1
|
García-Fuentevilla L, Eugenio ME, Martín-Sampedro R, Ibarra D. Applicability of a laccase from the eucalypt wood endophytic fungus Hormonema sp. CECT-13092 for advanced bioethanol production. N Biotechnol 2025; 87:60-71. [PMID: 40057118 DOI: 10.1016/j.nbt.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 05/26/2025]
Abstract
This work studies, for the first time, the potential of a laccase from the endophyte fungus Hormonema sp. CECT-13092, compared to a laccase from the saprophyte fungus Trametes villosa, for delignification and detoxification of steam-exploded eucalypt to improve subsequent bioethanol production. Regarding laccase delignification, the use of Hormonema sp. and T. villosa laccases did not show evidence of delignification of steam-exploded material, and rather low glucose and xylose recoveries were obtained during saccharification assays of laccase-treated samples compared with their respective controls. With regard to laccase detoxification, the reduction of the total phenolic inhibitors content presents in steam-exploded material by both laccases (phenols removal of 47 % and 60 % by Hormonema sp. and T. villosa laccases, respectively), triggered the fermentation by Saccharomyces cerevisiae of laccase-treated samples when 0.2 g L-1 of inoculum was used during a simultaneous saccharification and fermentation (SSF) process. Moreover, when the inoculum was increased from 0.2 to 1.0 g L-1, both laccases shortened the yeast lag phase during the SSF process. Then, faster glucose consumption and ethanol production rates (ethanol productivity values of 0.25 and 0.28 g L-1 h-1 for T. villosa and Hormonema sp. laccases, respectively, compared to 0.02 g L-1 h-1 for control samples) were noticed. This fact proves the high potential of this new entophytic fungal laccase for bioethanol production enhancement, comparable to commercial laccases.
Collapse
Affiliation(s)
| | - María E Eugenio
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| | - Raquel Martín-Sampedro
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - David Ibarra
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| |
Collapse
|
2
|
Vunduk J, Đurović S, Kostić M, Dimitrijević M, Blagojević S, Radić D, Svirčev Z. The application of laccase-rich extract of spent mushroom substrates for removing lignin from jute fabric waste: a dual management approach. Sci Rep 2025; 15:12598. [PMID: 40221565 PMCID: PMC11993609 DOI: 10.1038/s41598-025-96177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Spent mushroom substrate (SMS) represents a growing waste from the mushroom cultivation sector due to increased popularity worldwide. SMS is rich in lignocellulolytic enzymes, allowing it to be recycled. Further, these enzymes can be applied to the sustainable use of natural fibers like jute, which need lengthy and expensive chemical processing methods. The study explored the dual sustainable management of two waste materials, SMS and jute fabric. SMS was examined as a source of lignin-degrading enzyme laccase to delignify jute and allow it to be processed sustainably. Response surface methodology (RSM) was applied to simultaneously optimize the extraction of laccase from various mushroom species SMS. Temperature, time of extraction, and pH were the independent variables evaluated in RSM. The most active enzyme was laccase from Pleurotus ostreatus SMS (P-SMS). RMS-based optimization of extraction enabled 1.47-fold increase in laccase activity. P-SMS laccase was partially purified, and its activity's optimal conditions (pH and temperature) were assessed. Jute fabric was treated with the extracted laccase under mild conditions (40˚C and pH 4.5), enabling the removal of 61.1% of the lignin, providing a softer and lighter appearance with an improvement in the wetting time confirmed by ATR-FTIR and polarized light microscopy. This work demonstrated the applicability of SMS-derived laccase extraction, using mild conditions to delignify jute fabric waste in an environmentally friendly way, thus creating a sustainable chain of waste processing steps.
Collapse
Affiliation(s)
- Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia.
| | - Saša Đurović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia
- Graduate School of Biotechnology and Food Industries, Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251, Saint-Petersburg, Russia
| | - Mirjana Kostić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11020, Belgrade, Serbia
| | - Marija Dimitrijević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11020, Belgrade, Serbia
| | - Stevan Blagojević
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia
| | - Danka Radić
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
- Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
3
|
Gong Y, Jin Z, Wang X, Zhang Y. Improving methane production and 4-chlorophenol removal in anaerobic digestion of corn straw by adding Phanerochaete chrysosporium and biochar under microaerobic conditions. WATER RESEARCH 2025; 270:122845. [PMID: 39608160 DOI: 10.1016/j.watres.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
The stable lignocellulose structure in the straw is the main obstacle for methane production during its anaerobic digestion, and the residual chlorophenols in the straw further increase the difficulty. In this study, the anaerobic digestion of corn straw containing 4-chlorophenol was enhanced by the addition of Phanerochaete chrysosporium and biochar. The results revealed that P. chrysosporium significantly increased the soluble COD concentration and total COD removal efficiency in the anaerobic digestion of corn straw, which initially contained a small amount of residual oxygen (4.1-4.5 mg/L). The accumulative methane production of the P. chrysosporium-coupled biochar (PC-BC) group and the PC group with P. chrysosporium alone were 232.9 ± 3.0 mL and 201.7 ± 5.1 mL, respectively, which were significantly higher than the control group (19.4 ± 1.0 mL) with the sterilized P. chrysosporium. The presence of biochar increased 4-CP removal rate to 93.3 %, which was 15.2 % higher than the control. Additionally, FTIR analysis indicated that the addition of P. chrysosporium and biochar enhanced the decomposition of lignocellulose structure. Moreover, the sludge capacitance and electron transfer capacity were highest in the PC-BC group. Also, microbial community analysis showed that biochar could enrich dechlorinating bacteria (e.g., Sedimentibacter) and electroactive microorganisms, which further enhanced dechlorination and methanogensis.
Collapse
Affiliation(s)
- Yijing Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuepeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Patel SKS, Gupta RK, Karuppanan KK, Padhi DK, Ranganathan S, Paramanantham P, Lee JK. Trametes versicolor Laccase-Based Magnetic Inorganic-Protein Hybrid Nanobiocatalyst for Efficient Decolorization of Dyes in the Presence of Inhibitors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1790. [PMID: 38673147 PMCID: PMC11051536 DOI: 10.3390/ma17081790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
In the present investigation, an ecofriendly magnetic inorganic-protein hybrid system-based enzyme immobilization was developed using partially purified laccase from Trametes versicolor (TvLac), Fe3O4 nanoparticles, and manganese (Mn), and was successfully applied for synthetic dye decolorization in the presence of enzyme inhibitors. After the partial purification of crude TvLac, the specific enzyme activity reached 212 U∙mg total protein-1. The synthesized Fe3O4/Mn3(PO4)2-laccase (Fe3O4/Mn-TvLac) and Mn3(PO4)2-laccase (Mn-TvLac) nanoflowers (NFs) exhibited encapsulation yields of 85.5% and 90.3%, respectively, with relative activities of 245% and 260%, respectively, compared with those of free TvLac. One-pot synthesized Fe3O4/Mn-TvLac exhibited significant improvements in catalytic properties and stability compared to those of the free enzyme. Fe3O4/Mn-TvLac retained a significantly higher residual activity of 96.8% over that of Mn-TvLac (47.1%) after 10 reuse cycles. The NFs showed potential for the efficient decolorization of synthetic dyes in the presence of enzyme inhibitors. For up to five reuse cycles, Fe3O4/Mn-TvLac retained a decolorization potential of 81.1% and 86.3% for Coomassie Brilliant Blue R-250 and xylene cyanol, respectively. The synthesized Fe3O4/Mn-TvLac showed a lower acute toxicity towards Vibrio fischeri than pure Fe3O4 nanoparticles did. This is the first report of the one-pot synthesis of biofriendly magnetic protein-inorganic hybrids using partially purified TvLac and Mn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.K.S.P.); (R.K.G.); (K.K.K.); (D.K.P.); (S.R.); (P.P.)
| |
Collapse
|
5
|
Wang C, Jia Y, Luo J, Chen B, Pan C. Characterization of thermostable recombinant laccase F from Trametes hirsuta and its application in delignification of rice straw. BIORESOURCE TECHNOLOGY 2024; 395:130382. [PMID: 38281550 DOI: 10.1016/j.biortech.2024.130382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Chengpeng Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingyi Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; Jiande Forestry Bureau, Hangzhou 311699, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Terholsen H, Schmidt S. Cell-free chemoenzymatic cascades with bio-based molecules. Curr Opin Biotechnol 2024; 85:103058. [PMID: 38154324 DOI: 10.1016/j.copbio.2023.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
For the valorization of various bio-based feedstocks, the combination of different catalytic systems with biocatalysis in chemoenzymatic cascades has been shown to have high potential. However, the development of such integrated catalytic systems is often limited by catalyst incompatibility. Therefore, incorporating novel catalytic concepts into the chemoenzymatic valorization of bio-based feedstocks is currently of great interest. This article provides an overview of the methods/approaches used to advance the development of chemoenzymatic cascades for the catalytic upgrading of bio-based feedstocks. It specifically focuses on recent developments in the combination of enzymes with organo- and chemocatalysis. Furthermore, current applications and future perspectives of integrating novel catalytic systems such as photo- and electrocatalysis toward new synthetic routes for the utilization of the often highly functionalized bio-based compounds are reviewed.
Collapse
Affiliation(s)
- Henrik Terholsen
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Sandy Schmidt
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
7
|
Martin E, Dubessay P, Record E, Audonnet F, Michaud P. Recent advances in laccase activity assays: A crucial challenge for applications on complex substrates. Enzyme Microb Technol 2024; 173:110373. [PMID: 38091836 DOI: 10.1016/j.enzmictec.2023.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Despite being one of the first enzymes discovered in 1883, the determination of laccase activity remains a scientific challenge, and a barrier to the full use of laccase as a biocatalyst. Indeed, laccase, an oxidase of the blue multi-copper oxidases family, has a wide range of substrates including substituted phenols, aromatic amines and lignin-related compounds. Its one-electron mechanism requires only oxygen and releases water as a reaction product. These characteristics make laccase a biocatalyst of interest in many fields of applications including pulp and paper industry, biorefineries, food, textile, and pharmaceutical industries. But to fully envisage the use of laccase at an industrial scale, its activity must be reliably quantifiable on complex substrates and in complex matrices. This review aims to describe current and emerging methods for laccase activity assays and place them in the context of a potential industrial use of the enzyme.
Collapse
Affiliation(s)
- Elise Martin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Fabrice Audonnet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Llamas M, Greses S, Magdalena JA, González-Fernández C, Tomás-Pejó E. Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review. BIORESOURCE TECHNOLOGY 2023; 386:129499. [PMID: 37460020 DOI: 10.1016/j.biortech.2023.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization. At microbiological level, constraints are mostly linked to the need for axenic cultures and the preference for certain carbon sources (i.e., glucose). To cope with these issues, this review focuses on efficient LCB conversion via the sugar platform as well as an innovative carboxylate platform taking advantage of the co-cultivation of microorganisms. This review discusses novel trends in the use of microbial communities and co-cultures aiming at different bioproducts co-generation in single reactors as well as in sequential bioprocess combination. The outlook and further perspectives of these alternatives have been outlined for future successful development.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Jose Antonio Magdalena
- LBE, Univ Montpellier, INRAE, 102 avenue des Étangs, F-11100 Narbonne, France; Vicerrectorado de Investigación y Transferencia de la Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid 47011, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain.
| |
Collapse
|
9
|
Patel SKS, Gupta RK, Kim IW, Lee JK. Coriolus versicolor laccase-based inorganic protein hybrid synthesis for application in biomass saccharification to enhance biological production of hydrogen and ethanol. Enzyme Microb Technol 2023; 170:110301. [PMID: 37598507 DOI: 10.1016/j.enzmictec.2023.110301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
In this study, a bio-friendly inorganic protein hybrid-based enzyme immobilization system using partially purified Coriolus versicolor laccase (CvLac) was successfully applied to biomass hydrolysis for the enhancement of sugar production aimed at generating biofuels. After four days of incubation, the maximum CvLac production was achieved at 140 U/mg of total protein in the presence of inducers such as copper and wheat bran after four days of incubation. Crude CvLac immobilized through inorganic protein hybrids such as nanoflowers (NFs) using zinc as Zn3(PO4)2/CvLac hybrid NFs (Zn/CvLac-NFs) showed a maximum encapsulation yield of 93.4% and a relative activity of 265% compared to free laccase. The synthesized Zn/CvLac-NFs exhibited significantly improved activity profiles and stability compared to free enzymes. Furthermore, Zn/CvLac-NFs retained a significantly high residual activity of 96.2% after ten reuse cycles. The saccharification of poplar biomass improved ∼2-fold in the presence of Zn/CvLac-NFs, with an 8-fold reduction in total phenolics compared to the control. The Zn/CvLac-NFs treated biomass hydrolysate showed high biological hydrogen (H2) production and ethanol conversion efficiency of up to 2.68 mol/mol of hexose and 79.0% compared to the control values of 1.27 mol of H2/mol of hexose and 58.4%, respectively. The CvLac hybrid NFs are the first time reported for biomass hydrolysis, and a significant enhancement in the production of hydrogen and ethanol was reported. The synthesis of such NFs based on crude forms of diverse enzymes can potentially be extended to a broad range of biotechnological applications.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Lin K, Xia A, Huang Y, Zhu X, Zhu X, Cai K, Wei Z, Liao Q. How can vanillin improve the performance of lignocellulosic biomass conversion in an immobilized laccase microreactor system? BIORESOURCE TECHNOLOGY 2023; 374:128775. [PMID: 36828216 DOI: 10.1016/j.biortech.2023.128775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Gentle and effective pretreatment is necessary to produce clean lignocellulosic biomass-based fuels. Herein, inspired by the efficient lignin degradation in the foregut of termites, the microreactor system using immobilized laccase and recoverable vanillin was proposed. Firstly, the co-deposition coating of dopamine, hydrogen peroxide and copper sulfate was constructed for laccase immobilization and a high immobilization efficiency of 87.0% was obtained in 30 min. After storage for 10 days, 82.2% activity was maintained in the laccase-loaded microreactor, which is 210.0% higher than free laccase. In addition, 6% (w/w) vanillin can improve lignin degradation in the laccase-loaded microreactor without impairing laccase activity, leading to a 47.3% increment in cellulose accessibility. Finally, a high cellulose conversion rate of 88.1% can be achieved in 1 h with glucose productivity of 2.62 g L-1 h-1. These demonstrated that the appropriate addition of vanillin can synergize with immobilized laccase to enhance the conversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Kai Lin
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Sharma V, Tsai ML, Nargotra P, Chen CW, Sun PP, Singhania RR, Patel AK, Dong CD. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160560. [PMID: 36574559 DOI: 10.1016/j.scitotenv.2022.160560] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The grave concerns arisen as a result of environmental pollution and diminishing fossil fuel reserves in the 21st century have shifted the focus on the use of sustainable and environment friendly alternative resources. Lignocellulosic biomass constituted by cellulose, hemicellulose and lignin is an abundantly available natural bioresource. Lignin, a natural biopolymer has over the years gained much importance as a high value material with commercial importance. The present review provides an in-depth knowledge on the journey of lignin from being considered a roadblock to a bridge connecting diverse industries with widescale applications. The successful valorization of lignin for the production of bio-based platform chemicals and fuels has been the subject of intensive investigation. A deeper understanding of lignin characteristics and factors governing the biomass conversion into valuable products can support improved biomass consumption. The components of lignocellulosic biomass might be totally transformed into a variety of value-added products with the improvements in bioprocess techniques that valorize lignin. In this review, the recent advances in the lignin extraction and depolymerization methods that may help in achieving the cost-economics of the bioprocess are summarized and compared. The industrial potential of lignin-derived products such as aromatics, biopolymers, biofuels and agrochemicals are also outlined. Additionally, assessment of the recent research trends in lignin valorization into value-added chemicals has been done and present scenario of technological-industrial applications of lignin with economic perspectives is highlighted.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
12
|
Sharma L, Alam NM, Roy S, Satya P, Kar G, Ghosh S, Goswami T, Majumdar B. Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. BIORESOURCE TECHNOLOGY 2023; 368:128318. [PMID: 36375701 DOI: 10.1016/j.biortech.2022.128318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Reduction of inherent structural recalcitrance and improved saccharification efficiency are two important facets to enhance fermentable sugar yield for bioethanol production from lignocellulosic biomass. This study optimized alkaline pretreatment and saccharification conditions employing response surface methodology to improve saccharification yield of jute (Corchorus olitorius cv. JROB-2) biomass. The biomass is composed of cellulose (66.6 %), lignin (19.4 %) and hemicellulose (13.1 %). NaOH concentration exhibited significant effect on delignification during pretreatment. The highest delignification (80.42 %) was obtained by pretreatment with 2.47 % NaOH at 55.8 °C for 5.9 h removing 79.8 % lignin and 34.2 % hemicellulose from biomass, thereby increasing cell wall porosity and allowing better accessibility to saccharification enzyme. During saccharification optimization, significant effect was observed for biomass loading, enzyme concentration and temperature. Optimized saccharification condition yielded maximum saccharification (76.48 %) when hydrolysis was performed at 6.9 % biomass loading with enzyme concentration of 49.52 FPU/g substrate at 51.05 °C for 74.46 h.
Collapse
Affiliation(s)
- Laxmi Sharma
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India.
| | - Nurnabi Meherul Alam
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Pratik Satya
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Subhojit Ghosh
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Tinku Goswami
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Bijan Majumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| |
Collapse
|
13
|
Li S, Sun K, Latif A, Si Y, Gao Y, Huang Q. Insights into the Applications of Extracellular Laccase-Aided Humification in Livestock Manure Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7412-7425. [PMID: 35638921 DOI: 10.1021/acs.est.1c08042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional composting is a well-suited biotechnology for on-farm management of livestock manure (LM) but still leads to the release of toxic micropollutants and imbalance of nutrients. One in situ exoenzyme-assisted composting has shown promise to ameliorate the agronomical quality of end products by improving humification and polymerization. The naturally occurring extracellular laccase from microorganisms belongs to a multicopper phenoloxidase, which is verified for its versatility to tackle micropollutants and conserve organics through the reactive radical-enabled decomposition and polymerization channels. Laccase possesses an indispensable relationship with humus formation during LM composting, but its potential applications for the harmless disposal and resource utilization of LM have until now been overlooked. Herein, we review the extracellular laccase-aided humification mechanism and its optimizing strategy to maintain enzyme activity and in situ production, highlighting the critical roles of laccase in treating micropollutants and preserving organics during LM composting. Particularly, the functional effects of the formed humification products by laccase-amended composting on plant growth are also discussed. Finally, the future perspectives and outstanding questions are summarized. This critical review provides fundamental insights into laccase-boosted humification that ameliorates the quality of end products in LM composting, which is beneficial to guide and advance the practical applications of exoenzyme in humification remediation, the carbon cycle, and agriculture protection.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Abdul Latif
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| |
Collapse
|
14
|
Pinto PA, Bezerra RMF, Fraga I, Amaral C, Sampaio A, Dias AA. Solid-State Fermentation of Chestnut Shells and Effect of Explanatory Variables in Predictive Saccharification Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052572. [PMID: 35270265 PMCID: PMC8909322 DOI: 10.3390/ijerph19052572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
In this study, chestnut shells (CNS), a recalcitrant and low-value agro-industrial waste obtained during the peeling of Castanea sativa fruits, were subjected to solid-state fermentation by six white-rot fungal strains (Irpex lacteus, Ganoderma resinaceum, Phlebia rufa, Bjerkandera adusta and two Trametes isolates). After being fermented, CNS was subjected to hydrolysis by a commercial enzymatic mix to evaluate the effect of fermentation in saccharification yield. After 48 h hydrolysis with 10 CMCase U mL−1 enzymatic mix, CNS fermented with both Trametes strains was recorded with higher saccharification yield (around 253 mg g−1 fermented CNS), representing 25% w/w increase in reducing sugars as compared to non-fermented controls. To clarify the relationships and general mechanisms of fungal fermentation and its impacts on substrate saccharification, the effects of some independent or explanatory variables in the production of reducing sugars were estimated by general predictive saccharification models. The variables considered were lignocellulolytic activities in fungal fermentation, CNS hydrolysis time, and concentration of enzymatic hydrolysis mix. Multiple linear regression analysis revealed a very high significant effect (p < 0.0001) of fungal laccase and xylanase activities in the saccharification models, thus proving the key potential of these enzymes in CNS solid-state fermentation.
Collapse
Affiliation(s)
- Paula A. Pinto
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.A.P.); (R.M.F.B.); (I.F.); (C.A.); (A.S.)
| | - Rui M. F. Bezerra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.A.P.); (R.M.F.B.); (I.F.); (C.A.); (A.S.)
- Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Irene Fraga
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.A.P.); (R.M.F.B.); (I.F.); (C.A.); (A.S.)
- Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carla Amaral
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.A.P.); (R.M.F.B.); (I.F.); (C.A.); (A.S.)
- Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Sampaio
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.A.P.); (R.M.F.B.); (I.F.); (C.A.); (A.S.)
- Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Albino A. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.A.P.); (R.M.F.B.); (I.F.); (C.A.); (A.S.)
- Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
15
|
Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G. Fungal Laccases: The Forefront of Enzymes for Sustainability. J Fungi (Basel) 2021; 7:1048. [PMID: 34947030 PMCID: PMC8708107 DOI: 10.3390/jof7121048] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023] Open
Abstract
Enzymatic catalysis is one of the main pillars of sustainability for industrial production. Enzyme application allows minimization of the use of toxic solvents and to valorize the agro-industrial residues through reuse. In addition, they are safe and energy efficient. Nonetheless, their use in biotechnological processes is still hindered by the cost, stability, and low rate of recycling and reuse. Among the many industrial enzymes, fungal laccases (LCs) are perfect candidates to serve as a biotechnological tool as they are outstanding, versatile catalytic oxidants, only requiring molecular oxygen to function. LCs are able to degrade phenolic components of lignin, allowing them to efficiently reuse the lignocellulosic biomass for the production of enzymes, bioactive compounds, or clean energy, while minimizing the use of chemicals. Therefore, this review aims to give an overview of fungal LC, a promising green and sustainable enzyme, its mechanism of action, advantages, disadvantages, and solutions for its use as a tool to reduce the environmental and economic impact of industrial processes with a particular insight on the reuse of agro-wastes.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Olga Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Tatyana Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| |
Collapse
|