1
|
Na M, Zhang C, Xu S, Li X, Zhou S, Zhou J. Melatonin application enhances the remediation of cadmium-contaminated soils by Cinnamomum camphora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178912. [PMID: 39978061 DOI: 10.1016/j.scitotenv.2025.178912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cinnamomum camphora (C. camphora) is a tolerant plant with high potential for cadmium (Cd) uptake and resistance. However, it is still unclear how melatonin application regulates Cd absorption and detoxification in C. camphora, and whether the soil quality is improved after remediation. In this study, melatonin was applied at the concentration of 20 mg·kg-1 soil to the Cd-contaminated soil planted with C. camphora. We aimed to investigate the effect of exogenous melatonin on Cd phytoextraction and detoxification in C. camphora by assessing physiological and biochemical responses. We found that melatonin application improved Cd content in C. camphora (p < 0.05), with a pronounced increase by 150 % in both stem phloem and leaves. Under Cd stress, melatonin application resulted in a Cd bioconcentration factor that was over 2-times higher, and Cd translocation factors from root to stem and from stem to vein which were increased to the level of 1.0. Exogenous melatonin also enhanced plant growth and photosynthesis under the 180-day Cd stress. In addition, melatonin promoted C. camphora to modify its antioxidant defense systems in response to various temporal stages of Cd stress. At the early stage, melatonin decreased malondialdehyde by >20 % and increased both proline and glutathione reduction by over 30 %. At the late stage, melatonin increased glutathione and soluble sugar by 46.0 % and 10.7 %, respectively. Peroxidase activity was stimulated by melatonin throughout the growth period (p < 0.05). In the remediated soil, melatonin application decreased soil respiration by 12.5 % and inhabited activities of urease, catalase, and dehydrogenase, indicating improved soil quality. Overall, our findings suggest that melatonin application can enhance Cd phytoextraction and detoxification in C. camphora from contaminated soils, providing new insights into applicable strategies for Cd phytoremediation.
Collapse
Affiliation(s)
- Meng Na
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Chenyang Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shangqi Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Qian J, Lu M, Cui S, Han T, Avramidis S, Liu S, Sun J. Application risk and value of Cd-enriched poplar wood: Wood properties, leaching characteristics and brown rot resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136591. [PMID: 39586160 DOI: 10.1016/j.jhazmat.2024.136591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
This study investigated the application risk and value of Cd-enriched poplar wood, focusing on its wood properties, leaching characteristics, and brown rot resistance. The results indicated that Cd deposition in cell walls significantly inhibited brown rot fungi, thereby enhancing decay resistance. Furthermore, the extent of improvement in brown rot resistance was linked to wood density: the higher the density of Cd-enriched poplar wood, the stronger its resistance to brown rot. As the Cd concentration increased, the Cd distribution abundance and the wood crystallinity gradually increased. Structural changes were observed, including fluctuating microfibril angle and double wall thickness of fibers and vessels. Cd concentrations exceeding 50 mg/kg altered the chemical composition of the cell walls. The binding form of Cd in wood cell wall showed a trend of bound Cd > free Cd > residual Cd. Cd leaching occurred under cyclic soaking in water, which may lead to secondary contamination. However, under the condition of 75 % relative humidity, Cd leaching was negligible, suggesting potential for safer use in controlled environments. These findings provide valuable insights into the management and application of Cd-enriched wood, especially in contexts where decay resistance is critical or in water-exposed environments.
Collapse
Affiliation(s)
- Jing Qian
- Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Manman Lu
- Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shixia Cui
- Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Taoyu Han
- Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Stavros Avramidis
- Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shengquan Liu
- Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Jiejie Sun
- Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Wang L, Liu Q, Fu J, Xiao Y, Yang J, Liao X. Sustainable remediation of Cd-contaminated farmland through the rotation of rapeseed-rice varieties with different Cd accumulation potentials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117453. [PMID: 39647366 DOI: 10.1016/j.ecoenv.2024.117453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
In response to the safety risks posed by cadmium (Cd)-contaminated rice fields worldwide, a suitable production-and-restoration strategy is required for actual agricultural practices. To investigate the remediation effects of different accumulation varieties in rapeseed-rice cropping systems and their influence on Cd migration and transportation, field experiments were conducted based on different planting combinations (FWHR, conventional rice variety (HR) monoculture under fallow; FWLR, low Cd-accumulating rice variety (LR) monoculture under fallow; LOLR, LO (low Cd-accumulating rapeseed variety)-LR rotation; LOHR, LO-HR rotation; HOLR, HO (high Cd-accumulating rapeseed variety)-LR rotation; HOHR, HO-HR rotation). The study found that a rapeseed and rice rotation with appropriate varieties could reduce the rice grain Cd content, increase rice yield, and remove soil Cd without affecting agricultural production efficiency. Compared to the fallow-conventional rice pattern, various rapeseed-rice rotations reduced the Cd content of rice grains by 15 %-38 %, and significantly increased the available potassium (Ava-K) in the subsequent rice soil by 29.6-56.4 mg/kg. The total economic benefits increased by $500-$1800 per hectare. A high accumulation variety of rapeseed and low accumulation variety of rice produced the most effective reduction in Cd levels, with a reduction rate of 38 % in brown rice and an annual removal rate of 24.42 g/hm2. This combination also resulted in a 29 % increase in rice yield compared to the fallow-low accumulation variety rice pattern. Structural equation modeling revealed that with the combined action of crop rotation and variety selection the crop rotation directly reduced the soil available Cd or had an indirect effect by weakening the root-zone acidification effect and increasing soil Ava-P. The rotation of rapeseed and rice with carefully selected matching varieties is a feasible solution for the safe production and pollution remediation of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Qiqing Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Jingyi Fu
- College of Environment & Ecology, Hunan Agricultural University, Changsha, China
| | - Yuxuan Xiao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
4
|
Liu N, Zhao J, Du J, Hou C, Zhou X, Chen J, Zhang Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174237. [PMID: 38942300 DOI: 10.1016/j.scitotenv.2024.174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.
Collapse
Affiliation(s)
- Nengqian Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiang Zhao
- Shanghai Rural Revitalization Research Center, PR China
| | - Jiawen Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
5
|
Shi J, Yang Y, Shen Z, Lin Y, Mei N, Luo C, Wang Y, Zhang C, Wang D. Identifying heavy metal sources and health risks in soil-vegetable systems of fragmented vegetable fields based on machine learning, positive matrix factorization model and Monte Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135481. [PMID: 39128147 DOI: 10.1016/j.jhazmat.2024.135481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Urban fragmented vegetable fields offer fresh produce but pose a potential risk of heavy metal (HM) exposure. Thus, this study investigated HM sources and health risks in the soil-vegetable systems of Chongqing's central urban area. Results indicated that Cd was the primary pollutant, with 28.33 % of soil samples exceeding the screening value. Amaranth was particularly problematic, exceeding thresholds for Cd, Hg, and Cr, and both amaranth and celery showed significantly higher HM accumulation (p < 0.05). The HM pollution level in the soil-vegetable system was moderate or above. The sources of HMs identified via Positive matrix factorization (PMF) model included agricultural activities (18.19 %), natural soil parent material (25.88 %), mixed metal smelting and transportation (30.72 %), and coal combustion (25.21 %). Furthermore, evaluations using the Random Forest (RF) model revealed an intricate interaction of factors influencing the presence of HMs, where enterprise density, population density, and road density played significant roles in HMs accumulation. Monte Carlo assessments revealed higher non-carcinogenic risks for children (Pb, As) and greater carcinogenic risks for adults (Cd). Therefore, the issue of HM pollution in soils and vegetables from fragmented fields in industrial urban areas need attention, given the potential for elevated health risks with long-term vegetable consumption.
Collapse
Affiliation(s)
- Jiacheng Shi
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhijie Shen
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| | - Yuding Lin
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Nan Mei
- Chongqing Municipal Solid Waste Management Center, Chongqing 401147, China
| | - Chengzhong Luo
- Chongqing Municipal Solid Waste Management Center, Chongqing 401147, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Malik I, Ashraf K, Hassan F, Ali Khan AA, Sultan K, Siddiqui MH, Zaman QU. Nano-selenium and compost vitalized morpho-physio-biochemical, antioxidants and osmolytes adjustment in soybean under tannery effluent polluted soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108807. [PMID: 38905730 DOI: 10.1016/j.plaphy.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The aim of this work was to investigate the impact of nano selenium (N-Se) and compost on the growth, photosynthesis, enzymes activity, compatible solutes and metals accumulation in soybean grown under tannery effluent polluted soil. The plants were exposed to compost application (no compost and compost addition) and foliar application of N-Se (0, 25, 50, and 75 mg L-1). The results showed the addition of compost in soil and foliar applied N-Se alleviated the toxic effect of tannery effluent polluted soil. Furthermore, foliar application of N-Se with basal compost supply significantly improved antoxidant enzymes activity in soybean grown in tannery effluent polluted soil. Addition of compost increased the root dry weight (46.43%) and shoot dry weight (33.50 %), relative water contents by (13.74 %), soluble sugars (15.99 %), stomatal conductance (gs) (83.33 %), intercellular CO2 concentration (Ci) (23.34 %), transpiration rate (E) (12.10 %) and decreased the electrolyte leakage (27.96 %) and proline contents by (20.34 %). The foliage application of N-Se at the rate of 75 mg L-1 showed the most promising results in control and compost amended tannery effluent polluted soil. The determined health risk index (HRI) values were recorded less than 1 for both adults and children under the application of compost and N-Se. In summary, the combined use of N-Se at 75 mg L⁻1 and basal supply of compost is an effective strategy for enhancing soybean productivity while minimizing the potential risks of metal accumulation in soybean grains grown in tannery effluent polluted soil.
Collapse
Affiliation(s)
- Iqra Malik
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Faiza Hassan
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Aamir Amanat Ali Khan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan.
| |
Collapse
|
7
|
Geng H, Wang F, Wu H, Qin Q, Ma S, Chen H, Zhou B, Yuan R, Luo S, Sun K. Biochar and nano-hydroxyapatite combined remediation of soil surrounding tailings area: Multi-metal(loid)s fixation and soybean rhizosphere soil microbial improvement. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133817. [PMID: 38422730 DOI: 10.1016/j.jhazmat.2024.133817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The soil near tailings areas is relatively barren and contaminated by multi-metal(loid)s, seriously threatening the safety of crop production. Here, biochar and nano-hydroxyapatite (nHAP) were combined to improve the sterilized and unsterilized polymetallic contaminated soil, and soil incubation and soybean pot experiments were designed. Results showed that biochar and nHAP not only increased soil C, N, and P but also effectively reduced multi-metal bioavailability, wherein the combined application of the two amendments had the best effect on metal immobilization. The synergistic effect of the two amendments decreased the acid-soluble contents of Co, Cu, Fe, and Pb in rhizosphere soils up to 86.75%, 80.69%, 89.09%, and 96.70%, respectively. The ameliorant reduced the accumulation of metal(loid)s in soybean plants, and rhizosphere microorganisms inhibited the migration of soil metals to plants. Additionally, biochar and nHAP regulated the rhizosphere soil microbial community. The rhizosphere soil of the sterilization group tended to prioritize the restoration of the original dominant bacteria. As, Pb, Fe, Urease, OM, TN, and TP were the critical environmental variables affecting rhizosphere soil bacterial communities. Therefore, combining biochar and nHAP is an environmentally friendly strategy to reduce polymetallic mobility in tailings soil and crops and improve soil microbial community structure.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China; School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Fei Wang
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China.
| | - Haoming Wu
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shuai Ma
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shuai Luo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Ke Sun
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| |
Collapse
|
8
|
Zhao M, Wang H, Sun J, Cai B, Tang R, Song X, Huang X, Liu Y, Fan Z. Human health risks of heavy metal(loid)s mediated through crop ingestion in a coal mining area in Eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116305. [PMID: 38599158 DOI: 10.1016/j.ecoenv.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The heavy metal(loid)s (HMs) in soils can be accumulated by crops grown, which is accompanied by crop ingestion into the human body and then causes harm to human health. Hence, the health risks posed by HMs in three crops for different populations were assessed using Health risk assessment (HRA) model coupled with Monte Carlo simulation. Results revealed that Zn had the highest concentration among three crops; while Ni was the main polluting element in maize and soybean, and As in rice. Non-carcinogenic risk for all populations through rice ingestion was at an "unacceptable" level, and teenagers suffered higher risk than adults and children. All populations through ingestion of three crops might suffer Carcinogenic risk, with the similar order of Total carcinogenic risk (TCR): TCRAdults > TCRTeenagers > TCRChildren. As and Ni were identified as priority control HMs in this study area due to their high contribution rates to health risks. According to the HRA results, the human health risk was associated with crop varieties, HM species, and age groups. Our findings suggest that only limiting the Maximum allowable intake rate is not sufficient to prevent health risks caused by crop HMs, thus more risk precautions are needed.
Collapse
Affiliation(s)
- Menglu Zhao
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaxun Sun
- Department of Geographical Sciences, University of Maryland, College Park 20742, United States
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yafeng Liu
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Liberati D, Ahmed SW, Samad N, Mugnaioni R, Shaukat S, Muddasir M, Marinari S, De Angelis P. Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118623. [PMID: 37481915 DOI: 10.1016/j.jenvman.2023.118623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/03/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Dredging activities produce large amounts of polluted sediments that require adequate management strategies. Sediment reuse and relocation can involve several environmental issues, such as the release of CO2 and nitrogen compounds in the environment, the transfer of metals to plant tissues and the persistence of phytotoxic compounds. In this framework, the aim of the present work is to evaluate the use of biochar at different doses, in combination with plant growth, to reduce the environmental impacts polluted dredged sediments. Irrespective to the plant treatment, the amendment of the sediment with the lowest dose of biochar (3%) reduced by 25% the CO2 emissions of the substrate, by 89% the substrate carbon loss and by 35% the amount of nitrogen released into the environment (average values of the three plant treatments). The negative priming effect of biochar on organic matter mineralization can be responsible for the beneficial reduction of carbon and nitrogen release in the environment. The lack of similar effects observed at the higher biochar doses can depend on the low albedo of the biochar particles, causing the substrate warming (+1 °C for highest biochar dose) and accelerating the organic matter mineralization. Finally, shrub growth in combination with 3% biochar was able to offset the CO2 emission of the sediment and to reduce the amount of nitrogen lost. This work provides new insight on the potential benefit related to the biochar amendment of organic matter-rich dredged sediments, suggesting that the use of moderate dose of wood biochar in combination with shrub plantation can reduce the release of CO2 and nitrogen compounds in the environment.
Collapse
Affiliation(s)
- Dario Liberati
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
| | - Syed Wasif Ahmed
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Nafeesa Samad
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Euro-Mediterranean Center on Climate Change (CMCC), Italy
| | - Roberta Mugnaioni
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Sundas Shaukat
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Italy
| | - Muhammad Muddasir
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Sara Marinari
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Paolo De Angelis
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| |
Collapse
|
10
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Ai Y, Wang Y, Song L, Hong W, Zhang Z, Li X, Zhou S, Zhou J. Effects of biochar on the physiology and heavy metal enrichment of Vetiveria zizanioides in contaminated soil in mining areas. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130965. [PMID: 36860049 DOI: 10.1016/j.jhazmat.2023.130965] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The effects of biochar addition on the physiological and biochemical characteristics of Vetiveria zizanioides, and the enrichment of heavy metals, were studied herein. The aim was to provide a theoretical reference for biochar to regulate the growth of V. zizanioides in the heavy metal-contaminated soil of mining areas and the enrichment capacity of Cu, Cd, and Pb. The results showed that the addition of biochar significantly increased the contents of various pigments in the middle and late growth stages of V. zizanioides, reduced the contents of malondialdehyde (MDA) and proline (Pro) in each growth period, weakened the peroxidase (POD) activity during the entire growth period; superoxide dismutase (SOD) activity decreased in the initial stages and substantially increased in the middle and late stages. The addition of biochar reduced the enrichment of Cu in the roots and leaves of V. zizanioides, while the enrichment of Cd and Pb increased. In conclusion, it was found that biochar could reduce the toxicity of heavy metals in contaminated soil in the mining area, affect the growth of V. zizanioides and its accumulation of Cd and Pb, and is, therefore, beneficial to the restoration of contaminated soil and the overall ecological restoration of the mining area.
Collapse
Affiliation(s)
- Yanmei Ai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yang Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lanping Song
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wanyue Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Zekun Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Qin S, Zhang H, He Y, Chen Z, Yao L, Han H. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161685. [PMID: 36682543 DOI: 10.1016/j.scitotenv.2023.161685] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Phosphate-solubilizing bacteria play a key role in increasing plant growth as potential suppliers of soluble phosphorus and have great potential for the remediation of heavy metal-polluted soils. However, the soil and microbiological mechanisms by which phosphate-solubilizing bacteria prevent heavy metal absorption in radish have not been adequately studied. Here, the mechanisms of phosphorus solubilization, Cd and Pb immobilization, and the inhibition of heavy metal absorption by phosphate-solubilizing bacteria were studied in radish through solution adsorption and pot experiments. Two phosphate-solubilizing bacteria with high Cd and Pb removal rates (46.9-97.12 %), Klebsiella sp. M2 and Kluyvera sp. M8, were isolated. The soluble phosphorus content released by strains M2 and M8 was 265-277 mg L-1, achieved by secreting oxalic acid, ascorbic acid, citric acid, and succinic acid in an inorganic phosphorus medium containing 3 mg L-1 Cd and 5 mg L-1 Pb. Furthermore, these two functional strains induced the formation of Pb2(PO4)2, Cd(PO3)2, Fe2Pb3(PO4)2, CdS, and PbS precipitates that immobilized Cd and Pb in the solution. In general, strains M2 and M8 inhibited the absorption of Cd and Pb by radish by the following mechanisms: i) bacterial cell wall adsorption, ii) induction of Pb2(PO4)2, Cd(PO3)2, Fe2Pb3(PO4)2, CdS, and PbS precipitation in the solution/soil, iii) increases in the Ca2P and FeP contents in the radish rhizosphere, and iv) the promotion of bacterial community enrichment toward phosphorus-solubilizing and plant growth-promoting properties (Ramlibacter, Enterobacter, Bacillus, Gemmatimonas, and Lysinibacillusin) in the radish rhizosphere. These results provide bacterial resources and technical approaches to heavy metal pollution amelioration and efficient phosphorus fertilizer use in farmland.
Collapse
Affiliation(s)
- Shanmei Qin
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Heyun Zhang
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Yonghong He
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Lunguang Yao
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| | - Hui Han
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| |
Collapse
|
13
|
Yaashikaa PR, Kumar PS. Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120031. [PMID: 36041569 DOI: 10.1016/j.envpol.2022.120031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai - 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| |
Collapse
|
14
|
Song P, Xu D, Yue J, Ma Y, Dong S, Feng J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156417. [PMID: 35662604 DOI: 10.1016/j.scitotenv.2022.156417] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 05/22/2023]
Abstract
With the increasing development of industry and urbanization, heavy metal contaminated sites have become progressively conspicuous, particularly by unreasonable emissions from electroplating, nonferrous metals smelting, mine tailing, etc. In recent years, soil remediation technologies for heavy metal contaminated sites have developed rapidly. New and effective remediation technologies have emerged successively, and more successful practical applications have appeared. Therefore, systematical summarization of the current progress is essential. As a result, in this paper, some mainstream soil remediation technologies for heavy metal contaminated sites, including physical remediation (soil thermal desorption and soil replacement), bioremediation (phytoremediation and microbial remediation), chemical remediation (chemical leaching, chemical stabilization, electrokinetic remediation-permeable reactive barrier, and chemical oxidation/reduction), as well as various combined remediation are comprehensively reviewed. The influencing factors, advantages, disadvantages, remediation mechanism, and practical applications are also deeply discussed. Besides, the corresponding remediation strategies are put forward for the remediation of heavily polluted sites such as the chemical industry, smelting, and tailing areas. Overall, this review will be beneficial for the in-depth understanding and provide references for the reasonable selection and development of soil remediation technology for heavy metal contaminated sites.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, PR China.
| | - Dan Xu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, PR China
| | - Jingyuan Yue
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, PR China
| | - Yuanchen Ma
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, PR China
| | - Shujun Dong
- Hunan University of Arts and Sciences, Changde 415000, PR China
| | - Jing Feng
- PowerChina ZhongNan Engineering Corporation Limited, Changsha 410014, PR China
| |
Collapse
|
15
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Samoraj M, Mironiuk M, Witek-Krowiak A, Izydorczyk G, Skrzypczak D, Mikula K, Baśladyńska S, Moustakas K, Chojnacka K. Biochar in environmental friendly fertilizers - Prospects of development products and technologies. CHEMOSPHERE 2022; 296:133975. [PMID: 35182533 DOI: 10.1016/j.chemosphere.2022.133975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
According to the circular economy concept, the production of fertilizers should be closed in a loop, which prevents excessive emissions and harmful effects to the environment. Biological wastes are problematic to collect and transport. They undergo a biological transformation that causes greenhouse gases emission and sanitary hazards. Biomass sources used for organic or organo-mineral fertilizers must be free of pathogens and rich in macro and microelements. Solid residues can be processed thermally. Biochar is a carbon produced by biomass pyrolysis without oxygen presence and has been used for many years to improve soil quality and enhance the efficiency of fertilization. There are many research works on the use of biochar in fertilization. This study is also extended by the latest developments and technologies from the patent database (recent year) and biochar-based fertilizers market. To the best of our knowledge, there is no such review currently available in scientific databases. Based on the collected data, the best method of biochar management was proposed - soil application. Biochar applied to soil has several advantages: it improves soil structure and its sorption capacity, enhances soil-nutrient retention and water-holding capacity, immobilizes contaminants from soil (sorption), reduces greenhouse gas emissions and soil nutrient leaching losses while stimulating the growth of a plant.
Collapse
Affiliation(s)
- Mateusz Samoraj
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland.
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Sylwia Baśladyńska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| |
Collapse
|
17
|
Effect of a Passivator Synthesized by Wastes of Iron Tailings and Biomass on the Leachability of Cd/Pb and Safety of Pak Choi (Brassica chinensis L.) in Contaminated Soil. Processes (Basel) 2021. [DOI: 10.3390/pr9111866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium (Cd) and lead (Pb) carry a high heavy-metal-toxic risk for both animals and plants in soil. In this study, iron-based biochar (T-BC) was prepared by co-pyrolysis using wastes of iron tailings and biomass with urea as the functioning agents. Field-emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and toxicity-characteristic leaching procedure (TCLP) methods were employed to analyze the physicochemical characteristics of T-BC. Additionally, a pot trial was conducted to examine the effects of T-BC on the physiological characteristics of pak choi (Brassica campestris L.), the availability of heavy metals, and enzyme activities in the soils. The results show that toxic metals have been volatilized by the roasting process and immobilized within T-BC via the formation of stable metal-compounds during the co-pyrolysis process, which satisfies the requirements of a soil passivator. Incubation experiments showed that the DTPA-extractable Cd and Pb in contaminated soils decreased with an increasing amendment rate. Moreover, in the pot experiments, by adding 1% (w/w) T-BC into soils, the soils benefited from its large adsorption, complex precipitation, and immobilization capacity. Approximately 36% Cd and 29% Pb concentrations of edible parts in pak choi were reduced. The amendment proved promising for the stabilization of Cd and Pb in contaminated soils, while providing a strategy for solving the residual waste of tailings and biomass.
Collapse
|