1
|
Taylor AJ, Marques JA, Marangoni LFDB, Taylor MMN, Pereira CM, Abrantes DP, Castro CBE, Calderon EN, Costa PG, Bianchini A. Linking riverine metal and pesticide pollution to biochemical biomarker responses in the scleractinian coral Mussismilia hispida. MARINE POLLUTION BULLETIN 2025; 218:118181. [PMID: 40409060 DOI: 10.1016/j.marpolbul.2025.118181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Concentrations of metals (Cu, Cd, Cr, and Pb) were assessed in the skeleton (sCu, sCd, sCr, and sPb) and tissue (sCu, sCd, sCr, and sPb) of the scleractinian coral Mussismilia hispida, alongside pesticide (organophosphate and organochlorine) concentrations and biomarker (Ca-ATPase and carbonic anhydrase) responses in tissue samples. Corals were collected from four sites at varying distances (2.0-9.4 km) from the Buranhém River mouth towards the Recife de Fora Municipal Natural Park - RFMNP (Porto Seguro, Bahia, Brazil). sCu, tCu and sPb concentrations were higher in corals closer to the river mouth. Tissue pesticide concentrations and Ca-ATPase activity remained consistent across sampling sites and seasons. However, carbonic anhydrase activity was greater in corals from sampling sites closer to the river mouth. Biomarkers were not significantly related to seawater physicochemical parameters and pesticide concentrations regardless of the sampling site and season. However, Ca-ATPase activity was positively influenced by tCd and tPb concentrations and negatively affected by tCu and tCr concentrations. A positive influence of sCu and sPb on carbonic anhydrase activity was observed, especially towards the sampling sites closer to the river mouth. These findings point out the Buranhém River as source of chemical contaminants, posing biological risks to corals in the RFMNP. This study provides crucial data on metal and pesticide contamination in South Atlantic's coral reefs, contributing to the development of conservation and management strategies in coastal coral reefs. Notably, this is the first report of pesticide contamination in corals from the South Atlantic Ocean.
Collapse
Affiliation(s)
- Andrew James Taylor
- Programa de Pós-graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
| | - Joseane Aparecida Marques
- Programa de Pós-graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil
| | - Laura Fernandes de Barros Marangoni
- Programa de Pós-graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil
| | - Marina Marinho Novazzi Taylor
- Curso de Graduação em Oceanologia, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
| | - Cristiano Macedo Pereira
- Programa de Pós-graduação em Zoologia, Universidade Federal do Rio de Janeiro, Parque Quinta da Boa Vista, São Cristovão, Rio de Janeiro, RJ 20940-040, Brazil
| | - Douglas Pinto Abrantes
- Programa de Pós-graduação em Zoologia, Universidade Federal do Rio de Janeiro, Parque Quinta da Boa Vista, São Cristovão, Rio de Janeiro, RJ 20940-040, Brazil
| | - Clovis Barreira E Castro
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil
| | - Emiliano Nicolas Calderon
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil; Instituto de Biodiversidade e Sustentabilidade, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, 27965-045 Macaé, RJ, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
2
|
Chang F, Yin X, Ju H, Zhang Y, Yin L, Zhou X, Feng Y, Diao X. Organic ultraviolet filters in Hainan coral reefs: Distribution, accumulation, and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125541. [PMID: 39706560 DOI: 10.1016/j.envpol.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Organic ultraviolet filters (OUVFs) have been widely used as functional ingredients of sunscreen products and have entered into marine ecosystems, particularly in tropical areas where solar UV radiation is strong. These chemicals, with their potential toxicity and ecological risk, have raised widespread concern for the protection of the fragile marine ecosystem of coral reefs. In this study, fourteen OUVFs were analyzed among 24 coral species, together with their habitats including seawater and sediment from the coastal coral reef regions of Hainan Island, South China Sea. Surprisingly, all of fourteen OUVFs were detected in each sample, indicating the wide distribution of OUVFs among sites and samples. Among the fourteen OUVFs, benzophenone-3 (BP-3) and 4-methylbenzylidene camphor (4-MBC) were the most abundant, with concentrations ranging from 35.3 to 75.6 and 38.3 to 61.4 ng/L in seawater, from 13.2 to 25.9 and 7.0 to 17.4 ng/g dw in sediment, and from 4.5 to 21.3 and 4.4 to 19.7 ng/g dw in corals, respectively. Analysis of OUVFs in 24 coral species pointed that OUVFs accumulation in corals is morphology dependent: the highest concentration of OUVFs was identified in Galaxea fascicularis with abundant of polyps and tentacles while the lowest levels of OUVFs were found in Porites mayeri (smooth or lobed surface). In corals, we found that these OUVFs accumulated, depending on the coral species and the types of OUVFs. The ecological risk assessment further indicated that BP-3, 4-MBC and BP-8 had posed risks to corals. In addition, significantly higher concentrations of OUVFs were observed in Sanya (a seaside tourist resort) than in the other sites, suggesting that tourist activity and use of sunscreen products are the key to high inputs of sunscreen agents into marine ecosystem. Overall, our study demonstrates a potential risk role for OUVFs in coral protection in tropical areas where coral bleaching events occur.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; School of Environment and Ecology, Hainan University, Haikou, 570228, China.
| | - Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Hanye Ju
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Yankun Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, Haikou, 570228, China; Center for Advanced Studies in Precision Instruments, Hainan University Haikou, 570228, China.
| | - Yujie Feng
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, 571100, China; Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Science, Haikou, 571100, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Arfaeinia H, Masjedi MR, Asgariyan R, Soleimani F, Alipour V, Dadipoor S, Saeedi R, Jahantigh A, Maryamabadi A. Release of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) from cigarette butts into the aquatic environment: Levels and ecotoxicity. Heliyon 2024; 10:e39046. [PMID: 39640668 PMCID: PMC11620112 DOI: 10.1016/j.heliyon.2024.e39046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Discarded cigarette waste may leach toxic elements and can contaminate different environments. In this study, the levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in cigarette butts (CBs) leachates were determined, and the release rate of these pollutants from three CBs types such as smoked CBs with and without tobacco (SCBs and SFs) and unsmoked filters (USFs) were examined. The mean concentration levels of PCBs compounds were
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Rasoul Asgariyan
- Department of Environmental, Esfahan Steel Company, Esfahan, 8477153111, Iran
| | - Farshid Soleimani
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vali Alipour
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sara Dadipoor
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Saeedi
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anis Jahantigh
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
5
|
Qiu YW, Li J, Zhao MX, Yu KF, Zhang G. The emerging and legacy persistent organic contaminants in corals of the South China Sea. CHEMOSPHERE 2024; 359:142324. [PMID: 38740339 DOI: 10.1016/j.chemosphere.2024.142324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.
Collapse
Affiliation(s)
- Yao-Wen Qiu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mei-Xia Zhao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke-Fu Yu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
6
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
7
|
Udomkun P, Boonupara T, Sumitsawan S, Khan E, Pongpichan S, Kajitvichyanukul P. Airborne Pesticides-Deep Diving into Sampling and Analysis. TOXICS 2023; 11:883. [PMID: 37999535 PMCID: PMC10674914 DOI: 10.3390/toxics11110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
The escalating utilization of pesticides has led to pronounced environmental contamination, posing a significant threat to agroecosystems. The extensive and persistent global application of these chemicals has been linked to a spectrum of acute and chronic human health concerns. This review paper focuses on the concentrations of airborne pesticides in both indoor and outdoor environments. The collection of diverse pesticide compounds from the atmosphere is examined, with a particular emphasis on active and passive air sampling techniques. Furthermore, a critical evaluation is conducted on the methodologies employed for the extraction and subsequent quantification of airborne pesticides. This analysis takes into consideration the complexities involved in ensuring accurate measurements, highlighting the advancements and limitations of current practices. By synthesizing these aspects, this review aims to foster a more comprehensive and informed comprehension of the intricate dynamics related to the presence and measurement of airborne pesticides. This, in turn, is poised to significantly contribute to the refinement of environmental monitoring strategies and the augmentation of precise risk assessments.
Collapse
Affiliation(s)
- Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA;
| | - Siwatt Pongpichan
- NIDA Center for Research and Development of Disaster Prevention and Management, Graduate School of Social Development and Management Strategy, National Institute of Development Administration (NIDA), Bangkok 10240, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (P.U.); (T.B.); or (S.S.)
| |
Collapse
|
8
|
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. TOXICS 2023; 11:858. [PMID: 37888709 PMCID: PMC10611335 DOI: 10.3390/toxics11100858] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.
Collapse
Affiliation(s)
- Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| |
Collapse
|
9
|
Zuo W, Lin Q, Liu X, Lv L, Zhang C, Wu S, Cheng X, Yu Y, Tang T. Spatio-temporal distribution of organochlorine pesticides in agricultural soils of southeast China during 2014-2019. ENVIRONMENTAL RESEARCH 2023:116274. [PMID: 37276974 DOI: 10.1016/j.envres.2023.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Organochlorine pesticides (OCPs) are organic pollutants that are persistent and undegradable in the environment. To investigate their residual concentrations, spatial and temporal distributions, and the relationship with the crops planted, 12 individual OCPs in 687 soil samples from Jiangsu, Zhejiang and Jiangxi provinces of southeast China were examined. The detection frequencies of OCPs in the studied areas were 1.89%-64.9%. The concentrations of dichloro-diphenyl-trichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), and endosulfans ranged from 0.01 to 5659 μg/kg, 0.03-3.58 μg/kg, and 0.05-3235 μg/kg, respectively. Jiangsu was mainly contaminated by p,p'-DDT, p,p'-DDD and endosulfan sulfate, Zhejiang was more polluted by OCPs except δ-HCH, and Jiangxi was more vulnerable to the contamination of OCPs except o,p'-DDE. The partial least-squares discrimination analysis (PLS-DA) model with RX2 36.3-36.8% revealed that compounds with similar chemical properties tended to appear in the same year and month. All crop lands were polluted by DDTs and Endosulfans. The highest concentrations of DDTs and Endosulfans were found in citrus and vegetable fields, respectively. This study offers new insight into the layout and partitioning of OCPs in agricultural land and into insecticide management on public health and ecological safety.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Qin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou, 310020, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
Pei J, Hu J, Zhang R, Liu N, Yu W, Yan A, Han M, Liu H, Huang X, Yu K. Occurrence, bioaccumulation and ecological risk of organic ultraviolet absorbers in multiple coastal and offshore coral communities of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161611. [PMID: 36646224 DOI: 10.1016/j.scitotenv.2023.161611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of organic ultraviolet absorbers (OUVAs) in coral reef regions has aroused widespread concern. This study focused on the occurrence, distribution, bioaccumulation and ecological risk of ten OUVAs in both coastal and offshore coral reef regions in the South China Sea. While the Σ10OUVAs was 85 % lower in the offshore seawater (15.1 ng/L) than in the coastal seawater (102.1 ng/L), the Σ10OUVAs was 21 % lower in the offshore corals (1.82 μg/g dry weight (dw)) than in the coastal corals (2.31 μg/g dw). This difference was speculated to relate to the high intensity of human activities in the coastal regions. Moreover, the offshore corals showed higher bioaccumulative capability toward OUVAs (log bioaccumulation factors (BAFs): 1.22-5.07) than the coastal corals (log BAFs: 0.17-4.38), which was presumably the influence of varied physiological status under different environmental conditions. The results of the ecological risk assessment showed that BP-3 resulted in 73 % of coastal corals and 20 % of offshore corals at a risk of bleaching. Therefore, the usage and discharge of BP-3 should be managed and controlled by the countries adjacent to the South China Sea for the protection of coral reefs.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Junjie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Huanxin Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
11
|
Ouédraogo DY, Mell H, Perceval O, Burga K, Domart-Coulon I, Hédouin L, Delaunay M, Guillaume MMM, Castelin M, Calvayrac C, Kerkhof O, Sordello R, Reyjol Y, Ferrier-Pagès C. What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:4. [PMID: 39294817 PMCID: PMC11378836 DOI: 10.1186/s13750-023-00298-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Tropical coral reefs cover only ca. 0.1% of the Earth's surface but harbour exceptional marine biodiversity and provide vital ecosystem services to millions of people living nearby. They are currently threatened by global (e.g. climate change) and local (e.g. chemical pollution) stressors that interact in multiple ways. While global stressors cannot be mitigated by local actions alone, local stressors can be reduced through ecosystem management. Here, we aimed to systematically review experimental studies assessing the toxicity of chemical pollutants to tropical reef-building corals to generate accessible and usable knowledge and data that can be used to calculate measurement endpoints in ecological risk assessment. From the quantitative estimates of effects, we determined toxicity thresholds as the highest exposures tested at which no statistically significant adverse effects were observed, and we compared them to regulatory predicted no effect concentrations for the protection of marine organisms, to assess whether these reference values are indeed protective of corals. METHODS The evidence was taken from a systematic map of the impacts of chemicals arising from human activity on tropical reef-building corals published in 2021. All studies in the map database corresponding to the knowledge cluster "Evidence on the ecotoxicological effects of chemicals on corals" were selected. To identify subsequently published literature, the search was updated using a subset of the search string used for the systematic map. Titles, abstracts and full-texts were screened according to the criteria defining the selected cluster of the map. Because the eligibility criteria for the systematic review are narrower than the criteria used to define the cluster in the systematic map, additional screening was performed. Studies included were critically appraised and each study was rated as low, unclear, medium, or high risk of bias. Data were extracted from the studies and synthesised according to a strategy dependent on the type of exposure and outcome. REVIEW FINDINGS The systematic review reports the known effects of chemical exposures on corals from 847 studies corresponding to 181 articles. A total of 697 studies (161 articles) were included in the quantitative synthesis and 150 studies (50 articles) in the narrative synthesis of the findings. The quantitative synthesis records the effects of 2706 exposure concentrations-durations of 164 chemicals or mixtures of chemicals, and identifies 105 toxicity thresholds corresponding to 56 chemicals or mixtures of chemicals. When toxicity thresholds were compared to reference values set for the protection of marine organisms by environmental agencies, the reference values appear to be protective of corals for all but three chemicals assessed: the metal copper and the pesticides diuron and irgarol 1051. CONCLUSIONS This open-access database of known ecotoxicological effects of chemical exposures on corals can assist managers in the ecological risk assessment of chemicals, by allowing easy determination of various ecotoxicological thresholds. Several limitations of the toxicity tests synthesised here were noted (in particular the lack of measurement of effective concentrations for more than half of the studies). Overall, most of the currently available data on coral toxicity should be replicated independently and extended to corals from less studied geographical regions and functional groups.
Collapse
Affiliation(s)
- Dakis-Yaoba Ouédraogo
- Direction de L'Expertise, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France.
| | - Hugo Mell
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Olivier Perceval
- Office Français de la Biodiversité (OFB), 94300, Vincennes, France
| | - Karen Burga
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Laetitia Hédouin
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- USR 3278 CRIOBE, PSL Université Paris : EPHE-UPVD-CNRS, 98729, Papetoai, Mo'orea, French Polynesia
| | - Mathilde Delaunay
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOrEA), Muséum National d'Histoire Naturelle-CNRS - SorbonneU - IRD - UCN - UA EcoFunc - Aviv, 75005, Paris, France
| | - Magalie Castelin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle - CNRS - Sorbonne Université - EPHE - Université des Antilles, 75005, Paris, France
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, University of Perpignan via Domitia, 66000, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités - CNRS, 66650, Banyuls Sur Mer, France
| | - Odile Kerkhof
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Romain Sordello
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Yorick Reyjol
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | | |
Collapse
|
12
|
Rafeeinia A, Asadikaram G, Karimi Darabi M, Abolhassani M, Moazed V, Abbasi-Jorjandi M. Organochlorine pesticides, oxidative stress biomarkers, and leukemia: a case-control study. J Investig Med 2023; 71:295-306. [PMID: 36718847 DOI: 10.1177/10815589221145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exposure to pesticides has been linked to an elevated risk of leukemia. The present research aimed to evaluate the relationship between organochlorine (OC) pesticides and biomarkers of oxidative stress in leukemia patients. This work was conducted on 109 patients with leukemia and 109 healthy controls. The serum concentrations of seven derivatives of OCs including alpha-HCH, beta-HCH, gamma-HCH, 2,4-DDT, 4,4-DDT, 2,4-DDE, and 4,4-DDE along with acetylcholinesterase (AChE), glutathione peroxidase (GPx), superoxide dismutase (SOD), paraoxonase-1 (PON1), and catalase (CAT) activities as well as total antioxidant capacity (TAC), nitric oxide (NO), protein carbonyl (PC), and malondialdehyde (MDA) levels were measured in all the subjects. Levels of OCs were remarkably higher in leukemia patients compared to the controls (p < 0.05). In addition, levels of SOD, AChE, GPx, PON-1, and TAC were remarkably lower in leukemia patients compared to controls (p < 0.05). In contrast, MDA, NO, and PC concentrations were higher in leukemia patients than in the controls (p < 0.05). Moreover, the serum level of 4,4-DDE was negatively associated with GPx activity (p = 0.038). Our findings suggest that OCs may play a role in the development of leukemia by disrupting the oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Arash Rafeeinia
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Karimi Darabi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Moslem Abolhassani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|
14
|
Kang Y, Zhang R, Yu K, Han M, Li H, Yan A, Liu F, Shi J, Wang Y. Organophosphate esters (OPEs) in a coral reef food web of the Xisha Islands, South China Sea: Occurrence, trophodynamic, and exposure risk. CHEMOSPHERE 2023; 313:137652. [PMID: 36581113 DOI: 10.1016/j.chemosphere.2022.137652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite organophosphate esters (OPEs) are widely prevalent in the environment, however, limited information is available regarding their occurrence, trophodynamics, and exposure risks in coral reef ecosystems. In this study, 11 OPEs were investigated in a tropical marine food web (7 fish species and 9 benthos species) from the Xisha (XS) Islands, South China Sea (SCS). The ∑11OPEs were 1.52 ± 0.33 ng/L, 2227 ± 2062 ng/g lipid weight (lw), 1024 ± 606 ng/g lw, and 1800 ± 1344 ng/g lw in seawater, fish, molluscs, and corals, respectively. Tris (2-chloroisopropyl) phosphate (TCIPPs) were the dominant OPEs in seawater, fish, and molluscs, while tris (2-butoxyethyl) phosphate (TBOEP) predominated in coral tissues. Abiotic and biotic factors jointly affect the OPEs enrichment in marine organisms. Trophic magnification factors (TMFs) (range: 1.31-39.2) indicated the biomagnification potency of OPEs. A dietary exposure risk assessment indicated that OPEs at current levels in coral reef fish posed a low risk to human health but were not negligible. Overall, this study contributes to a further understanding of the environmental behaviors of OPEs in coral reef ecosystems.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jingwen Shi
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
15
|
Cui Y, Tang S, Li Z, Wang Y, Jiang G. Transportation and Transformation of Legacy Pesticides, Currently Used Pesticides, and Degradation Products: From Corn Planting to Corn Flour Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15371-15379. [PMID: 36449536 DOI: 10.1021/acs.jafc.2c05817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pesticide residues in food are a critical issue affecting food safety. The pesticide contaminants in food include currently used, legacy pesticides, and degradation products. Thus, this study analyzed the effects of planting and processing on the transfer and degradation of pesticide residues in corn. Specifically, we studied the transportation and transformation of 26 organochlorine pesticides (OCPs), 6 currently used pesticides, and 2 degradation products throughout corn planting and flour processing. For the currently used pesticide, diquat applied in this study did not significantly affect its concentration in soils. Different from this, λ-cyhalothrin application increased its concentration in soils. Therein, λ-cyhalothrin degraded to 3-PBA in a short time, and 3-PBA degraded faster than λ-cyhalothrin. The concentrations of legacy, currently used pesticides, and degradation products were higher in bran than in corn flour, indicating that the outer portions of corn kernels accumulated more pesticides. However, the results for λ-cyhalothrin were the opposite, indicating that the surrounding of bran is more favorable for degrading λ-cyhalothrin. The short- and long-term risks of consumer exposure to these pesticide residues via corn consumption are relatively insignificant based on the implementation time and dose in this study.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shanshan Tang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou310024, China
- Beihang Hangzhou Innovation Institute, Yuhang, Hangzhou310023, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou310024, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou310024, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou310024, China
| |
Collapse
|
16
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Arumugam N, Almansour AI, Keerthana M, Perumal K. Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2022; 308:136459. [PMID: 36150495 DOI: 10.1016/j.chemosphere.2022.136459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues (PRs) in farmed shrimps are concerning food safety risks. Globally, India is a major exporter of pacific white leg shrimp (P. vannamei). This study was undertaken to analyze PRs in the water, sediments, shrimps, and feed at different growth stages to evaluate the ecotoxicological and human health risks. PRs in the seawater and sediments ranged from not detected (ND) to 0.027 μg/L and 0.006-12.39 μg/kg, and the concentrations were within the maximum residual limits (MRLs) and sediment quality guidelines prescribed by the World Health Organization and Canadian Environment Guidelines, respectively. PRs in shrimps at three growth stages viz. Postlarvae, juvenile, and adults, ranged from ND to 0.522 μg/kg, below the MRLs set by Codex Alimentarius Commission and European Commission. Most of the PRs in water, sediments, and shrimps did not vary significantly (p > 0.05) from days of culture (DOC-01) to DOC-90. The hazard quotient (HQ) and hazard ratio (HR) were found to be < 1, indicating that consumption of shrimps has no noncarcinogenic and carcinogenic risks. PRs in shrimp feed ranged from ND to 0.777 μg/kg and were found to be below the MRLs set by EC, which confirms that the feed fed is safe for aquaculture practices and does not biomagnify in animals. The risk quotient (RQ) and toxic unit (TU) ranged from insignificant level (ISL) to 0.509 and ISL to 0.022, indicating that PRs do not pose acute and chronic ecotoxicity to aquatic organisms. The study suggested no health risk due to PRs in shrimps cultured in India and exported to the USA, China, and Japan. However, regular monitoring of PRs is recommended to maintain a sustainable ecosystem.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muruganantham Keerthana
- Department of Fisheries and Fishermen Welfare, Department of Fisheries (AD Office), Thoothukudi, 628 008, Tamil Nadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
17
|
Kang Y, Zhang R, Yu K, Han M, Pei J, Chen Z, Wang Y. Organochlorine pesticides (OCPs) in corals and plankton from a coastal coral reef ecosystem, south China sea. ENVIRONMENTAL RESEARCH 2022; 214:114060. [PMID: 35981611 DOI: 10.1016/j.envres.2022.114060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhenghua Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
18
|
Nath R, Komala G, Fantke P, Mukherjee S. Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus esculentus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155591. [PMID: 35490803 DOI: 10.1016/j.scitotenv.2022.155591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The non-judicious application of the harmful pesticide endosulfan on okra, one of India's most consumed vegetable crops, has resulted in the frequent detection of residues in food samples. This can lead to resistance and the resurgence of various pests and diseases. In this context, combined dissipation and residue dynamics of different endosulfan components or mixtures (isomers and metabolites) in crop compartments are not yet well understood. To address this research gap, the present study evaluates the dissipation and persistence behavior of different endosulfan isomers (alpha-, beta-isomers) and major metabolite (endosulfan sulfate) on okra during 2017 and 2018. The half-life of endosulfan on okra leaves was found to be between 1.79 and 3.47 days. Half of the endosulfan deposits on okra fruits at the recommended doses were dissipated after 2.39 days compared to 1.99 days at double recommended doses (mean of 2017 and 2018 residue data). Measured endosulfan residues were evaluated against the dynamic plant uptake model dynamiCROP. The better fits were observed between modeled and measured residues for fruits (R2 from 0.84 to 0.96 and residual standard error (ER) between 0.6 and 1.47) as compared to leaves (R2 from 0.57 to 0.88). We also report fractions of endosulfan components ingested by humans after crop harvest. Intake fractions range from 0.0001-7.2 gintake/kg of applied pesticide. Our results can evaluate pesticide residues in different crops grown for human consumption, including their isomers and metabolites. They can be combined with dose-response information to evaluate human exposure and/or health risk assessment.
Collapse
Affiliation(s)
- Ravinder Nath
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - G Komala
- Department of Entomology, School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
| |
Collapse
|
19
|
Zeng JY, Miao Y, Liu C, Deng YL, Chen PP, Zhang M, Cui FP, Shi T, Lu TT, Liu CJ, Zeng Q. Serum multiple organochlorine pesticides in relation to testosterone concentrations among Chinese men from an infertility clinic. CHEMOSPHERE 2022; 299:134469. [PMID: 35367495 DOI: 10.1016/j.chemosphere.2022.134469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Organochlorine pesticides (OCPs) are endocrine-disrupting chemicals and may alter male reproductive hormone concentrations. OBJECTIVE To explore the associations between multiple OCP exposures and serum testosterone concentrations among Chinese men. METHODS We investigated 421 men who provided serum samples from an infertility clinic in Wuhan, China. Each man completed a questionnaire concerning demographic characteristics and lifestyle habits. Serum concentrations of 18 OCPs and total testosterone were measured. Linear regression models were used to explore whether serum OCP levels were associated with altered testosterone concentrations, and potential effect modifications by age and body mass index (BMI) were also examined. RESULTS After adjusting for potential confounders, elevated dieldrin and p,p'-DDD levels had monotonically negative and positive exposure-response associations with testosterone concentrations, respectively (-30.98 ng/dL, 95% CI: -72.34, 10.37; P for trend = 0.12 and 41.31 ng/dL, 95% CI: -0.32, 82.93; P for trend = 0.06 for the highest vs. non-detectable exposure category, respectively). After stratification by age and BMI, dieldrin in relation to decreased testosterone concentrations was more pronounced among men aged <30 years old, and p,p'-DDD in relation to increased testosterone concentrations was stronger among men aged ≥30 years old and among men with a BMI <24 kg/m2, though the differences were not statistically significant. CONCLUSION The study found evidence that serum dieldrin and p,p'-DDD concentrations might be associated with altered serum testosterone concentrations.
Collapse
Affiliation(s)
- Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
20
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P. Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associated human health risk assessment: Our vision and future scope. CHEMOSPHERE 2022; 297:134075. [PMID: 35218780 DOI: 10.1016/j.chemosphere.2022.134075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Food safety is crucial in today's competitive trading market, as it directly affects human health and promotes seafood exports. The effects of thermal processing (boiling, frying, grilling, and microwave cooking) on pesticide residues (PR) in P. vannamei were assessed. The PR in raw and processed shrimp ranged from 0.007 to 0.703 μg/kg for uncooked/raw, not detected (ND) to 0.917 μg/kg for boiled, ND to 0.506 μg/kg for fried, ND to 0.573 μg/kg for grilled and ND to 0.514 μg/kg for microwave cooked shrimps. The Endrin, endosulfan sulfate, and heptachlor were predominant PR found in the raw and processed shrimp. The PR content in raw and cooked shrimps were below the maximum residue limits (MRL) set by the Codex Alimentarius Commission (2021) and the European Commission (86/363/1986 and 57/2007). The estimated daily intake (EDI) of PR from raw and processed shrimps were below the ADI prescribed by CAC. The hazard quotient (HQ) and hazard ratio (HR) values were <1, indicating no non-carcinogenic or carcinogenic health implications through shrimp consumption. The estimated maximum allowable shrimp consumption rate (CRlim) suggests an adult can eat >100 shrimp meals/month, which is over the USEPA's (2000)recommendation of >16 meals/month without health issues. The Effect of thermal processing was detected in the following order: boiling < grilling < frying < microwave cooking. The processing factor (PF < 0.7), paired t-test (t < 0.05), Tukey post hoc (p < 0.05) test, Bray-Curtis similarity index, and matrix plot exhibited that all the four thermal processing methods have a considerable impact on pesticides in the processed shrimps. But frying (59.4%) and microwave cooking (60.3%) reduced PR far beyond boiling (48.8%) and grilling (51.3%). Hence, we recommend frying and microwave processing are better methods for minimizing PR in seafood than boiling or grilling.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
21
|
Rafeeinia A, Asadikaram G, Karimi-Darabi M, Abolhassani M, Abbasi-Jorjandi M, Moazed V. Organochlorine pesticides, oxidative stress biomarkers, and leukemia: a case-control study. J Investig Med 2022; 70:1736-1745. [DOI: 10.1136/jim-2021-002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Exposure to pesticides has been linked to an elevated risk of leukemia. The present research aimed to evaluate the relationship between organochlorine (OC) pesticides and biomarkers of oxidative stress in patients with leukemia. This work was conducted on 109 patients with leukemia and 109 healthy controls. The serum concentrations of seven derivatives of OCs including alpha-hexachlorocyclohexane (HCH), beta-HCH, gamma-HCH, 2,4-dichlorodiphenyltrichloroethane (DDT), 4,4-DDT, 2,4-dichlorodiphenyldichloroethylene (DDE), and 4,4-DDE along with acetylcholinesterase (AChE), glutathione peroxidase (GPx), superoxide dismutase (SOD), paraoxonase-1 (PON1), and catalase (CAT) activities as well as total antioxidant capacity (TAC), nitric oxide (NO), protein carbonyl (PC), and malondialdehyde (MDA) levels were measured in all the subjects. Levels of OCs were remarkably higher in patients with leukemia compared with the controls (p<0.05). In addition, levels of SOD, AChE, GPx, PON1, and TAC were remarkably lower in patients with leukemia compared with controls (p<0.05). In contrast, MDA, NO, and PC concentrations were higher in patients with leukemia than in the controls (p<0.05). Moreover, the serum level of 4,4-DDE was negatively associated with GPx activity (p=0.038). Our findings suggest that OCs may play a role in the development of leukemia by disrupting the oxidant/antioxidant balance.
Collapse
|