1
|
Arshad F, Hassan IU, AlGhamadi JM, Naikoo GA. Biofouling-resistant nanomaterials for non-enzymatic glucose sensors: A critical review. Mater Today Bio 2025; 32:101746. [PMID: 40275958 PMCID: PMC12020842 DOI: 10.1016/j.mtbio.2025.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Biofouling is a significant concern in sensors and diagnostic applications as it results in reduced sensitivity, selectivity, and response time, false signals or noise, and ultimately causes a reduction in the sensor lifespan. This is particularly a concern while developing non-enzymatic glucose sensors (NEGS) that can be used to fabricate implantable sensors for continuous glucose monitoring. Thus, developing advanced materials solutions in the form of nanomaterials that display inherent antifouling activity is imperative. Due to their small nanosized dimensions and tunable microstructures, nanomaterials display unique physio-chemical properties that display antifouling efficiency and thus can be applied towards developing highly stable, sensitive, and selective NEGS. Through this review, we aim to explore the recent advances in the field of antifouling nanomaterials that offer promising potential to be applied towards developing NEGS. We discuss the details of various biofouling-resistant nanomaterials, including graphene and graphene oxide, carbon nanotubes, gold nanoparticles, silver nanoparticles, metal oxide nanoparticles, and polymeric nanocomposites. Further, we highlighted the possible mechanism of action involving nanomaterials in providing antifouling features in NEGS, followed by a brief discussion of the advantages and disadvantages of using nanomaterials for antifouling in developing NEGS. Finally, we concluded the article by proposing the future prospects of this promising technology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | - Israr U. Hassan
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | - Jwaher M. AlGhamadi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| |
Collapse
|
2
|
Wu Z, Sewwandi BVN, Chen X, Perera G, Jayarathna L, Jayasundara ACA, Weerasooriya R. Forward osmosis membrane with lightweight functionalised multiwall carbon nanotube nanofillers. ENVIRONMENTAL TECHNOLOGY 2025; 46:1507-1518. [PMID: 39284585 DOI: 10.1080/09593330.2024.2401644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 04/01/2025]
Abstract
Thin-film nanocomposite (TFN) membranes with a polyamide (PA) active layer modified with carbon nanotubes (CNTs) hold promise for water desalination and wastewater reuse via forward osmosis (FO). We hypothesise that modifying the PA active layer with hydroxyl-functionalised multi-wall carbon nanotubes (f-MWCNTs) will enhance the water flux of the FO membrane while maximising salt rejection. TFN membranes were modified using in situ interfacial polymerisation, with varying f-MWCNT mass content to minimise agglomeration. These modified FO membranes are designated as CTFN-x, where x represents the mass content of f-MWCNTs, ranging from 0.001%, CTFN-1 to 0.008%, CTFN-8 (w/v). The surface properties of CTFN-x were characterised using electron microscopy, atomic force microscopy, and molecular spectroscopy. IR spectroscopic data confirm the successful adherence of f-MWCNTs as a bridging agent between the 1,3-phenylenediamine (MPD) and trimesoyl chloride (TMC) polymers, preserving FO membrane integrity. The CTFN-4 FO membrane shows the highest water flux (29 LMH) and the lowest reverse salt flux (2.90 gHM), attributed to preferential water flow channels in the f-MWCNTs. The integration of f-MWCNTs into the active layer improved water flux, reduced reverse salt flux, and enhanced the antifouling properties of FO membranes.
Collapse
Affiliation(s)
- Z Wu
- Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - B V N Sewwandi
- Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Peradeniya, Sri Lanka
| | - Xing Chen
- Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Peradeniya, Sri Lanka
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, People's Republic of China
| | - G Perera
- Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Peradeniya, Sri Lanka
| | - L Jayarathna
- Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Peradeniya, Sri Lanka
| | - A C A Jayasundara
- Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rohan Weerasooriya
- Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Peradeniya, Sri Lanka
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
3
|
Aris A, Wahyuni WT, Putra BR, Hermawan A, Nugroho FAA, Seh ZW, Khalil M. Ultrasensitive non-enzymatic electrochemical detection of paraoxon-ethyl in fruit samples using 2D Ti 3C 2T x/MWCNT-OH. NANOSCALE 2025; 17:2554-2566. [PMID: 39836463 DOI: 10.1039/d4nr04060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional Ti3C2Tx/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the Ti3C2Tx nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine Ti3C2Tx and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.1 to 100 μM, a low limit of detection (LOD) of 10 nM, limit of quantitation (LOQ) of 70 nM, and sensitivity of 0.957 µA μM-1 cm-2 at pH 8. Furthermore, the sensors maintain excellent selectivity and effectiveness in detecting paraoxon-ethyl even in the presence of various interferents, including diazinon, carbaryl, Fe2+, NO2-, NO3-, ascorbic acid, and glucose. The facile fabrication and enhanced sensing capabilities of the Ti3C2Tx/MWCNT-OH nanocomposite position it as a reliable, cost-effective, and sustainable alternative to conventional detection systems for monitoring pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Asmi Aris
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
- Low Dimension Materials Lab, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Wulan Tri Wahyuni
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor, Indonesia
- Tropical Biopharma Research Center, IPB University, 16680 Bogor, Indonesia
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15315, Indonesia
| | - Angga Hermawan
- Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15314, Indonesia
| | - Ferry Anggoro Ardy Nugroho
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
- Institute for Advanced Sustainable Materials Research and Technologies (INA-SMART), Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
- Low Dimension Materials Lab, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
- Institute for Advanced Sustainable Materials Research and Technologies (INA-SMART), Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| |
Collapse
|
4
|
Vatanpour V, Naziri Mehrabani SA, Dehqan A, Arefi-Oskoui S, Orooji Y, Khataee A, Koyuncu I. Performance improvement of polyethersulfone membranes with Ti 3AlCN MAX phase in the treatment of organic and inorganic pollutants. CHEMOSPHERE 2024; 362:142583. [PMID: 38866342 DOI: 10.1016/j.chemosphere.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
In this work, the hydrophobic polyethersulfone (PES) membrane was modified by incorporating Ti3AlCN MAX phase. Synthesis of Ti3AlCN MAX phase was performed using the reactive sintering method. The scanning electron microscopy (SEM) images showed a 3D compressed layered morphology for the synthesized MAX phase. The Ti3AlCN MAX phase was added to the casting solution, and the mixed-matrix membranes were fabricated by the non-solvent induced phase inversion method. The performance and antifouling features of bare and modified membranes were explored by pure water flux, flux recovery ratio (FRR), and fouling resistance parameters. Through the modification of membranes by introducing the Ti3AlCN MAX phase, the enhancement of these features was observed, in which the membrane containing 1 wt% of MAX phase showed 17.7 L/m2.h.bar of permeability and 98.6% for FRR. Also, the separation efficiency of all membranes was evaluated by rejecting organic and inorganic pollutants. The Ti3AlCN MAX membranes could reject 96%, 95%, and 88% of reactive blue 50, Rose Bengal, and azithromycin antibiotics, respectively, as well as 98%, 80%, 86%, and 36% of Pb2+, As5+, Na2SO4, and NaCl, respectively. Finally, the outcomes indicated the Ti3AlCN MAX phase was an excellent and efficient novel additive for modifying the PES membrane.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| |
Collapse
|
5
|
Fatima S, Iqbal M, Bhatti HN, Alwadai N, Al Huwayz M, Nazir A, Iqbal M. Kinetics and thermodynamics studies of nickel manganite nanoparticle as photocatalyst and fuel additive. Heliyon 2024; 10:e33861. [PMID: 39071692 PMCID: PMC11276917 DOI: 10.1016/j.heliyon.2024.e33861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, nickel manganite (NiMn2O4) nanoparticles were prepared using a hydrothermal method and examined its potential as a photocatalyst for the Acid Green 25 (AG-25) dye degradation. The nanoparticles were subjected to structural analysis using X-ray diffraction (XRD) and morphological analysis using scanning electron microscopy (SEM). The study examined the kinetics and thermodynamics of degradation processes that are catalyzed by photocatalysis. To ascertain their effect on dye degradation, several parameters, such as catalyst dose, H2O2 concentration, and temperature, were investigated. With a temperature of 315 K in a pseudo-first-order kinetic reaction, a 0.3 M H2O2 concentration, 0.05 mg/mL catalyst dose, and a promising removal efficiency of 96 % was achieved by the NiMn2O4 NPs in 40 min. Thermodynamic analysis revealed the spontaneous and entropy-driven nature of catalytic degradation, progressing favorably at elevated temperatures. Additionally, the NiMn2O4 NPs were applied as a fuel additive to analyze its influence on combustion and the physical characteristics of the modified fuel. The modified fuel demonstrated exceptional catalytic efficiency, emphasizing the potential of the NiMn2O4 NPs as an effective additive.
Collapse
Affiliation(s)
- Shumaila Fatima
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Mahwish Iqbal
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Norah Alwadai
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Maryam Al Huwayz
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
6
|
Wang R, Liu H, Wang Z, Zhao J, Lv Z, Qi Y, Yu Y, Sun S. Synergistic Interaction of Ionic Liquid Grafted Poly(vinylidene Fluoride) and Carbon Nanotubes to Construct Water Treatment Membranes with Multiple Separation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11903-11913. [PMID: 38813993 DOI: 10.1021/acs.langmuir.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In this study, the dual strategy of 1-butyl-3-vinylimidazolium bromide ionic liquid (IL) grafting and carbon nanotubes (CNTs) nanocomposition was applied to modify poly(vinylidene fluoride) (PVDF)-based membranes. The highly hydrophilic/oleophobic and fouling-resistant PVDF-g-IL/CNTs membranes with excellent separation efficiency were obtained by the nonsolvent-induced phase separation method with ethanol-water mixed solution as the coagulation bath. The grafted IL not only generated hydrophilic groups on PVDF chains but also acted together with the CNTs to induce the formation of hydrophilic β-crystalline phase of PVDF, which significantly improved the hydrophilicity and pore structure of the modified PVDF membranes. As a result, the pure water flux of the optimal membrane increased up to 294.2 L m-2 h-1, which was 5.2 times greater than that of the pure PVDF membrane. Simultaneously, the electrostatic interaction of the positive IL and the integration of CNTs enhanced adsorption sites of the membranes, producing exceptional retention and adsorption of dye wastewater and oil-water emulsion. This study presents a straightforward and efficient approach for fabricating PVDF separation membranes, which have potential applications in the purification of various polluted wastewater.
Collapse
Affiliation(s)
- Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Zicheng Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
7
|
Nguyen DV, Wu D. Recent advances in innovative osmotic membranes for resource enrichment and energy production in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172153. [PMID: 38580129 DOI: 10.1016/j.scitotenv.2024.172153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Wastewater is a valuable resource that we can no longer afford to overlook. By recovering the nutrients and metals it contains and generating renewable energy, we can not only meet the rising demands for natural resources but also create a more sustainable and resilient future. Forward osmosis (FO) membranes are one of the most intriguing resource recovery process technologies because of their high organic retention, economical energy usage, and straightforward operation. However, the widespread adoption of FO membranes on a full-scale basis is hindered by several issues with previous membrane products. These include limited selectivity to different types of ions, insufficient water flux, and high susceptibility to membrane fouling during extended periods of operation. Hence, it is essential to either invent new FO membranes or modify the existing ones. The objective of this work is to provide a comprehensive and organized review of up-to-date advancements in the development of innovative osmotic membrane (IOM) materials for resource recovery (RR) and energy production (EP). The paper covers several aspects, including the limitations of current osmotic membrane technologies, a review of new membranes specifically designed for effective RR/EP, their applications in various industrial fields, integrated IOM systems, recent improvements in IOM fabrication processes using artificial intelligence, and a discussion of the challenges and prospects of the potential research. In general, recently developed IOMs have proven to be highly efficient in recovering organics (>99 %), nutrients (>86 %), and precious metals (>90 %). These new membranes have also demonstrated an ability to effectively harvest osmotic energy (with power output ranging from 6 to 38 W/m2) by applied pressure in the range of 8 to 30 bar. These findings suggest that IOMs is promised for efficient resource recovery and renewable energy production.
Collapse
Affiliation(s)
- Duc Viet Nguyen
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium
| | - Di Wu
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
8
|
Cairone S, Hegab HM, Khalil H, Nassar L, Wadi VS, Naddeo V, Hasan SW. Novel eco-friendly polylactic acid nanocomposite integrated membrane system for sustainable wastewater treatment: Performance evaluation and antifouling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168715. [PMID: 38008330 DOI: 10.1016/j.scitotenv.2023.168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Water contamination caused by heavy metals, nutrients, and organic pollutants of varying particle sizes originating from domestic and industrial processes poses a significant global challenge. There is a growing concern, particularly regarding the presence of heavy metals in freshwater sources, as they can be toxic even at low concentrations, posing risks to human health and the environment. Currently, membrane technologies are recognized as effective and practical for treating domestic and industrial wastewater. However, these technologies are hindered by fouling issues. Furthermore, the utilization of conventional membranes leads to the accumulation of non-recyclable synthetic polymers, commonly used in their production, resulting in adverse environmental consequences. In light of our previously published studies on environmentally friendly, biodegradable polylactic acid (PLA) nanocomposite mixed matrix membranes (MMMs), we selected two top-performing PLA-based ultrafiltration nanocomposite membranes: one negatively charged (PLA-M-) and one positively charged (PLA-M+). We integrated these membranes into systems with varying arrangements to control fouling and eliminate heavy metals, organic pollutants, and nutrients from raw municipal wastewater collected by the local wastewater treatment plant in Abu Dhabi (UAE). The performance of two integrated systems (i.e., PLA-M+/PLA-M- and PLA-M-/PLA-M+) was compared in terms of permeate flux, contaminant removal efficiencies, and fouling mitigation. The PLA-M+/PLA-M- system achieved removal efficiencies of 79.6 %, 92.6 %, 88.7 %, 85.2 %, 98.9 %, 94 %, 83.3 %, and 98.3 % for chemical oxygen demand (COD), nitrate (NO3--N), phosphate (PO43--P), ammonium (NH4+-N), iron (Fe), zinc (Zn), nickel (Ni), and copper (Cu), respectively. On the other hand, the PLA-M-/PLA-M+ system recorded removal efficiencies of 85.8 %, 95.9 %, 100 %, 81.9 %, 99.3 %, 91.9 %, 72.9 %, and 98.9 % for COD, NO3--N, PO43--P, NH4+-N, Fe, Zn, Ni, and Cu, respectively. Notably, the PLA-M-/PLA-M+ system demonstrated superior antifouling resistance, making it the preferred integrated system. These findings demonstrate the potential of eco-friendly PLA nanocomposite UF-MMMs as a promising alternative to petroleum-based polymeric membranes for efficient and sustainable wastewater treatment.
Collapse
Affiliation(s)
- Stefano Cairone
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #1320, 84084 Fisciano, SA, Italy
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hiyam Khalil
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #1320, 84084 Fisciano, SA, Italy
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Im SJ, Viet ND, Lee BT, Jang A. An efficient data-driven desalination approach for the element-scale forward osmosis (FO)-reverse osmosis (RO) hybrid systems. ENVIRONMENTAL RESEARCH 2023; 237:116786. [PMID: 37517485 DOI: 10.1016/j.envres.2023.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.
Collapse
Affiliation(s)
- Sung-Ju Im
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nguyen Duc Viet
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Byung-Tae Lee
- Central Research Facilities, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 6100, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
10
|
Pakan M, Mirabi M, Valipour A. Effectiveness of different CuO morphologies nanomaterials on the permeability, antifouling, and mechanical properties of PVDF/PVP/CuO ultrafiltration membrane for water treatment. CHEMOSPHERE 2023; 337:139333. [PMID: 37379983 DOI: 10.1016/j.chemosphere.2023.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
The hydrophobic nature of Poly (vinylidene fluoride) (PVDF) is a significant barrier to use in ultrafiltration, resulting in fouling, flux decline, and reduced lifespan in water treatment. This study examines the effectiveness of different morphologies of CuO nanomaterials (NMs) (spherical, rod, plate, and flower), synthesized by the facile hydrothermal method, to modify PVDF membrane with PVP additive for improving the performance of water permeability and antifouling. Such membrane configurations with different morphologies of CuO NMs improved hydrophilicity with a maximum water flux of 222-263 L m-2h-1 compared to 195 L m-2h-1 for the bare membrane and exhibited excellent thermal and mechanical strengths. The characterization results exhibited that plate-like CuO NMs were dispersed uniformly in the membrane matrix, and their incorporation as a composite improved the membrane properties. From the antifouling test with the bovine serum albumin (BSA) solution, the membrane with plate-like CuO NMs had the highest flux recovery ratio (FRR) (∼91%) and the lowest irreversible fouling ratio (∼10%). The antifouling enhancement was due to less interaction between modified membranes and foulant. Further, the nanocomposite membrane showed excellent stability and negligible Cu2+ ion leaching. Overall, our findings provide a new strategy for developing inorganic nanocomposite PVDF membranes for water treatment.
Collapse
Affiliation(s)
- Mahyar Pakan
- Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mirabi
- Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Valipour
- Water and Wastewater Research Center (WWRC), Water Research Institute (WRI), Bahar Blvd., Tehran, Iran.
| |
Collapse
|
11
|
Nizam NUM, Hanafiah MM, Mahmoudi E, Mohammad AW. Synthesis of highly fluorescent carbon quantum dots from rubber seed shells for the adsorption and photocatalytic degradation of dyes. Sci Rep 2023; 13:12777. [PMID: 37550339 PMCID: PMC10406919 DOI: 10.1038/s41598-023-40069-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
The potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered. The presence of hydroxyl, carboxyl and carbonyl functional groups indicated the significance of the oxygenated functional groups. Spectral analysis of photoluminescence for CQDs confirmed their photoluminescent quality by exhibiting high excitation intensity and possessing greenish-blue fluorescence under UV radiation. The removal percentage of the dyes adsorbed for both CR and MB dyes was 77% and 75%. Langmuir isotherm and pseudo-second-order models closely fitted the adsorption results. Thermodynamics analysis indicated that the adsorption process was exothermic and spontaneous, with excellent reusability and stability. The degradation efficiency of CQDs on both dyes was more than 90% under sunlight irradiation and obeyed the first-order kinetic model. These results demonstrated CQDs to be an excellent adsorbent and outstanding photocatalyst for organic dye degradation.
Collapse
Affiliation(s)
- Nurul Umairah M Nizam
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Vatanpour V, Paziresh S, Behroozi AH, Karimi H, Esmaeili MS, Parvaz S, Imanian Ghazanlou S, Maleki A. Fe 3O 4@Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants. CHEMOSPHERE 2023; 328:138586. [PMID: 37028725 DOI: 10.1016/j.chemosphere.2023.138586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nanofiltration (NF) membranes are promising media for water and wastewater treatment; however, they suffer from their hydrophobic nature and low permeability. For this reason, the polyvinyl chloride (PVC) NF membrane was modified by iron (III) oxide@Gum Arabic (Fe3O4@GA) nanocomposite. First, Fe3O4@GA nanocomposite was synthesized by the co-precipitation approach and then its morphology, elemental composition, thermal stability, and functional groups were characterized by various analyses. Next, the prepared nanocomposite was added to the casting solution of the PVC membrane. The bare and modified membranes were fabricated by a nonsolvent-induced phase separation (NIPS) method. The characteristics of fabricated membranes were assessed by mechanical strength, water contact angle, pore size, and porosity measurements. The optimum Fe3O4@GA/PVC membrane had a 52 L m-2. h-1. bar-1 water flux with a high flux recovery ratio (FRR) value (82%). Also, the filtration experiment exhibited that the Fe3O4@GA/PVC membrane could remarkably remove organic contaminants, achieving high rejection rates of 98% Reactive Red-195, 95% Reactive Blue-19, and 96% Rifampicin antibiotic by 0.25 wt% of Fe3O4@GA/PVC membrane. According to the results, adding Fe3O4@GA green nanocomposite to the membrane casting solution is a suitable and efficient procedure for modifying NF membranes.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University 34469 Istanbul, Turkiye; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkiye.
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hamid Karimi
- Central Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran; Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran; Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Sina Parvaz
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Siamak Imanian Ghazanlou
- Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
13
|
Ren H, Zhang X, Li Y, Zhang D, Huang F, Zhang Z. Preparation of Cross-Sectional Membrane Samples for Scanning Electron Microscopy Characterizations Using a New Frozen Section Technique. MEMBRANES 2023; 13:634. [PMID: 37505000 PMCID: PMC10383886 DOI: 10.3390/membranes13070634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Characterization of the cross-sectional morphologies of polymeric membranes are critical in understanding the relationship of structure and membrane separation performances. However, preparation of cross-sectional samples with flat surfaces for scanning electron microscopy (SEM) characterizations is challenging due to the toughness of the non-woven fabric support. In this work, a new frozen section technique was developed to prepare the cross-sectional membrane samples. A special mold was self-designed to embed membranes orientationally. The frozen section parameters, including the embedding medium, cryostat working temperature, and sectioning thickness were optimized. The SEM characterizations demonstrated that the frozen section technique, using ultrapure water as the embedding medium at a working temperature of -30 °C and a sectioning thickness of 0.5 µm, was efficient for the preparation of the membrane samples. Three methods of preparation for the cross-sectional polymeric membranes, including the conventional liquid nitrogen cryogenic fracture, the broad ion beam (BIB) polishing, and the frozen section technique were compared, which showed that the modified frozen section method was efficient and low cost. This developed method could not only accelerate the development of membrane technology but also has great potential for applications in preparation of other solid samples.
Collapse
Affiliation(s)
- Hongyun Ren
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Dandan Zhang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fuyi Huang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zixing Zhang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Keskin B, Eryıldız B, Paşaoğlu ME, Türken T, Vatanpour V, Koyuncu I. Fabrication and characterization of different braid‐reinforced
PVC
hollow fiber membranes to use in membrane bioreactor for wastewater treatment. J Appl Polym Sci 2023. [DOI: 10.1002/app.53794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Başak Keskin
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Bahriye Eryıldız
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Mehmet Emin Paşaoğlu
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Türker Türken
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| | - Ismail Koyuncu
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| |
Collapse
|
15
|
Yu H, Xu L, Luo Y, Guo M, Yan X, Jiang X, Yu L. Preparation of highly permeable and selective nanofiltration membranes with antifouling properties by introducing the capsaicin derivative into polyamide thin selective layer by bidirectional interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
16
|
Application of BiVO4/TiO2/CNT Composite Photocatalysts for Membrane Fouling Control and Photocatalytic Membrane Regeneration during Dairy Wastewater Treatment. Catalysts 2023. [DOI: 10.3390/catal13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the performance of composite photocatalytic membranes fabricated by incorporating multiple nanoparticles (TiO2, carbon nanotubes, BiVO4) into polyvinylidene fluoride membrane material for real dairy wastewater treatment. The composite photocatalytic membranes exhibited superior antifouling behavior, lower filtration resistance, better flux, and higher flux recovery ratio than the pristine membrane. Salinity, pH, and lactose concentration are determinant factors that affect filtration resistance and rejection performance during the ultrafiltration of dairy wastewater. Generally, higher irreversible and total resistances and slightly lower chemical oxygen demand (COD) rejections were found at higher salinity (expressed by electric conductivity values of >4 mS/cm) than lower salinity (<4 mS/cm) levels. The presence of lactose in dairy wastewater increased irreversible resistance and severely reduced COD rejection during ultrafiltration due to the ability of lactose to pass through the membranes. It was ascertained that membranes require further treatment after filtrating such wastewater. Lower resistances and slightly better COD rejections were observed at pH 7.5 and pH 9.5 compared to those observed at pH 4. Photocatalytic membranes fouled during the ultrafiltration of real dairy wastewater were regenerated by visible light irradiation. The membrane containing all constituents (i.e., TiO2, carbon nanotubes, and BiVO4) showed the best regeneration performance, exceeding that of the pristine membrane by 30%.
Collapse
|
17
|
Pramono E, Umam K, Sagita F, Saputra OA, Alfiansyah R, Setyawati Dewi RS, Kadja GT, Ledyastuti M, Wahyuningrum D, Radiman CL. The enhancement of dye filtration performance and antifouling properties in amino-functionalized bentonite/polyvinylidene fluoride mixed matrix membranes. Heliyon 2023; 9:e12823. [PMID: 36685376 PMCID: PMC9852663 DOI: 10.1016/j.heliyon.2023.e12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Trade-off issue and membrane fouling remain two major issues in the utilization of membrane technology for the water treatment due to reduced membrane permeability and lifetime. In our study, we employed 3-aminopropyltriethoxysilane modified bentonite (BNTAPS) as an anti-fouling modifier to prepare polyvinylidene fluoride (PVDF)-based membranes via the phase inversion method. The effects of BNTAPS concentration on the physical, mechanical, morphological, and filtration performance of the hybrid membranes have been investigated. It was found that the addition of BNTAPS improved the hydrophilicity of the membrane revealed by the decreased water contact angle. Consequently, the pure water flux of PVDF membrane containing 0.5% BNTAPS (PVDF/BNTAPS0.5%) increased to 35.5 L m-2 h-1. Moreover, the PVDF/BNTAPS membrane showed a smaller pore diameter and porosity compared to pristine PVDF. The membrane performance evaluation was carried out using cationic and anionic dyes, i.e., methylene blue (MB) and acid yellow (AY17), respectively. Our study revealed that the rejection of each dye was slightly increased for the PVDF/BNTAPS0.5%. However, the flux recovery rate of the PVDF/BNTAPS membrane significantly improved, which directly prolonged the membrane lifetime.
Collapse
Affiliation(s)
- Edi Pramono
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Khairul Umam
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Textile Chemistry Division, Politeknik STTT Bandung, Jl. Jakarta no. 31, Bandung, 40272, Indonesia
| | - Fuja Sagita
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Ozi Adi Saputra
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Rifki Alfiansyah
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Rahmi Sri Setyawati Dewi
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Grandprix T.M. Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Mia Ledyastuti
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Deana Wahyuningrum
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Cynthia L. Radiman
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Corresponding author. Jl. Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
18
|
Hemin-Modified Multi-Walled Carbon Nanotube-Incorporated PVDF Membranes: Computational and Experimental Studies on Oil-Water Emulsion Separations. Molecules 2023; 28:molecules28010391. [PMID: 36615584 PMCID: PMC9824685 DOI: 10.3390/molecules28010391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The separation of oil/water emulsions has attracted considerable attention for decades due to the negative environmental impacts brought by wastewater. Among the various membranes investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline. Meanwhile, the incorporation of wettable substrates during fabrication has significantly impacted the membrane performance by lowering the fouling propensity. Herein, we report the fabrication of an iron-containing porphyrin (hemin)-modified multi-walled carbon nanotube incorporated PVDF membrane (HA-MWCNT) to enhance fouling resistance and the effective separation of oil-in-water emulsions. The fabricated membrane was thoroughly investigated using the FTIR, SEM, EDX, AFM, and contact angle (CA) analysis. The HA-MWCNT membrane exhibited a water CA of 62° ± 0.5 and excellent pure water permeance of 300.5 L/m2h at 3.0 bar (400% increment), in contrast to the pristine PVDF, which recorded a CA of 82° ± 0.8 and water permeance of 59.9 L/m2h. The hydrophilic HA-MWCNT membrane further showed an excellent oil rejection of >99% in the transmembrane pressure range of 0.5−2.5 bar and a superb flux recovery ratio (FRR) of 82%. Meanwhile, the classical molecular dynamics (MD) simulations revealed that the HA-MWCNT membrane had greater solvent-accessible pores, which enhanced water permeance while blocking the hydrocarbons. The incorporation of the hemin-modified MWCNT is thus an excellent strategy and could be adopted in the design of advanced membranes for oil/water separation.
Collapse
|
19
|
Sboui M, Niu W, Lu G, Zhang K, Pan JH. Electrically conductive TiO 2/CB/PVDF membranes for synchronous cross-flow filtration and solar photoelectrocatalysis. CHEMOSPHERE 2023; 310:136753. [PMID: 36216114 DOI: 10.1016/j.chemosphere.2022.136753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Combining photocatalysis (PC) and membrane filtration (MF) has emerged as an attractive technology for water purification, however, the water purification efficiency and membrane fouling are still challenging. Herein, we report a novel photoelectrocatalytic (PEC) membrane mediated by a ternary polyvinylidene fluoride (PVDF)-carbon black (CB)-TiO2 composite conductive membrane synthesized by a phase inversion method assisted by the mixed surfactants of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS). The resultant electrically conductive TiO2/CB/PVDF membrane features a homogeneous surface with obvious pore size of 20-150 nm, a thickness ∼116 μm, and an average resistivity as low as ∼3.165 Ω∙m. The cooperation of PVP and SDS surfactants dramatically improves the organic-inorganic interactions and thus eventually enhances the porosity, stability of porous structure, mechanical stability, and conductivity and electrochemical properties of the hybrid membrane. Upon the solvent evaperation of the wellblended casting solution and the phase inversion, TiO2/CB preferentially exist on the surface of PVDF membrane, enabling the efficient PEC degradation of organic pollutants. The synergistic coupling of TiO2 and CB in PVDF membrane results in efficient PEC properties with bi-functional membrane antifouling and enhanced water purification in azo dyes decolorization under the stationary mode and in our lab-made continuous cross-flow PEC system, superior to those by photocatalysis and electrocatalysis. The developed synchronous MF and PEC system mediated by the conductive TiO2/CB/PVDF membrane proves to a feasible route to improving the self-cleaning properties of the polymer membrane while simultaneously increasing the water decontaminating efficiency.
Collapse
Affiliation(s)
- Mouheb Sboui
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wenke Niu
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China
| | - Gui Lu
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Kai Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jia Hong Pan
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
20
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
21
|
Li X, Lin L, Liu Z, Yang J, Ma W, Yang X, Li X, Wang C, Xin Q, Zhao K. A “micro-explosion” strategy for preparing membranes with high porosity, permeability, and dye/salt separation efficiency. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Amiri S, Asghari A, Harifi-Mood AR, Rajabi M, He T, Vatanpour V. Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes. CHEMOSPHERE 2022; 308:136323. [PMID: 36084832 DOI: 10.1016/j.chemosphere.2022.136323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Polyvinyl alcohol (PVA) and sodium alginate (SA) hydrogel-coated nanofiltration (NF) membranes with high-flux and permselectivity were prepared. The coating of PVA and SA hydrogel selective layer on a porous polysulfone (PSf)/non-woven fabric ultrafiltration substrate membrane was conducted through different three procedures including pre-crosslinking, in-situ crosslinking, and immersing crosslinking and the use of glutaraldehyde as a crosslinking agent. The properties and performances of all types of the prepared membranes were evaluated through ATR-FTIR spectroscopy, AFM, SEM, zeta potential, contact angle, and cross-flow permeation tests. The immersing technique resulted in the formation of TFC membranes with higher hydrophilicity, smoother surface layer, higher negative charge, higher permeation flux, higher salt rejection and better anti-fouling performance. Also, the higher negative surface charge of the immersing coated TFC membranes due to dissociation of hydrophilic functional groups of the PVA and SA hydrogel selective layer resulted in higher As(III) rejection. SA coated NF membrane through immersing method exhibited a higher pure water permeability of 11.2 L m-2 h-1 bar-1, NaCl, MgSO4, and Na2SO4 rejection of 38.2%, 55.1%, and 70.4%, respectively with As(III) rejection of 60.6%. All types of the PVA and SA hydrogel-coated PSf membranes possessed improved fouling resistance to BSA aqueous solution, superior anti-fouling performance was obtained with SA hydrogel coating through immersing method. Such optimum membranes indicated high stability in the long-term experiments. This study showed that the coating of the SA hydrogel layer on a PSf support through immersing method could be a promising candidate for fabricating high-flux NF membranes.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Ali Reza Harifi-Mood
- Department of Physical Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| |
Collapse
|
23
|
New Insights into the Mechanical Behavior of Thin-Film Composite Polymeric Membranes. Polymers (Basel) 2022; 14:polym14214657. [PMID: 36365649 PMCID: PMC9654508 DOI: 10.3390/polym14214657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Limited predictions of thin-film composite (TFC) membranes’ behavior and functional life exist due to the lack of accurate data on their mechanical behavior under different operational conditions. A comprehensive investigation of the mechanical behavior of TFC membranes addressing deformation and failure, temperature and strain rate sensitivity, and anisotropy is presented. Tensile tests were conducted on commercial membranes as well as on individual membrane layers prepared in our laboratories. The results reveal the overall mechanical strength of the membrane is provided by the polyester layer (bottom layer), while the rupture stress for the middle and top layers is at least 10 times smaller than that of the polyester layer. High anisotropic behavior was observed and is attributed to the nonwoven structure of the polyester layer. Rupture stress in the transverse (90°) direction was one-third of the rupture stress in the casting direction. Limited temperature and strain rate dependence was observed in the temperature range that exists during operation. Scanning electron microscopy images of the fractured surfaces were also analyzed and correlated with the mechanical behavior. The presented results provide new insights into the mechanical behavior of thin-film composite membranes and can be used to inform novel membrane designs and fabrication techniques.
Collapse
|
24
|
Wang Y, Bao C, Li D, Chen J, Xu X, Wen S, Guan Z, Zhang Q, Ding Y, Xin Y, Zou Y. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Vatanpour V, Mousavi Khadem SS, Dehqan A, Paziresh S, Ganjali MR, Mehrpooya M, Pourbasheer E, Badiei A, Esmaeili A, Koyuncu I, Naderi G, Rabiee N, Abida O, Habibzadeh S, Saeb MR. Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority. J Memb Sci 2022; 660:120893. [DOI: 10.1016/j.memsci.2022.120893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Almaie S, Vatanpour V, Rasoulifard MH, Seyed Dorraji MS. Novel negatively-charged amphiphilic copolymers of PVDF-g-PAMPS and PVDF-g-PAA to improve permeability and fouling resistance of PVDF UF membrane. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Vatanpour V, Ağtaş M, Abdelrahman AM, Erşahin ME, Ozgun H, Koyuncu I. Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials. CHEMOSPHERE 2022; 302:134930. [PMID: 35568222 DOI: 10.1016/j.chemosphere.2022.134930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The use of nanomaterials (NMs) in the fabrication and modification of membranes as well as the coupling of nanomaterial-based processes with membrane processes have been attracted many researchers today. The NMs due to a wide range of types, different chemistry, the possibility of various kinds of functionality, different properties like antibacterial activity, hydrophilicity, and large surface area were applied to enhance the membrane properties. In the membrane bioreactors (MBRs) as a highly successful process of membrane technology in wastewater treatment, the NMs have been applied for improving the efficiency of MBR process. This review assessed the application of NMs both as the modifiers of membrane and as the effective part of hybrid techniques with MBR system for wastewater treatment. The efficiency of NMs blended membranes in the MBR process has been reviewed in terms of antifouling and antibacterial improvement and removal performance of the pollutants. Novel kinds of NMs were recognized and discussed based on their properties and advantages. The NMs-based photocatalytic and electrochemical processes integrated with MBR were reviewed with their benefits and drawbacks. In addition, the effect of the presence of mobilized NPs in the sludge on MBR performance was surveyed. As a result of this review, it can be concluded that nanomaterials generally improve MBR performance. The high flux and antifouling properties can be obtained by adding nanomaterials with hydrophilic and antibacterial properties to the membrane, and further studies are required for photocatalytic NMs applications. In addition, this review shows that the low amounts of NMs in the membrane structure could have an effective influence on the MBR process. Besides, since many studies in the literature are carried out at the laboratory scale, it is thought that pilot and real-scale studies should be carried out to obtain more reliable data.
Collapse
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Meltem Ağtaş
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Amr Mustafa Abdelrahman
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Erşahin
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
28
|
Cheng L, Zhou Z, Li L, Xiao P, Ma Y, Liu F, Li J. PVDF/MOFs mixed matrix ultrafiltration membrane for efficient water treatment. Front Chem 2022; 10:985750. [PMID: 36034649 PMCID: PMC9411721 DOI: 10.3389/fchem.2022.985750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Polyvinylidene fluoride (PVDF), with excellent mechanical strength, thermal stability and chemical corrosion resistance, has become an excellent material for separation membranes fabrication. However, the high hydrophobicity of PVDF membrane surface normally leads a decreased water permeability and serious membrane pollution, which ultimately result in low operational efficiency, short lifespan of membrane, high operation cost and other problems. Metal-organic frameworks (MOFs), have been widely applied for membrane modification due to its large specific surface area, large porosity and adjustable pore size. Currently, numerous MOFs have been synthesized and used to adjust the membrane separation properties. In this study, MIL-53(Al) were blended with PVDF casting solution to prepare ultrafiltration (UF) membrane through a phase separation technique. The optimal separation performance was achieved by varying the concentration of MIL-53(Al). The surface properties and microstructures of the as-prepared membranes with different MIL-53(Al) loading revealed that the incorporation of MIL-53(Al) enhanced the membrane hydrophilicity and increased the porosity and average pore size of the membrane. The optimal membrane decorated with 5 wt% MIL-53(Al) possessed a pure water permeability up to 43.60 L m-2 h-1 bar-1, while maintaining higher rejections towards BSA (82.09%). Meanwhile, the prepared MIL-53(Al)/LiCl@PVDF membranes exhibited an excellent antifouling performance.
Collapse
Affiliation(s)
- Lilantian Cheng
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zixun Zhou
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Lei Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Pei Xiao
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Yun Ma
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
29
|
Maksimova Y, Bykova Y, Maksimov A. Functionalization of Multi-Walled Carbon Nanotubes Changes Their Antibiofilm and Probiofilm Effects on Environmental Bacteria. Microorganisms 2022; 10:microorganisms10081627. [PMID: 36014045 PMCID: PMC9412586 DOI: 10.3390/microorganisms10081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Releasing multi-walled carbon nanotubes (MWCNTs) into ecosystems affects the biofilm formation and metabolic activity of bacteria in aquatic and soil environments. Pristine (pMWCNTs), oleophilic (oMWCNTs), hydrophilic (hMWCNTs), and carboxylated (cMWCNTs) carbon nanotubes were used to investigate their effects on bacterial biofilm. A pronounced probiofilm effect of modified MWCNTs was observed on the Gram-negative bacteria of Pseudomonas fluorescens C2, Acinetobacter guillouiae 11 h, and Alcaligenes faecalis 2. None of the studied nanomaterials resulted in the complete inhibition of biofilm formation. The complete eradication of biofilms exposed to MWCNTs was not observed. The functionalization of carbon nanotubes was shown to change their probiofilm and antibiofilm effects. Gram-negative bacteria were the most susceptible to destruction, and among the modified MWCNTs, oMWCNTs had the greatest effect on biofilm destruction. The number of living cells in the biofilms was assessed by the reduction of XTT, and metabolic activity was assessed by the reduction of resazurin to fluorescent resorufin. The biofilms formed in the presence of MWCNTs reduced tetrozolium to formazan more actively than the control biofilms. When mature biofilms were exposed to MWCNTs, dehydrogenase activity decreased in Rhodococcus erythropolis 4-1, A. guillouiae 11 h, and A. faecalis 2 in the presence of pMWCNTs and hMWCNTs, as well as in A. guillouiae 11 h exposed to cMWCNTs. When mature biofilms were exposed to pMWCNTs, hMWCNTs, and cMWCNTs, the metabolism of cells decreased in most strains, and oMWCNTs did not have a pronounced inhibitory effect. The antibiofilm and probiofilm effects of MWCNTs were strain-dependent.
Collapse
Affiliation(s)
- Yuliya Maksimova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
- Correspondence:
| | - Yana Bykova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
| | - Aleksandr Maksimov
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
| |
Collapse
|
30
|
The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes. MEMBRANES 2022; 12:membranes12060630. [PMID: 35736337 PMCID: PMC9230618 DOI: 10.3390/membranes12060630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Photocatalysis is an efficient and an eco-friendly way to eliminate organic pollutants from wastewater and filtration media. The major dilemma coupled with conventional membrane technology in wastewater remediation is fouling. In this study, the photocatalytic degradation potential of novel thermoplastic polyurethane (TPU) based NiO on aminated graphene oxide (NH2-GO) nanocomposite membranes was explored. The fabrication of TPU-NiO/NH2-GO membranes was achieved by the phase inversion method and analyzed for their performances. The membranes were effectively characterized in terms of surface morphology, functional group, and crystalline phase identification, using scanning electron microscopy, Fourier transformed infrared spectroscopy, and X-ray diffraction analysis, respectively. The prepared materials were investigated in terms of photocatalytic degradation potential against selected pollutants. Approximately 94% dye removal efficiency was observed under optimized conditions (i.e., reaction time = 180 min, pH 3-4, photocatalyst dose = 80 mg/100 mL, and oxidant dose = 10 mM). The optimized membranes possessed effective pure water flux and excellent dye rejection (approximately 94%) under 4 bar pressure. The nickel leaching in the treated wastewater sample was determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). The obtained data was kinetically analyzed using first- and second-order reaction kinetic models. A first-order kinetic study was suited for the present study. Besides, the proposed membranes provided excellent photocatalytic ability up to six reusability cycles. The combination of TPU and NH2-GO provided effective strength to membranes and the immobilization of NiO nanoparticles improved the photocatalytic behavior.
Collapse
|
31
|
Dadari S, Rahimi M, Zinadini S. Removal of heavy metal from aqueous medium using novel high-performance, antifouling, and antibacterial nanofiltration polyethersulfone membrane modified with green synthesized Ni-doped Al2O3. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Nica SL, Zaltariov MF, Pamfil D, Bargan A, Rusu D, Raţă DM, Găină C, Atanase LI. MWCNTs Composites-Based on New Chemically Modified Polysulfone Matrix for Biomedical Applications. NANOMATERIALS 2022; 12:nano12091502. [PMID: 35564211 PMCID: PMC9101761 DOI: 10.3390/nano12091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023]
Abstract
Polyvinyl alcohol (PVA) is a non-toxic biosynthetic polymer. Due to the hydrophilic properties of the PVA, its utilization is an easy tool to modify the properties of materials inducing increased hydrophilicity, which can be noticed in the surface properties of the materials, such as wettability. Based on this motivation, we proposed to obtain high-performance composite materials by a facile synthetic method that involves the cross-linking process of polyvinyl alcohol (PVA) with and aldehyde-functionalized polysulfone(mPSF) precursor, prior to incorporation of modified MWCNTs with hydrophilic groups, thus ensuring a high compatibility between the polymeric and the filler components. Materials prepared in this way have been compared with those based on polyvinyl alcohol and same fillers (mMWCNTs) in order to establish the influence of the polymeric matrix on the composites properties. The amount of mMWCNTs varied in both polymeric matrices between 0.5 and 5 wt%. Fourier transformed infrared with attenuated total reflectance spectroscopy (FTIR-ATR) was employed to confirm the changes noted in the PVA, mPSF and their composites. Hemolysis degree was investigated in correlation with the material structural features. Homogenous distribution of mMWCNTs in all the composite materials has been confirmed by scanning electron microscopy. The hydrophilicity of both composite systems, estimated by the contact angle method, was influenced by the presence of the filler amount mMWCNTs in both matrices (PVA and mPSF). Our work demonstrates that mPSF/mMWCNTs and PVA/mMWCNTs composite could be used as water purification or blood-filtration materials.
Collapse
Affiliation(s)
- Simona Luminita Nica
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
- Correspondence: (S.L.N.); (L.I.A.)
| | - Mirela-Fernanda Zaltariov
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Daniela Pamfil
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Alexandra Bargan
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Daniela Rusu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Delia Mihaela Raţă
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
| | - Constantin Găină
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
- Correspondence: (S.L.N.); (L.I.A.)
| |
Collapse
|