1
|
Li S, Zou J, Wu J, He L, Tang C, Li F, Sun B, Zhao M, Li Q, Wang P, Huang L, Cheng Q, Tan H, Ma J. Removal of Sulfonamide Antibiotics in Peracetic Acid-Mediated Natural Polyphenol Systems via an Overlooked Polymerization Pathway: Role of ortho-Quinones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7747-7759. [PMID: 40223568 DOI: 10.1021/acs.est.4c13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Natural polyphenols can be oxidized into reactive quinones, which might play a key role in the removal of specific contaminants in natural polyphenol-related advanced oxidation processes (AOPs). In this study, peracetic acid (PAA) was employed in combination with natural protocatechuic acid (PCA) to remove sulfonamide antibiotics (SAs) from water. More than 95% removal of sulfamethoxazole (SMX) and other SAs was observed in the PCA/PAA system, and neutral pH conditions (5.0-8.0) were more conducive to the removal of SMX. The PCA/PAA system exhibited a great anti-interference ability against complex water matrices. ortho-Quinone, generated from the oxidation of PCA by PAA, played a dominant role in the SMX removal. Electrons tended to transfer from SMX to the generated ortho-quinones and form covalent bonds, resulting in the production of less toxic oligomers via the overlooked polymerization pathway. A reduction in the toxicity of the SMX solution was found following treatment with the PCA/PAA system. More interestingly, several polyphenols structurally related to PCA could also facilitate SMX removal using PAA as the oxidant. Overall, this study proposes a novel strategy for developing reactive quinones dominated AOPs with robust anti-interference performance, as well as enhances the understanding of contaminant removal via an overlooked polymerization pathway in natural polyphenol-related AOPs.
Collapse
Affiliation(s)
- Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chenyu Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Bo Sun
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Min Zhao
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Lengshen Huang
- Institute of Horticulture Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Haoqiang Tan
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
2
|
Bux N, Tumrani SH, Soomro RA, Ma Q, Zhou J, Wang T. Catalytic degradation of organic pollutants in aqueous systems: A comprehensive review of peroxyacetic acid-based advanced oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123989. [PMID: 39756279 DOI: 10.1016/j.jenvman.2024.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have emerged as a promising treatment method to decontaminate organic pollutants. This review thoroughly evaluated the use of PAA-based AOPs, including their synthesis techniques, physicochemical features, and reaction pathways with pollutants. It also illustrated two primary channels: free radical pathways and non-radical pathways during the PAA activation processes and introduced various methods for activating PAA, including energy radiation, transition metal catalysis, and carbon catalysis. Additionally, this review comprehensively presented the advancements in research on PAA-based AOPs for wastewater treatment. Furthermore, the influences of key parameters on system performance, such as pH, catalyst loading, PAA dosage, and interfering species, were summarized. By critically evaluating mechanisms, performance, and prospects, this review served as a valuable resource for researchers and practitioners involved in the development and implementation of PAA-based AOPs for sustainable water remediation.
Collapse
Affiliation(s)
- Nabi Bux
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Sadam Hussain Tumrani
- Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
3
|
Qiao C, Jia W, Tang J, Chen C, Wu Y, Liang Y, Du J, Wu Q, Feng X, Wang H, Guo WQ. Advances of carbon-based materials for activating peracetic acid in advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2024; 263:120058. [PMID: 39326650 DOI: 10.1016/j.envres.2024.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity. Therefore, it is imperative to elucidate the developmental process of the carbon-based materials/PAA system through resource integration and logical categorization, thereby indicating potential avenues for future research. The present paper comprehensively reviews the structural characteristics and action mechanism of carbon-based materials in PAA system, while also analyzing the development, properties, and activation mechanism of heteroatom-doped carbon-based materials in this system. In conclusion, this study has effectively organized the resources pertaining to prominent research direction of comprehensive remediation of environmental water pollution, thereby elucidating the underlying logic and thought process. Consequently, it establishes robust theoretical foundation for future investigations and applications involving carbon-based materials/PAA system.
Collapse
Affiliation(s)
- Chenghuan Qiao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, South Korea
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Liu Y, Zhou R, Tang Y, Li X, Xu L, Fu Y. Enhanced Mn(II)/peracetic acid by nitrilotriacetic acid to degrade organic contaminants: Role of Mn(V) and organic radicals. Sci Rep 2024; 14:29686. [PMID: 39613929 DOI: 10.1038/s41598-024-81368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
In this work, it was found that the presence of nitrilotriacetic acid (NTA) could enhance the elimination of sulfamethoxazole (SMX) significantly in Mn(II)/peracetic acid (PAA) process. NTA firstly complexed with Mn(II) to produce Mn(II)-NTA complex, which could activate PAA producing CH3C(O)O· and Mn(III)-NTA complex. Subsequently, Mn(V) was generated via two-electron transfer between Mn(III)-NTA complex and PAA. According to the results of UV-vis spectrum analysis, scavenging experiments and chemical probe method, organic radicals and Mn(V) were proved to participate in SMX abatement and Mn(V) was the predominant reactive oxidant. Four possible degradation pathways of SMX in Mn(II)/PAA/NTA process including hydroxylation, amino oxidation, bond cleavage and coupling reaction were proposed based on six identified degradation products. Mn(II)/PAA/NTA process worked only in acidic and neutral conditions and the increase in PAA, Mn(II) or NTA concentration could accelerate SMX removal. This study provides a strategy for improving PAA activation by Mn(II) and an insight into SMX degradation mechanism by Mn(II)/PAA/NTA process.
Collapse
Affiliation(s)
- Yiqing Liu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Runyu Zhou
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
- Zhejiang Development & Planning Institute, Hangzhou, 310012, China
| | - Yuqi Tang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xin Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Linghan Xu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
5
|
Liu T, Li N, Xiao S, Chen J, Ji R, Shi Y, Zhou X, Zhang Y. Revisiting iodide species transformation in peracetic acid oxidation: unexpected role of radicals in micropollutants decontamination and iodate formation. WATER RESEARCH 2024; 265:122270. [PMID: 39167976 DOI: 10.1016/j.watres.2024.122270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Peracetic acid (PAA) is an alternative disinfectant for saline wastewaters, and hypohalous acids are typically regarded as the reactive species for oxidation and disinfection. However, new results herein strongly suggest that reactive radicals instead of HOI primarily contributed to decontamination during PAA treatment of iodine-containing wastewater. The presence of I- could greatly accelerate the micropollutants (e.g., sulfamethoxazole (SMX)) transformation by PAA. Chemical probes experiments and electron paramagnetic resonance analysis demonstrate acetylperoxyl radical rather than reactive iodine species primarily responsible for SMX degradation. The kinetic model was developed to further distinguish and quantify the contribution of radicals and iodine species, as well as to elucidate the transformation pathways of iodine species. Density functional theory calculations indicated that the nucleophilic attack of I- on the peroxide bond of PAA could form unstable O-I bond, with the transition state energy barrier for radical generation lower than that for HOI formation. The transformation of iodine species was regulated by acetylperoxyl radical to generate nontoxic IO3-, greatly alleviating the iodinated DBPs formation in saline wastewaters. This work provides mechanistic insights in radical-regulated iodine species transformation during PAA oxidation, paving the way for the development of viable and eco-friendly technology for iodide containing water treatment.
Collapse
Affiliation(s)
- Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai,200092, China.
| | - Ruicheng Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yufei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai,200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai,200092, China.
| |
Collapse
|
6
|
Wu J, Zou J, Lin J, Li S, He L, Wu Z, Li Q, Gong C, Ma J. Overlooked Role of Coexistent Hydrogen Peroxide in Activated Peracetic Acid by Cu(II) for Enhanced Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15741-15754. [PMID: 38359405 DOI: 10.1021/acs.est.3c09753] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cu(II)-catalyzed peracetic acid (PAA) processes have shown significant potential to remove contaminants in water treatment. Nevertheless, the role of coexistent H2O2 in the transformation from Cu(II) to Cu(I) remained contentious. Herein, with the Cu(II)/PAA process as an example, the respective roles of PAA and H2O2 on the Cu(II)/Cu(I) cycling were comprehensively investigated over the pH range of 7.0-10.5. Contrary to previous studies, it was surprisingly found that the coexistent deprotonated H2O2 (HO2-), instead of PAA, was crucial for accelerating the transformation from Cu(II) to Cu(I) (kHO2-/Cu(II) = (0.17-1) × 106 M-1 s-1, kPAA/Cu(II) < 2.33 ± 0.3 M-1 s-1). Subsequently, the formed Cu(I) preferentially reacted with PAA (kPAA/Cu(I) = (5.84 ± 0.17) × 102 M-1 s-1), rather than H2O2 (kH2O2/Cu(I) = (5.00 ± 0.2) × 101 M-1 s-1), generating reactive species to oxidize organic contaminants. With naproxen as the target pollutant, the proposed synergistic role of H2O2 and PAA was found to be highly dependent on the solution pH with weakly alkaline conditions being more conducive to naproxen degradation. Overall, this study systematically investigated the overlooked but crucial role of coexistent H2O2 in the Cu(II)/PAA process, which might provide valuable insights for better understanding the underlying mechanism in Cu-catalyzed PAA processes.
Collapse
Affiliation(s)
- Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhijie Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Chunming Gong
- Xiamen Institute of Environmental Science, Xiamen, Fujian 361005, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
7
|
Wang X, Zheng Z, Man JHK, Lo IMC. Regulating charge transfer for enhanced PAA activation over sulfur-doped magnetic CoFe 2O 4: A novel strategy for simultaneous micropollutants degradation and bacteria inactivation. WATER RESEARCH 2024; 256:121595. [PMID: 38640561 DOI: 10.1016/j.watres.2024.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Micropollutants and bacteria are prevalent pollutants in wastewater, posing significant risks to ecosystems and human health. As peracetic acid (PAA) is being increasingly used as a disinfectant, activation of PAA by low-cost and high-performance activators is a promising strategy for wastewater treatment. In this study, the sulfur-doped magnetic CoFe2O4 (SCFO) is successfully developed for efficient PAA activation to simultaneously decontaminate and disinfect wastewater. PAA/SCFO-0.3 exhibits exceptional performance, degrading 100 % of 8 μM sulfamethoxazole (SMX) with a first-pseudo reaction rate of 1.275 min-1, and achieving 5.3-log inactivation of Escherichia coli (E. coli) within 3 min at a PAA dosage of 0.2 mM and catalyst dosage of 0.025 g/L (initial pH 6.5). Scavenging experiments and electron paramagnetic resonance (EPR) analysis identify CH3C(O)O• and CH3C(O)OO• as the dominant reactive species for SMX degradation. The sulfur species in SCFO-0.3 facilitate Co2+ regeneration and regulate charge transfer, promoting PAA activation for SMX degradation. Moreover, the PAA/SCFO-0.3 system demonstrates operational feasibility over a broad range of water matrices and has excellent stability and reusability (maintaining 93 % removal of SMX after 5 cycles), demonstrating its potential for industrial applications. This study provides insights into enhancing PAA activation through sulfur doping in transition metal catalysts and highlights the practical applicability of the PAA/SCFO-0.3 system as an advanced alternative to conventional disinfection for simultaneous decontamination and disinfection in wastewater.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Justin H K Man
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
8
|
Dai Y, Yang S, Wu L, Cao H, Chen L, Zhong Q, Xu C, He H, Qi C. Converting peracetic acid activation by Fe 3O 4 from nonradical to radical pathway via the incorporation of L-cysteine. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133303. [PMID: 38141297 DOI: 10.1016/j.jhazmat.2023.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Recently, peracetic acid (PAA) based Fenton (-like) processes have received much attention in water treatment. However, these processes are limited by the sluggish Fe(III)/Fe(II) redox circulation efficiency. In this study, L-cysteine (L-Cys), an environmentally friendly electron donor, was applied to enhance the Fe3O4/PAA process for the sulfamethoxazole (SMX) abatement. Surprisingly, the L-Cys incorporation was found not only to enhance the SMX degradation rate constant by 3.2 times but also to switch the Fe(IV) dominated nonradical pathway into the •OH dominated radical pathway. Experiment and theoretical calculation result elucidated -NH2, -SH, and -COOH of L-Cys can increase Fe solubilization by binding to the Fe sites of Fe3O4, while -SH of L-Cys can promote the reduction of bounded/dissolved Fe(III). Similar SMX conversion pathways driven by the Fe3O4/PAA process with or without L-Cys were revealed. Excessive L-Cys or PAA, high pH and the coexisting HCO3-/H2PO4- exhibit inhibitory effects on SMX degradation, while Cl- and humic acid barely affect the SMX removal. This work advances the knowledge of the enhanced mechanism insights of L-Cys toward heterogeneous Fenton (-like) processes and provides experimental data for the efficient treatment of sulfonamide antibiotics in the water treatment.
Collapse
Affiliation(s)
- Yinhao Dai
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China; Suzhou Furong Environmental Engineering Co., Ltd, Suzhou 215500, PR China
| | - Leliang Wu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Hui Cao
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Longjiong Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhong
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chenmin Xu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Lin HHH, Lin AYC. Peracetic acid as an alternative disinfectant for micropollutants degradation and disinfection byproducts control in outdoor swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132988. [PMID: 37979421 DOI: 10.1016/j.jhazmat.2023.132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Peracetic acid (PAA) has garnered significant interest as a novel alternative to chlorine-based disinfectants for water treatment due to its broad-spectrum antimicrobial activity and its ability of reactive species generation when exposed to UV light. However, limited studies have investigated micropollutant degradation in the presence of PAA under solar irradiation. This is the first study to comprehensively investigate the photodegradation of caffeine (CAF) and 4-methylbenzylidene camphor (4-MBC) and the removal of disinfection byproducts (DBPs) in the presence of PAA under simulated solar light. The study revealed that the photodegradation of CAF and 4-MBC was significantly enhanced in the presence of PAA, following pseudo-first-order kinetics (R2 > 0.98) with reaction rates (kobs) of 0.220 and 0.111 h-1, respectively. In addition, substantial reduction of 21 DBPs, including trihalomethanes, haloacetic acids and haloacetonitriles, and no DBPs formation were observed in the presence of PAA and simulated solar irradiation. The proportion of coexisting H2O2 in the PAA solution considerably influenced target compounds degradation. CAF and 4-MBC were degraded faster under acidic conditions than under alkaline conditions. Hydroxyl radicals (·OH) dominated the degradation of CAF at different pH values, while direct photolysis and other reactive species played a major role in the degradation of 4-MBC.
Collapse
Affiliation(s)
- Hank Hui-Hsiang Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan.
| |
Collapse
|
10
|
Zhou G, Liu Y, Zhou R, Zhang L, Fu Y. Bimetallic metal-organic framework as a high-performance peracetic acid activator for sulfamethoxazole degradation. CHEMOSPHERE 2024; 349:140958. [PMID: 38104735 DOI: 10.1016/j.chemosphere.2023.140958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
A novel 3D bimetallic metal-organic framework (MOF(Fe-Co)) was successfully prepared and its performance on sulfamethoxazole (SMX) removal in advanced oxidation process (AOP) based on peracetic acid (PAA) was evaluated. MOF(Fe-Co) exhibited an efficient catalytic performance on PAA activation for SMX degradation under neutral condition. Increasing PAA concentration could enhance SMX removal, while the variation of MOF(Fe-Co) dosage from 0.05 to 0.2 g/L had an inappreciable effect on SMX removal. According to the results of inductively coupled plasma mass spectrometry analyses and X-ray photoelectron spectroscopy, catalytic reactions mainly occurred on the surface of MOF(Fe-Co). Organic radicals (i.e., CH3C(O)OO• and CH3C(O)O•) were demonstrated to be the predominant reactive radicals for SMX degradation by MOF(Fe-Co)/PAA through radical quenching experiments. The presence of Cl- could enhance the degradation of SMX by MOF(Fe-Co)/PAA, while HCO3- and natural organic matter inhibited SMX degradation severely. Five identified degradation products were detected in this system and four possible SMX transformation pathways were proposed, including amino oxidation, S-N bond cleavage, coupling reaction and hydroxylation.
Collapse
Affiliation(s)
- Gaofeng Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Runyu Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Zhejiang Development & Planning Institute, Hangzhou, 310012, China
| | - Li Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
11
|
Li S, Liu Y, Zheng H, Niu J, Leong YK, Lee DJ, Chang JS. Biochar loaded with CoFe 2O 4 enhances the formation of high-valent Fe(IV) and Co(IV) and oxygen vacancy in the peracetic acid activation system for enhanced antibiotic degradation. BIORESOURCE TECHNOLOGY 2023; 387:129536. [PMID: 37544549 DOI: 10.1016/j.biortech.2023.129536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Corn straw and sludge-derived biochar composite (BC) loaded with CoFe2O4 was successfully prepared to activate peracetic acid (PAA) for efficient degradation of tetracycline hydrochloride (TCH). Within 60 s, 96 % TCH removal efficiency was achieved through a non-free radical degradation pathway, primarily driven by singlet oxygen (1O2). The mechanism involves the electron-rich groups on the biochar surface, which facilitate the cleavage of the PAA OO bond to generate •O2-/1O2 and provide electrons to induce the formation of high-valent Fe(IV) and Co(IV). The oxygen vacancies on the surface of the CoFe2O4-loaded biochar composite (CFB-2) contribute partially to 1O2 production through their transformation into a metastable intermediate with dissolved oxygen. Moreover, elevated temperatures further enhance PAA activation by CFB-2, leading to increased reactive oxygen species (ROS) production through PAA decomposition, thereby promoting TCH removal. This study offers new insights into the catalysis of metal-loaded biochar for efficient TCH degradation via non-free radical generation.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yingnan Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
12
|
Wu J, Zou J, Lin J, Li S, Chen S, Liao X, Yang J, Yuan B, Ma J. Hydroxylamine enhanced the degradation of diclofenac in Cu(II)/peracetic acid system: Formation and contributions of CH 3C(O)O •, CH 3C(O)OO •, Cu(III) and •OH. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132461. [PMID: 37677972 DOI: 10.1016/j.jhazmat.2023.132461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
The slow reduction of Cu(II) into Cu(I) through peracetic acid (PAA) heavily limited the widespread application of Cu(II)/PAA system. Herein, hydroxylamine (HA) was proposed to boost the oxidative capacity of Cu(II)/PAA system by facilitating the redox cycle of Cu(I)/Cu(II). HA/Cu(II)/PAA system was quite rapid in the removal of diclofenac within a broad pH range of 4.5-9.5, with a 10-fold increase in the removal rate of diclofenac compared with the Cu(II)/PAA system at an optimal initial pH of 8.5. Results of UV-Vis spectra, electron paramagnetic resonance, and alcohol quenching experiments demonstrated that CH3C(O)O•, CH3C(O)OO•, Cu(III), and •OH were involved in HA/Cu(II)/PAA system, while CH3C(O)OO• was verified as the predominant reactive species of diclofenac elimination. Different from previously reported Cu-catalyzed PAA processes, CH3C(O)OO• mainly generated from the reaction of PAA with Cu(III) rather than CH3C(O)O• and •OH. Four possible elimination pathways for diclofenac were proposed, and the acute toxicity of treated diclofenac solution with HA/Cu(II)/PAA system significantly decreased. Moreover, HA/Cu(II)/PAA system possessed a strong anti-interference ability towards the commonly existent water matrix. This research proposed an effective strategy to boost the oxidative capacity of Cu(II)/PAA system and might promote its potential application, especially in copper-contained wastewater.
Collapse
Affiliation(s)
- Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Siying Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Xiaobin Liao
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
13
|
Ou J, Deng J, Wang Z, Fu Y, Liu Y. Heat induced superfast diclofenac removal in Cu(II)-activated peracetic acid system: Mediation from non-radical to radical pathway. CHEMOSPHERE 2023; 338:139528. [PMID: 37459928 DOI: 10.1016/j.chemosphere.2023.139528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
A Cu(II)/heat coactivated peracetic acid (PAA) system for enhancing diclofenac (DCF) degradation was proposed in this work. The superiority of this synergetic activation strategy for PAA, working reactive species, catalytic mechanism and effects of reaction parameters on DCF elimination in this system were simultaneously investigated. Based on our results, the DCF loss rate in Cu(II)-heat/PAA process at pH 8.0 was about 49.3 and 4.2 times of that in Cu(II)/PAA and heat/PAA processes, respectively. Increasing the reaction temperature to 60 оC not only motivated the conversion of Cu(II) to Cu(I) but also facilitated the one-electron transfer between Cu(I) and PAA, boosting the generation of radicals. Organic radicals (mainly CH3C(O)O• and CH3C(O)OO•) were evidenced to be the core oxidizing substances dominating in the destruction of DCF while hydroxyl radical (•OH) made a minor contribution in this system by electron paramagnetic resonance (EPR) method together with scavenging experiments. This study broads the eyes into enhanced PAA activation initiated by homogenous Cu(II), providing a simple but efficient tool to degrade micropollutants.
Collapse
Affiliation(s)
- Jieli Ou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jiewen Deng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Zhenran Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
14
|
Deng J, Ou J, Wang Z, Fu Y, Liu Y. Phosphate enhanced Cu(II)/peracetic acid process for diclofenac removal: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 232:116340. [PMID: 37290624 DOI: 10.1016/j.envres.2023.116340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Since limitedly existing researches suggested Cu(II) had deficiently catalytic ability to PAA, in this work, we tested the oxidation performance of Cu(II)/PAA system on diclofenac (DCF) degradation under neutral conditions. It was found that overwhelming DCF removal could be obtained in Cu(II)/PAA system at pH 7.4 using phosphate buffer solution (PBS) compared to poor loss of DCF without PBS, and the apparent rate constant of DCF removal in PBS/Cu(II)/PAA system was 0.0359 min-1, 6.53 times of that in Cu(II)/PAA system. Organic radicals (i.e., CH3C(O)O• and CH3C(O)OO•) were evidenced as the dominant contributors to DCF destruction in PBS/Cu(II)/PAA system. PBS motivated the reduction of Cu(II) to Cu(I) through chelation effect, and then the activation of PAA by Cu(I) was facilitated. Besides, due to the steric hindrance of Cu(II)-PBS complex (CuHPO4), PAA activation was mediated from non-radical-generating pathway to radical-generating pathway, leading to desirably effective DCF removal by radicals. The transformation of DCF mainly experienced hydroxylation, decarboxylation, formylation and dehydrogenation in PBS/Cu(II)/PAA system. This work proposes the potential of coupling of phosphate and Cu(II) in optimizing PAA activation for organic pollutants elimination.
Collapse
Affiliation(s)
- Jiewen Deng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jieli Ou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Zhenran Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
15
|
Nguyen TT, Kim DG, Ko SO. Changes in the catalytic activity of oxygen-doped graphitic carbon nitride for the repeated degradation of oxytetracycline. CHEMOSPHERE 2022; 307:135870. [PMID: 35921886 DOI: 10.1016/j.chemosphere.2022.135870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Metal-free carbonaceous catalysts have gained growing interest because of their excellence in organic pollutant degradation. However, most of them suffer from deactivation after use, and the origins have not been investigated or understood. In this study, the changes in the characteristics after multiple uses of a carbonaceous catalyst, i.e., oxygen-doped graphitic carbon nitride (O-gCN), were investigated to identify the key factors affecting its reactivity. The O-gCN was repeatedly used to remove an antibiotic (oxytetracycline, OTC) in the presence of peroxymonosulfate (PMS). OTC removal was significantly reduced as the O-gCN was repeatedly used. The reactivity of O-gCN used five times (O-gCN5) corresponded well with the decreased signals of DMPO-X, DMPO-O2•-, and TEMP-1O2 in electron paramagnetic resonance spectra. These signal changes were accompanied by a shift of the involved reactive species from 1O2 and OH• for O-gCN to 1O2 and SO4•- for O-gCN5. The changes in activity and involved reactive species were attributed to the changes in the properties of O-gCN, considering the negligible OTC adsorption and slight PMS consumption. The results of X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in the degree of defects, graphene-like layers, and crystallinity in graphitic structures, but an increase in the fractions of N and O, for O-gCN5. However, the OTC degradation pathways and intermediates were not significantly different for O-gCN and O-gCN5. These results provide valuable information for developing strategies for the design, practical use, and regeneration of carbonaceous catalysts.
Collapse
Affiliation(s)
- Thanh Tuan Nguyen
- Department of Civil Engineering, Kyung Hee University, Yonggin, 17104, Republic of Korea
| | - Do Gun Kim
- Department of Environmental Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Seok Oh Ko
- Department of Civil Engineering, Kyung Hee University, Yonggin, 17104, Republic of Korea.
| |
Collapse
|
16
|
Yao K, Fang L, Liao P, Chen H. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: Efficiency and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhou R, Zhou G, Liu Y, Liu S, Wang S, Fu Y. Activated peracetic acid by Mn 3O 4 for sulfamethoxazole degradation: A novel heterogeneous advanced oxidation process. CHEMOSPHERE 2022; 306:135506. [PMID: 35777545 DOI: 10.1016/j.chemosphere.2022.135506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel peracetic acid (PAA)-based advanced oxidation process using Mn3O4 as a catalyst was proposed. A thorough sulfamethoxazole (SMX) removal could be achieved within 12 min in Mn3O4/PAA system at neutral pH. The characterization results of fresh and used Mn3O4 suggested that ≡Mn(II), ≡Mn(III) and ≡Mn(IV) on Mn3O4 were the Mn species for PAA activation, constituting the redox cycles of ≡Mn(II)/≡Mn(III) and ≡Mn(III)/≡Mn(IV) simultaneously. Organic radicals (i.e., CH3C(O)O• and CH3C(O)OO•) were verified to be the dominant reactive species responsible for SMX degradation in Mn3O4/PAA system by radical scavenging experiments. The neutral condition was the most favorable pH for SMX removal in Mn3O4/PAA system and the increase of PAA or Mn3O4 dosage could enhance SMX degradation. Presence of HCO3- and natural organic matter (NOM) could inhibit SMX degradation, while Cl-, NO3- and SO42- had a negligible effect on SMX removal. The thorough SMX removal in successive experiments and characterization results of used Mn3O4 suggested the good reusability and stability of Mn3O4 for PAA activation. Based on six detected transformation products of SMX, hydroxylation, nitration, bond cleavage and coupling reaction were proposed to be its degradation pathways in Mn3O4/PAA system.
Collapse
Affiliation(s)
- Runyu Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Gaofeng Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Shenglan Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shixiang Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
18
|
Review of Advanced Oxidation Processes Based on Peracetic Acid for Organic Pollutants. WATER 2022. [DOI: 10.3390/w14152309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In recent years, the removal of organic pollutants from water and wastewater has attracted more attention to different advanced oxidation processes (AOPs). There has been increasing interest in using peroxyacetic acid (PAA), an emerging oxidant with low or no toxic by-products, yet the promotion and application are limited by unclear activation mechanisms and complex preparation processes. This paper synthesized the related research results reported on the removal of organic pollutants by PAA-based AOPs. Based on the research of others, this paper not only introduced the preparation method and characteristics of PAA but also summarized the mechanism and reactivity of PAA activated by the free radical pathway and discussed the main influencing factors. Furthermore, the principle and application of the newly discovered methods of non-radical activation of PAA in recent years were also reviewed for the first time. Finally, the shortcomings and development of PAA-based AOPs were discussed and prospected. This review provides a reference for the development of activated PAA technology that can be practically applied to the treatment of organic pollutants in water.
Collapse
|
19
|
Dai Y, Qi C, Cao H, Wen Y, Zhao Y, Xu C, Yang S, He H. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: Influencing factors and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Guo Z, Li N, Zuo S, Qiang C, Zhan W, Li Z, Ma J. Construction of a novel metal–organic framework adenine-UiO-66 piezocatalyst for efficient diclofenac removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Deng J, Liu S, Fu Y, Liu Y. Heat-activated peracetic acid for degradation of diclofenac: kinetics, influencing factors and mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-9. [PMID: 35225731 DOI: 10.1080/09593330.2022.2048086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTHeat-activated peracetic acid (PAA) was used to degrade diclofenac (DCF) in this study. Electron paramagnetic resonance and radical scavenging experiments proved that organic radicals (i.e. CH3C(=O)O• and CH3C(=O)OO•) were the primary active species for DCF removal in the heat/PAA process. The degradation efficiency of DCF increased with the increase of temperature or initial PAA concentration in the heat/PAA process, and the optimal reaction pH for DCF removal was neutral. The presence of NO3- or SO42- insignificantly affected DCF degradation, while Cl- was favourable for DCF removal in this process. In contrast, an obvious inhibition on the removal of DCF was observed with the addition of natural organic matter, which might be responsible for the lower DCF removal in real waters. Finally, dechlorination, formylation, dehydrogenation and hydroxylation were proposed to be four degradation pathways of DCF in the heat/PAA system based on the five detected transformation products.
Collapse
Affiliation(s)
- Jiewen Deng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shenglan Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|