1
|
Ding Y, Zheng JT, Du S, Wu D, Hu F, Zhu D. Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138681. [PMID: 40412325 DOI: 10.1016/j.jhazmat.2025.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/08/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems.
Collapse
Affiliation(s)
- Ying Ding
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Jin-Ting Zheng
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shuai Du
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dong Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| |
Collapse
|
2
|
Xia Y, Lan Y, Xu Y, Liu F, Chen X, Luo J, Xu H, Liu Y. Effects of microplastics and tetracycline induced intestinal damage, intestinal microbiota dysbiosis, and antibiotic resistome: metagenomic analysis in young mice. ENVIRONMENT INTERNATIONAL 2025; 199:109512. [PMID: 40328090 DOI: 10.1016/j.envint.2025.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Microplastics (MPs) and antibiotic tetracycline (TC) are widespread in the environment and constitute emerging combined contaminants. Young individuals are particularly vulnerable to agents that disrupt intestinal health and development. However, the combined effects of MPs and TC remain poorly understood. In this study, we developed a young mouse model exposed to polystyrene MPs, either alone or in combination with TC for 8 weeks to simulate real-life dietary exposure during early life. Our findings revealed that concurrent exposure to MPs and TC caused the most severe intestinal barrier dysfunction driven by inflammatory activation and oxidative imbalance. Moreover, exposure to MPs and TC reduced the abundance of potential probiotics while promoting the growth of opportunistic pathogens. Metagenomic analysis further indicated that co-exposure to MPs and TC enhanced the abundance of bacteria carrying either antibiotic resistance genes (ARGs) or virulence factor genes (VFGs), contributing to the widespread dissemination of potentially harmful genes. Finally, a strong positive correlation was observed between microbiota dysbiosis, ARGs, and VFGs. In general, this study highlighted the hazards of MPs and antibiotics to intestinal health in young mice, which provided a new perspective into the dynamics of pathogens, ARGs, and VFGs in early-life intestinal environments.
Collapse
Affiliation(s)
- Yanan Xia
- Department of Pediatrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunping Xu
- Department of Pediatrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Faqun Liu
- Department of Pediatrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiangxiang Chen
- Department of Pediatrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yang Liu
- Department of Pediatrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Ye G, Li M, Huang H, Avellán-Llaguno RD, Chen J, Chen G, Huang Q. Polystyrene microplastic exposure induces selective accumulation of antibiotic resistance genes in gut microbiota and its potential health risks. Int J Biol Macromol 2025; 309:142983. [PMID: 40220806 DOI: 10.1016/j.ijbiomac.2025.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/11/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
As emerging pollutants, antibiotic resistance genes (ARGs) and microplastics threaten the environment and human health. Gut microbiota is a hotspot for ARG emergence and spread. However, effects of microplastic exposure on the emergence and spread of gut microbial ARGs are unclear. Therefore, metagenomics was used to characterize polystyrene microplastics (PS)-induced ARG alterations in rat gut microbiota and their health risks, and to identify key ARG hosts and pathways as intervention targets. We found that PS exposure not only induced selective accumulation of glycopeptide and aminoglycoside ARGs, but also promoted mobility risks of glycopeptide and macrolide-lincosamide-streptogramin ARGs in gut microbiota. Metagenomic reassembly identified microbes belonging to Firmicutes (particularly order Clostridiales, such as speices Lachnospiraceae bacterium 3-1 and MD335) as major ARG hosts. Meanwhile, genera Enterococcus, Clostridioides and Streptococcus were main ARG hosts among human pathogens. Furthermore, glycopeptide and aminoglycoside ARGs were highly correlated with VanS/VanR signaling and its regulatory pathways of vancomycin resistance and peptidoglycan metabolism, amino sugar and nucleotide sugar metabolism, and CpxR signaling and its regulatory remodeling of cell envelope peptidoglycans and proteins in gut microbiota upon PS exposure. This study provides novel insights and intervention targets involved in PS-induced changes in gut microbial ARGs and their health risks.
Collapse
Affiliation(s)
- Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minghui Li
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Haining Huang
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guoyou Chen
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing 163319, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Ravindra K, Kaur M, Mor S. Impacts of microplastics on gut health: Current status and future directions. Indian J Gastroenterol 2025:10.1007/s12664-025-01744-0. [PMID: 40268833 DOI: 10.1007/s12664-025-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND AND OBJECTIVES Microplastics are pervasive environmental pollutants, attracting significant concern due to their potential adverse effects on ecosystems and human health. This study hypothesizes that microplastics may significantly impact gastrointestinal (GI) health through various mechanisms. The objective of this systematic review is to explore the effects of microplastics on GI health, focusing on animal models such as mice, fish and earthworms. METHODS A systematic review approach was employed, analyzing studies that investigate the impact of microplastics on the gut microbiota, gut barrier integrity and GI inflammation. The review includes a synthesis of findings from multiple animal models. RESULTS The review reveals consistent evidence that microplastics can disrupt the gut microbiota, impair the gut barrier, and induce inflammatory responses in the GI tract. Statistical analysis shows a significant correlation between microplastic exposure and GI health deterioration across various animal models. CONCLUSIONS The findings underscore the harmful effects of microplastics on GI health, emphasizing the urgent need for policy interventions to reduce plastic pollution. Implementing measures to limit the production and usage of disposable plastics is crucial for mitigating the risks posed by microplastic contamination to promote environmental sustainability and safeguard human well-being.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| | - Manpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
5
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2025; 48:266-280. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
6
|
Chen K, Wang L, Liu J, Zheng H, Wu X, Liao X. The ant that may well destroy a whole dam: a systematic review of the health implication of nanoplastics/microplastics through gut microbiota. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39831655 DOI: 10.1080/10408398.2025.2453632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Since the widespread usage of plastic materials and inadequate handling of plastic debris, nanoplastics (NPs) and microplastics (MPs) have become global hazards. Recent studies prove that NPs/MPs can induce various toxicities in organisms, with these adverse effects closely related to gut microbiota changes. This review thoroughly summarized the interactions between NPs/MPs and gut microbiota in various hosts, speculated on the potential factors affecting these interactions, and outlined the impacts on hosts' health caused by NPs/MPs exposure and gut microbiota dysbiosis. Firstly, different characteristics and conditions of NPs/MPs often led to complicated hazardous effects on gut microbiota. Alterations of gut microbiota composition at the phylum level were complex, while changes at the genus level exhibited a pattern of increased pathogens and decreased probiotics. Generally, the smaller size, the rougher surface, the longer shape, the higher concentration, and the longer exposure of NPs/MPs induced more severe damage to gut microbiota. Then, different adaptation and tolerance degrees of gut microbiota to NPs/MPs exposure might contribute to gut microbiota dysbiosis. Furthermore, NPs/MPs could be carriers of other hazards to generally exert more severe damage on gut microbiota. In summary, both pristine and contaminated NPs/MPs posed severe threats to hosts through inducing gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Kun Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Lei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Jingyang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
7
|
Zou HY, Gao FZ, He LY, Zhang M, Liu YS, Qi J, Ying GG. Prevalence of antibiotic resistance genes in mining-impacted farmland environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117651. [PMID: 39765115 DOI: 10.1016/j.ecoenv.2024.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Mining activities produce large quantities of tailings and acid mine drainage, which contain varieties of heavy metals, thereby affecting the downstream farmland soils and crops. Heavy metals could induce antibiotic resistance through co-selection pressure. However, the profiles of antibiotic resistance genes (ARGs) in the mining-affected farmland soils and crops are still unclear. Here we investigated contents of heavy metals, ARG abundances, mobile genetic elements (MGEs), and microbial community in mining-affected farmland soils and vegetables from Shangba village (SB), in comparison to a nearby reference village Taiping (TP). Results showed that in SB group, except for Cr, other metals were all above the Chinese Standards. When compared with the reference group, higher ARG abundances were detected in mining-affected farmland soils and vegetables, with great proportions of genes resistant to sulfonamides, chloramphenicols and tetracyclines. In addition, positive correlations were found between the above three ARG classes and heavy metals concentrations (especially Cu, Pb and Zn). Spearman's correlations revealed that there were positive correlations between sul1 and total nitrogen, as well as tetB/P and pH. Additionally, the Shannon index values were different for the samples from two villages (p < 0.05). Proteobacteria and Actinobacteria were dominant phyla in soil samples. Network analysis suggested that multiple genera (belonging to Proteobacteria and Actinobacteria) were positively associated with many ARGs (p < 0.05), implying they might be potential hosts for ARGs. To sum up, this study provided clear evidence that mining activities caused severe heavy metals pollution to the farmland, thus posing co-selection pressure on the persistence of ARGs in the affected farmland environments.
Collapse
Affiliation(s)
- Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Min Zhang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jun Qi
- School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
10
|
Yilmaz G, Chan M, Lau CHF, Capitani S, Kang M, Charron P, Hoover E, Topp E, Guan J. How Gut Microbiome Perturbation Caused by Antibiotic Pre-Treatments Affected the Conjugative Transfer of Antimicrobial Resistance Genes. Microorganisms 2024; 12:2148. [PMID: 39597538 PMCID: PMC11596856 DOI: 10.3390/microorganisms12112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) poses a significant threat to public health. While antibiotics effectively treat bacterial infections, they can also induce gut dysbiosis, the severity of which varies depending on the specific antibiotic treatment used. However, it remains unclear how gut dysbiosis affects the mobility and dynamics of ARGs. To address this, mice were pre-treated with streptomycin, ampicillin, or sulfamethazine, and then orally inoculated with Salmonella enterica serovar Typhimurium and S. Heidelberg carrying a multi-drug resistance IncA/C plasmid. The streptomycin pre-treatment caused severe microbiome perturbation, promoting the high-density colonization of S. Heidelberg and S. Typhimurium, and enabling an IncA/C transfer from S. Heidelberg to S. Typhimurium and a commensal Escherichia coli. The ampicillin pre-treatment induced moderate microbiome perturbation, supporting only S. Heidelberg colonization and the IncA/C transfer to commensal E. coli. The sulfamethazine pre-treatment led to mild microbiome perturbation, favoring neither Salmonella spp. colonization nor a conjugative plasmid transfer. The degree of gut dysbiosis also influenced the enrichment or depletion of the ARGs associated with mobile plasmids or core commensal bacteria, respectively. These findings underscore the significance of pre-existing gut dysbiosis induced by various antibiotic treatments on ARG dissemination and may inform prudent antibiotic use practices.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Maria Chan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory-Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0Z, Canada; (C.H.-F.L.)
| | - Sabrina Capitani
- Ottawa Laboratory-Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0Z, Canada; (C.H.-F.L.)
| | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Philippe Charron
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Emily Hoover
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Edward Topp
- Agroecology Research Unit, INRAE, University of Burgundy, 21065 Dijon, France;
| | - Jiewen Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| |
Collapse
|
11
|
Du J, Huang W, Pan Y, Xu S, Li H, Jin M, Liu Q. Ecotoxicological Effects of Microplastics Combined With Antibiotics in the Aquatic Environment: Recent Developments and Prospects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1950-1961. [PMID: 38980257 DOI: 10.1002/etc.5950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Both microplastics and antibiotics are commonly found contaminants in aquatic ecosystems. Microplastics have the ability to absorb antibiotic pollutants in water, but the specific adsorption behavior and mechanism are not fully understood, particularly in relation to the impact of microplastics on toxicity in aquatic environments. We review the interaction, mechanism, and transport of microplastics and antibiotics in water environments, with a focus on the main physical characteristics and environmental factors affecting adsorption behavior in water. We also analyze the effects of microplastic carriers on antibiotic transport and long-distance transport in the water environment. The toxic effects of microplastics combined with antibiotics on aquatic organisms are systematically explained, as well as the effect of the adsorption behavior of microplastics on the spread of antibiotic resistance genes. Finally, the scientific knowledge gap and future research directions related to the interactions between microplastics and antibiotics in the water environment are summarized to provide basic information for preventing and treating environmental risks. Environ Toxicol Chem 2024;43:1950-1961. © 2024 SETAC.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
| | - Wenfei Huang
- Eco-Environmental Science and Research, Institute of Zhejiang Province, Hangzhou, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | | | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
12
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
13
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
14
|
Xiong G, Zhang H, Shi H, Peng Y, Han M, Hu T, Liao X, Liu Y, Zhang J, Xu G. Enhanced hepatotoxicity in zebrafish due to co-exposure of microplastics and sulfamethoxazole: Insights into ROS-mediated MAPK signaling pathway regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116415. [PMID: 38703406 DOI: 10.1016/j.ecoenv.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The combined pollution of microplastics (MPs) and sulfamethoxazole (SMZ) often occurs in aquatic ecosystems, posing a serious threat to animal and human health. However, little is known about the liver damage caused by the single or co-exposure of MPs and SMZ, and its specific mechanisms are still poorly understood. In this study, we investigated the effects of co-exposure to 20 μm or 80 nm MPs and SMZ in both larval and adult zebrafish models. Firstly, we observed a significant decrease in the number of hepatocytes and the liver damage in larval zebrafish worsened following co-exposure to SMZ and MPs. Additionally, the number of macrophages and neutrophils decreased, while the expression of inflammatory cytokines and antioxidant enzyme activities increased after co-exposure in larval zebrafish. Transcriptome analysis revealed significant changes in gene expression in the co-exposed groups, particularly in processes related to oxidation-reduction, inflammatory response, and the MAPK signaling pathway in the liver of adult zebrafish. Co-exposure of SMZ and MPs also promoted hepatocyte apoptosis and inhibited proliferation levels, which was associated with the translocation of Nrf2 from the cytoplasm to the nucleus and an increase in protein levels of Nrf2 and NF-kB p65 in the adult zebrafish. Furthermore, our pharmacological experiments demonstrated that inhibiting ROS and blocking the MAPK signaling pathway partially rescued the liver injury induced by co-exposure both in larval and adult zebrafish. In conclusion, our findings suggest that co-exposure to SMZ and MPs induces hepatic dysfunction through the ROS-mediated MAPK signaling pathway in zebrafish. This information provides novel insights into the potential environmental risk of MPs and hazardous pollutants co-existence in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China; College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Haiyan Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Huangqi Shi
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Yulin Peng
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Meiling Han
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Tianle Hu
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yong Liu
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Gaoxiao Xu
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China.
| |
Collapse
|
15
|
Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Implications of polystyrene and polyamide microplastics in the adsorption of sulfonamide antibiotics and their metabolites in water matrices. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106934. [PMID: 38728926 DOI: 10.1016/j.aquatox.2024.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MP) and antibiotics coexist in the environment and their combined exposure represents a source of increasing concern. MP may act as carriers of antibiotics because of their sorption capacity. Knowledge of the interactions between them may help improve understanding of their migration and transformation. In this work, the adsorption behaviour of a group of sulfonamides and their acetylated metabolites on different sizes of polyamide (PA) and polystyrene (PS) MP were investigated and compared. Sulfonamides were adsorbed on both MP (qmax up to 0.699 and 0.184 mg/g, for PA and PS, respectively) fitting to a linear isotherm model (R2 > 0.835). A low particle size and an acidic and salinity medium significantly enhances the adsorption capacity of sulfonamides (i.e. removal of sulfamethoxazole increased from 8 % onto 3 mm PA pellets to 80 % onto 50 mm of PA pellets). According to characterization results, adsorption mechanism is explained by pore filling and hydrogen bonds (for PA) and hydrophobic interactions (for PS). After adsorption, surface area was increased in both MP as result of a potential ageing of the particles and the intensity of XRD peaks was higher denoting a MP structure more amorphized. Metabolites were adsorbed more efficiently than their parent compounds on PS while the opposite effect was observed on PA explained by the acetylation of the amine group and, subsequently the reduction of hydrogen bond interactions. Although the dissolved organic matter inhibits sulfonamides adsorption, removal up to 65.2 % in effluent wastewater and up to 72.1 % in surface water were observed in experiments using real matrices denoting the role of MP as vectors of sulfonamide antibiotics in aquatic media.
Collapse
Affiliation(s)
- Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, c/ Virgen de África, 7, Seville E-41011, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, c/ Virgen de África, 7, Seville E-41011, Spain.
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, c/ Virgen de África, 7, Seville E-41011, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, c/ Virgen de África, 7, Seville E-41011, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, c/ Virgen de África, 7, Seville E-41011, Spain
| |
Collapse
|
16
|
Zhang P, Lu G, Sun Y, Yan Z, Zhang L, Liu J. Effect of microplastics on oxytetracycline trophic transfer: Immune, gut microbiota and antibiotic resistance gene responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134147. [PMID: 38565017 DOI: 10.1016/j.jhazmat.2024.134147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
17
|
Kaur M, Sharma A, Bhatnagar P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol Lett 2024; 396:48-69. [PMID: 38677566 DOI: 10.1016/j.toxlet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
18
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
19
|
Covello C, Di Vincenzo F, Cammarota G, Pizzoferrato M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr Issues Mol Biol 2024; 46:2658-2677. [PMID: 38534784 PMCID: PMC10968954 DOI: 10.3390/cimb46030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.
Collapse
Affiliation(s)
- Carlo Covello
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Federica Di Vincenzo
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
20
|
Liu S, Liu X, Guo J, Yang R, Wang H, Sun Y, Chen B, Dong R. The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17774-17785. [PMID: 36269573 DOI: 10.1021/acs.est.2c04706] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pregnancy and infancy are vulnerable times for detrimental environmental exposures. However, the exposure situation of microplastics (MPs) for mother-infant pairs and the adverse health effect of MPs are largely unknown. Therefore, we explored MP exposure in placentas and meconium samples, and the potential correlation of MP exposure with microbiota in placentas and meconium. A total of 18 mother-infant pairs were effectively recruited from Shanghai, China. The study required pregnant women to provide placentas and meconium samples. An Agilent 8700 laser infrared imaging spectrometer (LDIR) was applied to identify MPs. Microbiota detection was identified by 16S rRNA sequencing. Sixteen types of MPs were found in all matrices, and polyamide (PA) and polyurethane (PU) were the major types we identified. MPs detected in samples with a size of 20-50 μm were more than 76.46%. At the phylum level, both placenta and meconium microbiota were mainly composed of Proteobacteria, Bacteroidota, and Firmicutes. We also found some significant differences between placenta and meconium microbiota in β-diversity and gut composition. Additionally, we found polystyrene was inversely related with the Chao index of meconium microbiota. Polyethylene was consistently inversely correlated with several genera of placenta microbiota. The total MPs, PA, and PU consistently impacted several genera of meconium microbiota. In conclusion, MPs are ubiquitous in placentas and meconium samples, indicating the wide exposure of pregnant women and infants. Moreover, our findings may support a link between high concentration of MPs and microbiota genera in placentas and meconium. Additionally, there were several significant associations between the particle size of MPs in 50-100 μm and meconium microbiota.
Collapse
Affiliation(s)
- Shaojie Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xinyuan Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jialin Guo
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Ruoru Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hangwei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yongyun Sun
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
- Institute of Nutrition, Fudan University, Shanghai 200032, China
| | - Ruihua Dong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
- Institute of Nutrition, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118971. [PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Rida Fatima
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Salman
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Anila Shaheen
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
22
|
Li X, Luo J, Han C, Lu X. Nanoplastics enhance the intestinal damage and genotoxicity of sulfamethoxazole to medaka juveniles (Oryzias melastigma) in coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164943. [PMID: 37329919 DOI: 10.1016/j.scitotenv.2023.164943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics and nanoplastics are widely detected in the coastal ecosystem. However, the transcriptome mechanism elucidating the effect of antibiotics and nanoplastics co-exposure on the gene expression of aquatic organisms in coastal environment is still unclear. Here, single and joint effects of sulfamethoxazole (SMX) and polystyrene nanoplastics (PS-NPs) on the intestinal health and gene expression of medaka juveniles (Oryzias melastigma), which live in coastal environment, were investigated. The SMX and PS-NPs co-exposure decreased intestinal microbiota diversity compared to the PS-NPs, and caused more adverse effect on the intestinal microbiota composition and intestinal damage compared to the SMX, indicating that PS-NPs might enhance the toxicity of SMX on the medaka intestine. The increased abundance of Proteobacteria in the intestine was observed in the co-exposure group, which might induce the intestinal epithelium damage. In addition, the differentially expressed genes (DEGs) were mainly involved in the drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450 pathways in visceral tissue after the co-exposure. The expression of the host immune system genes (e.g., ifi30) could be associated with the increased pathogens in intestinal microbiota. This study is useful for understanding the toxicity effect of antibiotics and NPs on aquatic organisms in coastal ecosystem.
Collapse
Affiliation(s)
- Xue Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
23
|
Li J, Li J, Zhai L, Lu K. Co-exposure of polycarbonate microplastics aggravated the toxic effects of imidacloprid on the liver and gut microbiota in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104194. [PMID: 37348773 DOI: 10.1016/j.etap.2023.104194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The joint toxicity of microplastics (MPs) and pesticides may be different from MPs or pesticides individually, however, the information about the combined toxicity of MPs and pesticides is not well understood. Herein, we investigated the joint toxicity of polycarbonate (PC) MPs and imidacloprid (IMI) on mice. After orally exposure for 4 weeks, PC and/or IMI lowered the body weight gain of mice. Single exposure of IMI induced the tissue damage in liver by disturbing the redox homeostasis, and PC significantly aggravated the imbalance of redox homeostasis by facilitating the accumulation of IMI in liver. Additionally, compared to single exposure of PC or IMI, PC+IMI exposure caused more severe damage to the gut microstructure and microbial diversity. Several key metabolic pathways, especially the lipid metabolism, were significantly affected. Overall, these findings provide new insight into understanding the potential risk of co-exposure of microplastics and pesticides to animal and human health.
Collapse
Affiliation(s)
- Jiao Li
- Nanjing Qixia District Hospital, Nanjing 210033, China; Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Clinical Oncology School of Fujian Medical University, Department of radiology, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
Zhang L, Guo H, Gu J, Hu T, Wang X, Sun Y, Li H, Sun W, Qian X, Song Z, Xie J, An L. Metagenomic insights into dietary remodeling of gut microbiota and antibiotic resistome in meat rabbits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162006. [PMID: 36791852 DOI: 10.1016/j.scitotenv.2023.162006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The gut microbiota is a repository of antibiotic resistance genes (ARGs), which may affect the health of humans and animals. The intestinal flora is affected by many factors but it is unclear how the intestinal microflora and antibiotic resistome in rabbits might change under dietary intervention. Feeding with lettuce led to the amplification and transfer of exogenous ARGs in the intestinal flora, but there were no significant differences when fed lettuces grown with different manure types. For example, the lsaC of lettuce fed with bovine, chicken and pig manure without adding organic fertilizer increased by 0.143, 0.151, 0.179 and 0.169 logs respectively after 4 weeks, and the efrB also increased by 0.074, 0.068, 0.079 and 0.106 logs respectively. Network analysis showed that Clostridium_ sensu_ stricto_ 18 was a potential host of type 6 virulence factor genes (VFGs). Mantel analysis showed that ARGs were directly influenced by mobile genetic elements (MGEs) and VFGs. Thus, feeding rabbits lettuce grown with different manure types contribute to the transmission of ARGs by remodeling the intestinal microenvironment. In addition, diet may affect exogenous ARGs to change the intestinal antibiotic resistome and possibly threaten health.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
25
|
James BD, Karchner SI, Walsh AN, Aluru N, Franks DG, Sullivan KR, Reddy CM, Ward CP, Hahn ME. Formulation Controls the Potential Neuromuscular Toxicity of Polyethylene Photoproducts in Developing Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7966-7977. [PMID: 37186871 DOI: 10.1021/acs.est.3c01932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity. However, at the molecular level, RNA sequencing revealed differences in the number of differentially expressed genes (DEGs) for each leachate treatment: thousands of genes (5442 P, 577 D) for the additive-free film, tens of genes for the additive-containing conventional bag (14 P, 7 D), and none for the additive-containing recycled bag. Gene ontology enrichment analyses suggested that the additive-free PE leachates disrupted neuromuscular processes via biophysical signaling; this was most pronounced for the photoproduced leachates. We suggest that the fewer DEGs elicited by the leachates from conventional PE bags (and none from recycled bags) could be due to differences in photoproduced leachate composition caused by titanium dioxide-catalyzed reactions not present in the additive-free PE. This work demonstrates that the potential toxicity of plastic photoproducts can be product formulation-specific.
Collapse
Affiliation(s)
- Bryan D James
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Anna N Walsh
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Kallen R Sullivan
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M Reddy
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Collin P Ward
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
26
|
Yang W, Li Y, Boraschi D. Association between Microorganisms and Microplastics: How Does It Change the Host-Pathogen Interaction and Subsequent Immune Response? Int J Mol Sci 2023; 24:ijms24044065. [PMID: 36835476 PMCID: PMC9963316 DOI: 10.3390/ijms24044065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/22/2023] Open
Abstract
Plastic pollution is a significant problem worldwide because of the risks it poses to the equilibrium and health of the environment as well as to human beings. Discarded plastic released into the environment can degrade into microplastics (MPs) due to various factors, such as sunlight, seawater flow, and temperature. MP surfaces can act as solid scaffolds for microorganisms, viruses, and various biomolecules (such as LPS, allergens, and antibiotics), depending on the MP characteristics of size/surface area, chemical composition, and surface charge. The immune system has efficient recognition and elimination mechanisms for pathogens, foreign agents, and anomalous molecules, including pattern recognition receptors and phagocytosis. However, associations with MPs can modify the physical, structural, and functional characteristics of microbes and biomolecules, thereby changing their interactions with the host immune system (in particular with innate immune cells) and, most likely, the features of the subsequent innate/inflammatory response. Thus, exploring differences in the immune response to microbial agents that have been modified by interactions with MPs is meaningful in terms of identifying new possible risks to human health posed by anomalous stimulation of immune reactivities.
Collapse
Affiliation(s)
- Wenjie Yang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn, 80132 Naples, Italy
- Correspondence:
| |
Collapse
|
27
|
Li A, Wang Y, Kulyar MFEA, Iqbal M, Lai R, Zhu H, Li K. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159089. [PMID: 36174690 DOI: 10.1016/j.scitotenv.2022.159089] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Renhao Lai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
28
|
Yang Y, Guo X, Xu T, Yin D. Effects of carbamazepine on gut microbiota, ARGs and intestinal health in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114473. [PMID: 38321688 DOI: 10.1016/j.ecoenv.2022.114473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Carbamazepine (CBZ) in the aquatic environment is recognized as a potential threat to aquatic organisms and public health. However, the response of organism intestinal health, resistome, microbiota, and their relationship after CBZ exposure has been rarely reported. This study aimed to explore the impacts of CBZ on gut microbiota, antibiotic resistance genes (ARGs) and the expression of intestinal health related genes as well as their interaction using the zebrafish model. 16 S ribosomal RNA sequencing indicated CBZ altered the composition of gut microbiota. Using high-throughput quantitative polymerase chain reaction (HT-qPCR), we found the number and abundance of ARGs were impacted by CBZ levels and exposure duration. We also observed the upregulated expression of the pro-inflammatory gene IL6 and downregulated expression of toll-like receptor gene TLR2 and intestinal barrier gene TJP2a at different exposure times. Correlation analyses revealed that Geobacillus, Rhodococcus, Ralstonia, Delftia, Luteolibacter and Escherichia-Shigella might be the main bacterial genera carrying ARGs. Meanwhile, Cetobacterium and Aeromonas could be the dominant bacteria affecting intestinal health related genes. Our results could contribute to understanding the health risks of CBZ to the intestinal microecology of aquatic animals.
Collapse
Affiliation(s)
- Yiting Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
29
|
Jiménez‐Arroyo C, Tamargo A, Molinero N, Moreno‐Arribas MV. The gut microbiota, a key to understanding the health implications of micro(nano)plastics and their biodegradation. Microb Biotechnol 2023; 16:34-53. [PMID: 36415969 PMCID: PMC9803334 DOI: 10.1111/1751-7915.14182] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of plastic debris on the environment and plant, animal, and human health are a global challenge, with micro(nano)plastics (MNPs) being the main focus. MNPs are found so often in the food chain that they are provoking an increase in human intake. They have been detected in most categories of consumed foods, drinking water, and even human feces. Therefore, oral ingestion becomes the main source of exposure to MNPs, and the gastrointestinal tract, primarily the gut, constantly interacts with these small particles. The consequences of human exposure to MNPs remain unclear. However, current in vivo studies and in vitro gastrointestinal tract models have shown that MNPs of several types and sizes impact gut intestinal bacteria, affecting gut homeostasis. The typical microbiome signature of MNP ingestion is often associated with dysbiosis and loss of resilience, leads to frequent pathogen outbreaks, and local and systemic metabolic disorders. Moreover, the small micro- and nano-plastic particles found in animal tissues with accumulated evidence of microbial degradation of plastics/MNPs by bacteria and insect gut microbiota raise the issue of whether human gut bacteria make key contributions to the bio-transformation of ingested MNPs. Here, we discuss these issues and unveil the complex interplay between MNPs and the human gut microbiome. Therefore, the elucidation of the biological consequences of this interaction on both host and microbiota is undoubtedly challenging. It is expected that microbial biotechnology and microbiome research could help decipher the extent to which gut microorganisms diversify and MNP-determinant species, mechanisms, and enzymatic systems, as well as become important to understand our response to MNP exposure and provide background information to inspire future holistic studies.
Collapse
Affiliation(s)
| | - Alba Tamargo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL)CSIC‐UAMMadridSpain
| | - Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL)CSIC‐UAMMadridSpain
| | | |
Collapse
|
30
|
Shi J, Deng H, Zhang M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics. CHEMOSPHERE 2022; 304:135321. [PMID: 35718033 DOI: 10.1016/j.chemosphere.2022.135321] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Investigating the long-term effects of microplastics (MPs) in vivo is necessary for evaluating its biological toxicity. Previously, we showed that MPs elicit vascular dysfunctions in atherosclerotic mice. However, the effects of long-term treatment with environmental levels of MPs on biological functions and RNA expression profiles in wild-type mice are unknown. Here, C57BL/6 mice were administered 1000 μg/L MPs through their drinking water for 180 days. Transcriptomic analyses, biochemical analysis, and histopathological examination were conducted to determine the key signals and molecular mechanisms triggered by MPs in vivo using whole transcriptome sequencing, enzyme-linked immunosorbent assay, and histopathological analysis. Notably, our data revealed that MPs aggravated vascular lesions and organ injuries, particularly liver, kidney, and heart injuries. Additionally, MPs exacerbated oxidative injuries by inhibiting the activities of antioxidant enzymes and increasing the levels of the serum biochemistry indicator of organ damage. RNA sequencing of vascular tissues showed that 674 mRNAs, 39 lncRNAs, 196 miRNAs, and 565 circRNAs were abnormally expressed in MPs-treated mice compared with the untreated group. Pathway enrichment analyses identified pathways linked to the toxicity of MPs, including lysosomal, NOD-like receptor, and peroxisome proliferator-activated receptor pathways. Additionally, competing endogenous RNA networks were constructed and hub RNAs were identified using bioinformatics analysis. Taken together, our data suggested that toxicity induced by long-term exposure to MPs continually presents with extensive changes in biological features and global gene expression profiles. Our data provides new insights into the biological toxicity of MPs.
Collapse
Affiliation(s)
- Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| |
Collapse
|
31
|
Wen S, Zhao Y, Wang M, Yuan H, Xu H. Micro(nano)plastics in food system: potential health impacts on human intestinal system. Crit Rev Food Sci Nutr 2022; 64:1429-1447. [PMID: 36066327 DOI: 10.1080/10408398.2022.2116559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Micro(nano)plastics (MNPs) in human food system have been broadly recognized by researchers and have drawn an increasing public attention to their potential health risks, particularly the risk to the intestinal system regarding the long-term exposure to MNPs through food consumption. This study aims to review the environmental properties (formation and composition) of MNPs and MNPs pollution in human food system following the order of food production, food processing and food consumption. The current analytic and identical technologies utilized by researchers are also summarized in this review. In fact, parts of commonly consumed food raw materials, processed food and the way to take in food all become the possible sources for human MNPs ingestion. In addition, the available literatures investigating MNPs-induced intestinal adverse effect are discussed from in vitro models and in vivo mammalian experiments, respectively. Particle translocation, cytotoxicity, damaged gut barrier, intestinal inflammation as well as microbial alteration are mostly reported. Moreover, the practical remediation strategies for MNPs pollution are also illustrated in the last section. This review is expected to provide a research insight for foodborne MNPs and arouse more public awareness of MNPs pollution in food and potential risk for human intestinal health.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Phthalate Esters Metabolic Strain Gordonia sp. GZ-YC7, a Potential Soil Degrader for High Concentration Di-(2-ethylhexyl) Phthalate. Microorganisms 2022; 10:microorganisms10030641. [PMID: 35336217 PMCID: PMC8955600 DOI: 10.3390/microorganisms10030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As commonly used chemical plasticizers in plastic products, phthalate esters have become a serious ubiquitous environmental pollutant, such as in soil of plastic film mulch culture. Microbial degradation or transformation was regarded as a suitable strategy to solve the phthalate esters pollution. Thus, a new phthalate esters degrading strain Gordonia sp. GZ-YC7 was isolated in this study, which exhibited the highest di-(2-ethylhexyl) phthalate degradation efficiency under 1000 mg/L and the strongest tolerance to 4000 mg/L. The comparative genomic analysis results showed that there exist diverse esterases for various phthalate esters such as di-(2-ethylhexyl) phthalate and dibutyl phthalate in Gordonia sp. GZ-YC7. This genome characteristic possibly contributes to its broad substrate spectrum, high degrading efficiency, and high tolerance to phthalate esters. Gordonia sp. GZ-YC7 has potential for the bioremediation of phthalate esters in polluted soil environments.
Collapse
|