracycline hydrochloride (TCH, 10 mg/L) in 6 min. The high concentration of TCH (25 mg/L) was degraded by 96.3% in 10 min at 4 °C. The system was also tested in simulated wastewater and showed a good removal efficiency. TCH was primarily degraded by 1O2 and direct electron transfer pathway. Electrochemical experiments and density functional theory (DFT) calculations showed that CoN4 improved the electron transfer capacity of biochar and thus enhanced the oxidation capacity of Co SA/CN-900 + PDS complex. This work optimizes the application of agricultural waste biochar and provides a design strategy of efficient heterogenous Co SACs to degrade antibiotics in cold regions.
Collapse
Affiliation(s)
- Hongda Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
13
|
Boubakri A, Elgharbi S, Dhaouadi I, Mansour D, Al-Tahar Bouguecha S. Optimization and prediction of lead removal from aqueous solution using FO-MD hybrid process: Statistical and artificial intelligence analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117731. [PMID: 36933539 DOI: 10.1016/j.jenvman.2023.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) has become one of the most serious pollutants that are harmful to the environment and ecology. This paper focused on the removal of lead contaminant from wastewater by forward osmosis-membrane distillation (FO-MD) hybrid process using seawater as draw solution. Modeling, optimization, and prediction of FO performance are developed using complementary approach based on response surface methodology (RSM) and an artificial neural network (ANN). FO process optimization using RSM revealed that under initial lead concentration of 60 mg/L, feed velocity of 11.57 cm/s and draw velocity of 7.66 cm/s, FO process achieved highest water flux of 6.75 LMH, lowest reverse salt flux of 2.78 gMH and highest lead removal efficiency of 87.07%. Fitness of all models was evaluated based on determination coefficient (R2) and mean square error (MSE). Results showed highest R2 value up to 0.9906 and lowest RMSE value up to 0.0102. ANN modeling generates the highest prediction accuracy for water flux and reverse salt flux, while RSM produces the highest prediction accuracy for lead removal efficiency. Subsequently, FO optimal conditions are applied on FO-MD hybrid process using seawater as draw solution and evaluate their performance to simultaneously remove lead contaminant and desalination of seawater. Results displays that FO-MD process shows a highly efficient solution to produce fresh water with almost free heavy metals and very low conductivity.
Collapse
Affiliation(s)
- Ali Boubakri
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia.
| | - Sarra Elgharbi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Imen Dhaouadi
- Laboratory Desalination and Nature Water Valorization, Center of Water Research and Technologies (CERTE), B.P. 273, Soliman, 8020, Tunisia
| | - Dorsaf Mansour
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Salah Al-Tahar Bouguecha
- Department of Mechanical Engineering, Faculty of Engineering, King Abdul-Aziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
14
|
Kim H, Lee SY, Choi JW, Jung KW. Synergistic effect in simultaneous removal of cationic and anionic heavy metals by nitrogen heteroatom doped hydrochar from aqueous solutions. CHEMOSPHERE 2023; 323:138269. [PMID: 36858118 DOI: 10.1016/j.chemosphere.2023.138269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Industrial wastewater typically contains both cationic and anionic heavy metals; therefore, their simultaneous removal must be considered to ensure environmental sustainability. Herein, nitrogen heteroatom (N) doped hydrochar derived from corncob was prepared via facile NH4Cl-aided hydrothermal carbonization and used for the simultaneous adsorption of divalent copper (Cu(II)) and hexavalent chromium (Cr(VI)) in aqueous solutions. During hydrothermal carbonization, NH4Cl played a vital role as the porogen and N dopant, which contributed to the efficient adsorption affinity toward coexisting Cu(II) and Cr(VI). The theoretical maximum adsorption capacities of the N-doped hydrochar were determined to be 1.223 mmol/g for Cu(II) and 1.995 mmol/g for Cr(VI), which were much better than those of the pristine hydrochar. Furthermore, in the binary-component system, the synergistic effect between Cu(II) and Cr(VI) significantly promoted the adsorption affinity of N-doped hydrochar, resulting in adsorption capacities for Cu(II) and Cr(VI) 9.48 and 1.92 times higher than those of the single-component system, respectively. A series of adsorption experiments and spectroscopic analyses demonstrated that multiple mechanisms, including electrostatic shielding, cation bridging, and redox reactions, mutually contributed to the synergistic effect in the adsorption of coexisting Cu(II) and Cr(VI). Overall, the N-doped hydrochar proved to be effective in simultaneously removing both cationic and anionic heavy metal pollutants.
Collapse
Affiliation(s)
- Heegon Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seon Yong Lee
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
15
|
Liu Y, Ji X, Wang Y, Zhang Y, Zhang Y, Li W, Yuan J, Ma D, Sun H, Duan J. A Stable Fe-Zn Modified Sludge-Derived Biochar for Diuron Removal: Kinetics, Isotherms, Mechanism, and Practical Research. Molecules 2023; 28:molecules28062868. [PMID: 36985840 PMCID: PMC10058066 DOI: 10.3390/molecules28062868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar (SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption mechanisms as well as practical applications of SDMBC600 were also investigated and examined. The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption performance (8.88-12.9 mg/g) under wide water quality conditions, in the pH of 2-10 and with the presence of humic acid and six typical metallic ions of 0-20 mg/L. The adsorption mechanisms of SDMBC600 for diuron were found to include surface complexation, π-π binding, hydrogen bonding, as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600 could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore, SDMBC600 could have a promising application for diuron removal in water treatment.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiang Yuan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dong Ma
- Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
16
|
Vejan P, Abdullah R, Ahmad N, Khadiran T. Biochar and activated carbon derived from oil palm kernel shell as a framework for the preparation of sustainable controlled release urea fertiliser. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38738-38750. [PMID: 36585594 DOI: 10.1007/s11356-022-24970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The oil palm kernel shell biochar (OPKS-B) and oil palm kernel shell activated carbon (OPKS-AC) were used as a framework to entrap urea using adsorption method. Batch adsorption studies were performed to gauge the influence of contact time on the adsorption of urea onto both OPKS-B and OPKS-AC. To evaluate the physicochemical traits of the studied materials, energy dispersive X-ray spectrometer (EDS), N2-sorption, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), elemental analysis, differential thermal gravity (TG/DTG) and thermal gravity were applied. Result shows OPKS-AC has a better sorption capacity for urea compared to OPKS-B. The Langmuir isotherm model better justified the sorption isotherms of urea. For the adsorption process for both OPKS-B and OPKS-AC, the pseudo-second-order kinetic model was picked as it best fitted the experimental sorption outcome with the superior R2 values of > 65.1% and > 74.5%, respectively. The outcome of the experiments showcased that the maximum monolayer adsorption capacity of the OPKS-AC towards urea was 239.68 mg/g. OPKS-AC has showed promising attributes to be picked as an organic framework in the production of controlled release urea fertiliser for a greener and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Pravin Vejan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Noraini Ahmad
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly (FSSA), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tumirah Khadiran
- Forest Products Division Forest Research Institute Malaysia, 52109, Kepong, Selangor, Malaysia
| |
Collapse
|
17
|
Liu Y, Wang T, Song N, Wang Q, Wu Y, Zhang Y, Yu H. Synergistic reduction of Cr(VI) by graphite N and thiophene S of N, S-co-doped hydrochar derived from waste straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160360. [PMID: 36414056 DOI: 10.1016/j.scitotenv.2022.160360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
An efficient, simple, and inexpensive N, S-co-doped hydrochar (SNHC) was synthesized from waste straw by a one-pot hydrothermal process without calcination for the removal of Cr(VI). SNHC demonstrated excellent adsorption performance for Cr(VI) and high stability, achieving a high capacity of 171.33 mg/g (293 K, pH 2) and a capacity retention of 82.73 % after five cycles. The adsorption behavior was determined as a multilayer adsorption process based on chemisorption according to the simulation the results of Freundlich adsorption isotherms and pseudo-second-order models. The characterization of SNHC revealed that graphite N and thiophene S formed by the material were the effective active sites, functioning as electron donors to contribute a significant amount of electrons to reduce Cr(VI) to Cr(III). Therefore, next to electrostatic adsorption and complexation, the synergistic reduction of Cr(VI) by graphite N and thiophene S was the main mechanism for Cr(VI) removal. Additionally, density functional theory calculations indicated a low adsorption energy of thiophene S, which increased the attractive interaction between SNHC and Cr(VI) and played the most important role in reducing Cr(VI). The mechanism of the effect of graphite N and thiophene S on Cr(VI) removal not only offered a comprehensive perspective on the role of N, S co-doped mediation in hydrochar but also provided the basic theory for its practical application.
Collapse
Affiliation(s)
- Yuxin Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianye Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China
| | - Ningning Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China
| | - Quanying Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China
| | - Yuqing Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China; College of Resources and Environment, Jilin Agricultural University, Changchun 130000, PR China
| | - Ying Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China; School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongwen Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China.
| |
Collapse
|
18
|
Qi L, Zhou X, Peng X, Chen X, Wang Z, An F. Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5216-5230. [PMID: 35982386 DOI: 10.1007/s11356-022-22533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The low-temperature nitrogen adsorption test was used to study anthracite from Jiulishan coal mine with different particle size ranges of 60-80 mesh, 150-200 mesh, and > 200 mesh. The adsorption isotherm, adsorption capacity, pore volume, pore specific surface area, and average pore diameter of coal samples were analyzed by BET and DFT models in order to study the influence of particle size on the pore structure of anthracite and determine the optimal range of particle size for low-temperature nitrogen adsorption test. The results indicate that the particle size plays a significant effect on the pore structure of anthracite and the adsorption capacity of soft coal is less affected by particle size, while hard coal is substantially affected by particle size. The adsorption capacity of hard coal with particle size of > 200 mesh is increased by 7 times when compared with the particle size of 60-80 mesh, indicating that the gas molecular mobility hindrance decline and pore connectivity improves with the decrease of particle size. The average pore diameter of hard coal decreases continuously from 3.1424 to 2.854 nm, while that of soft coal expands from 2.8947 to 3.2515 nm and then to 3.0362 nm with the decrease of particle size. The effects of particle size on the pore surface area of soft and hard coal are concentrated within the < 10 nm pore aperture. Effect of particle size on hard coal pore volume is mainly focused in the pore size < 10 nm, whereas that of soft coal is primarily concentrated in the pore with aperture ranges of 2-100 nm. When the particle sizes varies from 60-80 mesh to 150-200 mesh, the collapse of large pore of hard coal appears better than that of closed pore. When the particle size of hard coal reaches > 200 mesh, the collapse of closed pores and the damage to small pores are stronger than the collapse of large pores. The fractal dimensions with relative pressure of 0-0.20 and 0.20-0.995 are defined as D1 and D2, respectively, and when the fractal dimension D1 increases, the surface roughness and structural complexity of coal samples increase with the decrease of anthracite particle size, while the fractal dimension D2 shows the opposite trend, which indicates that anthracite of smaller particle size possess higher adsorption capacity. Therefore, 150-200 mesh is recommended as the preferred anthracite particle size in low-temperature nitrogen adsorption test.
Collapse
Affiliation(s)
- Lingling Qi
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.
- MOE Engineering Research Center of Coal Mine Disaster Prevention and Emergency Rescue, Jiaozuo, 454000, Henan, China.
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, Henan, China.
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo, 454000, China.
| | - Xiaoqing Zhou
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Xinshan Peng
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Xiangjun Chen
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
- MOE Engineering Research Center of Coal Mine Disaster Prevention and Emergency Rescue, Jiaozuo, 454000, Henan, China
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, Henan, China
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo, 454000, China
| | - Zhaofeng Wang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
- MOE Engineering Research Center of Coal Mine Disaster Prevention and Emergency Rescue, Jiaozuo, 454000, Henan, China
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, Henan, China
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo, 454000, China
| | - Fenghua An
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
- MOE Engineering Research Center of Coal Mine Disaster Prevention and Emergency Rescue, Jiaozuo, 454000, Henan, China
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, Henan, China
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo, 454000, China
| |
Collapse
|
19
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
20
|
Lan Y, Gai S, Cheng K, Li J, Yang F. Lanthanum carbonate hydroxide/magnetite nanoparticles functionalized porous biochar for phosphate adsorption and recovery: Advanced capacity and mechanisms study. ENVIRONMENTAL RESEARCH 2022; 214:113783. [PMID: 35810808 DOI: 10.1016/j.envres.2022.113783] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
As the increase of global industrial activities, phosphate from industrial wastes such as sewage sludge has become one of the limiting factors for water eutrophication. Herein, lanthanum carbonate hydroxide (La(CO3)OH)/magnetite (Fe3O4) nanoparticles functionalized porous biochar (La/Fe-NBC) with high phosphate adsorption properties is synthesized through molten salt pyrolysis-coprecipitation-hydrothermal multi-step regulation, and further reveal the related processes and mechanisms. La(CO3)OH functions as active sites for phosphate adsorption, Fe3O4 imparts magnetic properties to the composite substance, also porous biochar (NBC) acts as the carrier to prevent the agglomeration of La(CO3)OH and Fe3O4 nanoparticles. The adsorption process of La/Fe-NBC for phosphate fits to the Pseudo-Second Order and Langmuir model, with the theoretical maximum adsorption capacity up to 99.46 mg P/g. And La/Fe-NBC possesses excellent magnetic field (14.50 emu/g), stability, and selectivity, which enables for efficient multiple recovery and reuse. Mechanistic studies have shown that ligand exchange (inner-sphere complexation) between phosphate and carbonate/hydroxyl groups of La(CO3)OH, and electrostatic attraction play the dominant roles during adsorption process, although susceptible to the solution pH. While co-precipitation is not influenced of pH conditions but with limited contribution to phosphate adsorption. This study may facilitate to optimize the synthesis design of phosphate multi-functional composites for low-carbon and sustainable treatment of industrial phosphate-containing wastes.
Collapse
Affiliation(s)
- Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
21
|
Pham TH, Chu TTH, Nguyen DK, Le TKO, Obaid SA, Alharbi SA, Kim J, Nguyen MV. Alginate-modified biochar derived from rice husk waste for improvement uptake performance of lead in wastewater. CHEMOSPHERE 2022; 307:135956. [PMID: 35964720 DOI: 10.1016/j.chemosphere.2022.135956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, alginate-modified biochar derived from rice husk waste was synthesized using a simple process. The modified biochar (MBC) and rice husk biochar (RhBC) were investigated for removing Pb (II) ions in wastewater. The BET result displayed significantly improved specific surface area of MBC up to 120 m2/g along with a total pore volume of 0.653 cm3/g. FTIR spectrums presented the higher oxygen-contained functional groups of MBC as compared to RhBC, resulting in increasing adsorption capacity of Pb (II). MBC had higher adsorption capacity (112.3 mg/g) and faster removal rate (0.0081 g mg-1 min-1) than those of RhBC (41.2 mg/g and 0.00025 g mg-1 min-1). Modified RhBC can remove more than 99% of Pb (II) from wastewater and it could be utilized for three cycles with a removal performance of over 90%. In addition, the Pb adsorption mechanism by using MBC was proposed and the practical application of MBC for the treatment of wastewater in Vietnam was discussed.
Collapse
Affiliation(s)
- Thi Huong Pham
- Faculty of Environment, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam.
| | - Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam.
| | - Dang Khoa Nguyen
- Faculty of Environment, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Thi Kim Oanh Le
- Faculty of Environment, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Jitae Kim
- Air Pollution Research Center, Institute of Urban Science, University of Seoul, Seoul, Republic of Korea
| | - Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam.
| |
Collapse
|
22
|
Berslin D, Reshmi A, Sivaprakash B, Rajamohan N, Kumar PS. Remediation of emerging metal pollutants using environment friendly biochar- Review on applications and mechanism. CHEMOSPHERE 2022; 290:133384. [PMID: 34952021 DOI: 10.1016/j.chemosphere.2021.133384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Bioremediation of heavy metals has become a major environmental concern due to their bio resistant nature and tendency to accumulate. Application of various technologies, involving physical and chemical working principles are applied and passive uptake using sorption involving eco-friendly substrates gained significant attention. Biochar, a cheaper and efficient material, offers good potential due to the greater ease of production, treatment and disposal. This review focuses on the effective application of biochar to treat water contaminated by three specific heavy metals: chromium, lead and arsenic. The on-field applications like soil amendment, industrial wastewater treatment and groundwater treatment using biochar are highlighted. The review article describes the feedstock available for biochar production, various production processes and the importance of optimum conditions like pyrolysis temperature, rate and retention time for various feedstocks reported in literature. The energy requirement of the production process can be supplied by its own energy output. Various modifications that are suitable for the biochar from distinct feedstocks are also discussed. The removal performance of biochar at different working conditions like pH, initial concentration of pollutant and adsorbent dose are consolidated. The highest removal efficiencies reported were by coconut shell biochar (Cr - 99.9%), canola straw biochar (Pb - 100%) and perilla leaf biochar (As - 100%). The adsorption mechanism is explained with reference to kinetics, isotherms, and molecular dynamics. Adsorption mechanism of most of the biochars was found to fit either Freundlich or Langmuir isotherm.
Collapse
Affiliation(s)
- Don Berslin
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Angelin Reshmi
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - P Senthil Kumar
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| |
Collapse
|
23
|
Liu R, Zhang Y, Hu B, Wang H. Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: Efficiencies and mechanisms. CHEMOSPHERE 2022; 287:132087. [PMID: 34523465 DOI: 10.1016/j.chemosphere.2021.132087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Novel biochars, namely nano iron sulfide@ walnut shell biochar (FeS@WNS), Starch-FeS@WNS and Chitosan-FeS@WNS, were prepared by WNS loaded with nano FeS and starch (or chitosan). Nano FeS can be effectively improved lead ions (Pb(II)) removal and starch (or chitosan) improved the stability of FeS and the defect of easy agglomeration. The materials were characterized by SEM, EDS, FTIR and XRD, and the preparation was successful. The adsorption capacity of Pb(II) reached 63.5, 80.0, 84.7 mg g-1 under 0.5 g L-1 of FeS@WNS, Starch-FeS@WNS and Chitosan-FeS@WNS. The adsorption of Pb(II) on the materials was more consistent with the pseudo-second-order kinetic model (K2 = 0.001-0.005 g (mg·min)-1, R2 = 0.980-0.999) and Langmuir model (R2 = 0.974-1.00), indicating that the adsorption of Pb(II) was mainly monolayer adsorption dominated by chemical adsorption. △G < 0 (-3.7~-6.97) and △H > 0 (1.56-20.49) indicated that the reaction was a spontaneous endothermic process. The mechanisms of Pb(II) removal from aqueous solutions involved electrostatic attraction, hydrogen bonding, physical adsorption, ion exchange and oxidoreduction. Additionally, stability and reusability of FeS@WNS, Starch-FeS@WNS and Chitosan-FeS@WNS was good. The novel sorbents of Starch-FeS@WNS and Chitosan-FeS@WNS can be used in Pb(II) wastewater treatment.
Collapse
Affiliation(s)
- Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China
| | - Baowei Hu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China
| | - Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang, 312000, PR China.
| |
Collapse
|