1
|
Li Y, Yang J, Wang Y, Wu H, Ma Y, Wu F, Wang D, Wang J. Sediment eDNA reveals damming triggered changes in algal and fish communities at the Three Gorges Reservoir in China. ENVIRONMENTAL RESEARCH 2025; 276:121474. [PMID: 40139638 DOI: 10.1016/j.envres.2025.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
With the rapid development of water conservation projects around the world, the potential impacts of damming on river ecosystems have attracted widespread attention. Here, we employed the environmental DNA (eDNA) records of the sediment core profiles to explore the effects of the dam construction on algal and fish community structure and biodiversity in the Three Gorges Reservoir in China for the past few decades. We detected 242 genera of algae and 62 species of fish in the sediment cores of the Xiangxi River estuary, the main tributary of the reservoir. The structure of algal and fish communities was changed significantly before and after damming. The dominant species in the algal community shifted from Cyanophyta to Bacillariophyta, while the dominant species in the fish community remained Cypriniformes, and the species diversity fluctuated greatly after damming. In addition, the Non-metric Multidimensional Scaling (NMDS) analysis showed that the composition of algal communities differed significantly among different sequences, while the differences among fish community groups were relatively small. The total nitrogen (TN) and total phosphorus (TP) in sediments were expected to be the main factors, affecting the abundance of eDNA in algae and fish in sediments. Our research emphasizes the progressiveness of sediment eDNA in retrieving the historical dynamics of biological communities, and especially, obtaining the temporal succession trend of biological communities is crucial to understanding the impact of dam construction on the reservoir ecosystem.
Collapse
Affiliation(s)
- Yanlin Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fengxue Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang, China.
| |
Collapse
|
2
|
Yang M, Liu Z, Wang A, Nopens I, Hu H, Chen H. High biomass yields of Chlorella protinosa with efficient nitrogen removal from secondary effluent in a membrane photobioreactor. J Environ Sci (China) 2024; 146:272-282. [PMID: 38969455 DOI: 10.1016/j.jes.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 07/07/2024]
Abstract
Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.
Collapse
Affiliation(s)
- Min Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent B 9000, Belgium
| | - Zhen Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent B 9000, Belgium
| | - Hairong Hu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
3
|
Gao S, Huang G, Zhang P, Yin J, Li M, Huang J, Zhao K, Han D. Interactive effects of nanoplastics, multi-contaminants, and environmental conditions on prairie aquatic ecosystems: A factorial composite toxicity analysis within a Canadian context. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135652. [PMID: 39226687 DOI: 10.1016/j.jhazmat.2024.135652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Limited data exist on the interactions between nanoplastics (NPs) and co-contaminants under diverse environmental conditions. Herein, a factorial composite toxicity analysis approach (FCTA) was developed to analyze the time-dependent composite effects of NPs (0 ∼ 60 mg/L), copper (Cu, 0.2 ∼ 6 mg/L) and phenanthrene (PHE, 0.001 ∼ 1 mg/L) on microalgae under diverse pH (6.7 ∼ 9.1), dissolved organic matter (DOM, 1.5 ∼ 25.1 mg/L), salinity (1 ∼ 417 mg/L) and temperature (23 ∼ 33 °C) within the Canadian prairie context. The toxic mechanism was revealed by multiple toxic endpoints. The combined toxicity of NPs, Cu and PHE within prairie aquatic ecosystems was assessed by the developed FCTA-multivariate regression model. Contrary to individual effects, NPs exhibited a promotional effect on microalgae growth under complex environmental conditions. Although Cu and PHE were more hazardous, NPs mitigated their single toxicity. Environmental conditions and exposure times significantly influenced the main effects and interactions of NPs, Cu and PHE. The synergistic effect of NPs*Cu and NPs*PHE on microalgae growth became antagonistic with increased pH or DOM. Microalgae in the Souris River, Saskatchewan, were projected to suffer the most toxic effects. Our findings have significant implications for the risk management of NPs.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Kai Zhao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
4
|
Wang Z, Akimoto T, Yue T, Hatakeyama Y, Maruo C, Pascual G, Fujibayashi M, Sakamaki T. Testing combined effects of environmental trace metals/arsenic and marine trophic status on the bioaccumulation in Pacific oysters: Insights from 22-site field samplings. MARINE POLLUTION BULLETIN 2024; 207:116827. [PMID: 39168088 DOI: 10.1016/j.marpolbul.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Pacific oysters were sampled from 22 human-impacted sites in northeastern Japan to measure Cr, Cu, Zn, Pb, Cd, and As. The hazard quotient was slightly >1 for Cu and/or As at two sites, but <1 for all metal species and As at the other sites, indicating low human health risks. Oysters' Cu, Zn, and Pb contents were positively related to their concentrations in the sediment, while Cr and As were not. Oysters' Cu and Zn were negatively related to the inorganic nitrogen in seawater, while oysters' Pb and As showed positive relationships with the particulate organic carbon. These findings suggest that marine trophic status affects oysters' metal uptake differently among the metal species. Furthermore, oysters' Cr, Cu, Zn, and Pb contents were negatively related to their eicosapentaenoic acid content and condition index. Therefore, the nutritional conditions of oysters may influence their elimination or accumulation of these metals.
Collapse
Affiliation(s)
- Zhongcheng Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Takeshi Akimoto
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Tingting Yue
- School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, Building 4217, 85354 Freising, Germany
| | - Yuji Hatakeyama
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Chikako Maruo
- Technical Division, School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Gissela Pascual
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Megumu Fujibayashi
- Faculty of Engineering, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan; Advanced Institute for Marine Ecosystem Change (Tohoku University & JAMSTEC WPI-AIMEC), 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
5
|
Koga T, Hirakawa S, Nakagawa S, Ishibashi Y, Kashiwabara M, Miyawaki T. Systematization of a toxicity screening method based on a combination of chemical analysis and the delayed fluorescence algal growth inhibition test for use in emergency environmental surveys. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55447-55461. [PMID: 39230813 DOI: 10.1007/s11356-024-34821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
In recent years, heavy rainfall disasters linked to climate change have become more frequent, raising concerns about the release of chemicals stored in factories. Assessing chemical contamination during such emergencies therefore necessitates the development of a quick and easy method for evaluating hazardous contaminants in combination with toxicity testing. This study proposes a "toxicity screening" method that combines biological response testing and chemical analysis to systematically evaluate hazardous contaminants in emergency situations. The toxicity screening method evaluates the water quality in three steps, including water quality measurements and a delayed fluorescence (DF) assay, metal content measurements and a DF assay, and targeted screening analysis and a DF assay. The efficacy of this method was tested using industrial wastewater from 14 locations. Seven of the samples were non-toxic, while the other seven samples were toxic, displaying no observed effect concentration (NOEC) values ranging from 0.625 to 20%. Two toxic samples in the first phase possessed high total chlorine concentrations (0.4 mg L-1) and conductivities (2200 mS m-1), indicating that the main sources of toxicity were residual chlorine and a high salt concentration. In the second phase, metal content analysis identified metals as the toxicity cause in four samples. In the third phase, the organic contaminants were analyzed, and tri-n-octyl phosphate (TNOP) was detected at a concentration of 0.00027 mg L-1. The results of solid-phase extraction experiments and exposure tests with TNOP alone indicated that the contribution of TNOP to the toxicity was negligible and that chemicals not adsorbed on the solid-phase extraction cartridges were the cause of toxicity. The proposed method can therefore be considered effective for disaster-related water quality assessment, delivering results within 12 days.
Collapse
Affiliation(s)
- Toyokazu Koga
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan.
| | - Shusaku Hirakawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Shuhei Nakagawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Yuko Ishibashi
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Manabu Kashiwabara
- Fukuoka Research Commercialization Center for Recycling Systems, 2-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takashi Miyawaki
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
6
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
7
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
8
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
9
|
Su K, Li X, Lu T, Mou Y, Liu N, Song M, Yu Z. Screening of the heterotrophic microalgae strain for the reclamation of acid producing wastewater. CHEMOSPHERE 2022; 307:136047. [PMID: 35977579 DOI: 10.1016/j.chemosphere.2022.136047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
For the sustainable development of the environment, to reduce the high cost and low productivity of microalgae biofuel, nine microalgae strains were screened to study the growh and nutrient removal properties under heterotrophic culture by using the waste carbon source of volatile fatty acids (VFAs). Chlorella sorokiniana (C.sorokiniana) was selected as the best strain with the highest biomass concentration of 0.77 g L-1, specific growth rate of 0.25 d-1, biomass productivity of 91.43 mg L-1 d-1, total nitrogen removal efficiency of 95.96% and total phosphorus removal efficiency of 93.42%. To study the utilization potential of acid-producing wastewater by heterotrophic microalgae, actual acid-producing wastewater was recycled three times for the utilization of C.sorokiniana. After the three utilization cultivation, the removal rates of COD, total nitrogen, ammonia nitrogen, and total phosphorus were 74.44%, 88.05%, 79.08%, and 82.69%, respectively. The total utilization rates of acetic acid, propionic acid, and butyric acid were 58.99%, 70.54%, and 81.52%, respectively. In addition, the highest lipid content of 39.15% and protein content of 42.43% achieved at the third cultivation. After the first cultivation, the composition and diversity of the microbial community structure changed dramatically, with Protebacteria, Bacteroidota, Hydrogenophaga, and Algoriphagus becoming enriched. These results showed a promising way of coupling wastewater treatment with biomass production for long-term sustainability of microalgae lipid production.
Collapse
Affiliation(s)
- Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Xue Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Modification of Silica Nanoparticles with 4,6-Diacetylresorcinol as a Novel Composite for the Efficient Removal of Pb(II), Cu(II), Co(II), and Ni(II) Ions from Aqueous Media. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|