1
|
Zhang Y, Liu X, Wang S, A R, Qian S, Liang Y, Tian Y, Wei D, Zhang H. Iron sulfide mineral/polylactic acid mixotrophic biofilter for simultaneous nitrate and phosphate removal. J Environ Sci (China) 2025; 156:56-67. [PMID: 40412955 DOI: 10.1016/j.jes.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 05/27/2025]
Abstract
Heterotrophic denitrification based on polylactic acid (PLAHD) can remove nitrate effectively, but it is expensive and can't remove phosphate. Autotrophic denitrification based on iron sulfide (ISAD) can simultaneously remove nitrate and phosphate cost-effectively, but its nitrate rate is slow. So, iron sulfide mineral/polylactic acid mixotrophic biofilter (ISPLAB) was constructed to combine advantages of ISAD and PLAHD. ISPLAB achieved nitrogen and phosphorus removal rates of 98.04 % and 94.12 %, respectively, at a hydraulic retention time (HRT) of 24 h. The study also revealed that controlling molecular weight (MW) of PLA improved the release of soluble organic matter; adding iron sulfide enhanced the hydrolysis of PLA and precipitated PO43- of Fe2+/Fe3+, thereby facilitated simultaneous nitrogen and phosphorus removal. Microbial community analysis resulted that denitrifying bacterias (Phaeodactylibacter and Methylotenera), sulfur-reducing bacterias (Hyphomicrobium), sulfur-oxidizing bacteria (Denitratisoma), iron-reducing bacteria (Romboutsia) and hydrolyzed bacterias (norank_f_norank_o_1-20 and norank_f_Caldilineaceae) coexisted in the ISPLAB system. Organics and iron sulfide drived the denitrification process in ISPLAB.
Collapse
Affiliation(s)
- Yuwei Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiyang Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rong A
- Xinjiang Non-ferrous Metal Research Institute, Urumqi 830000, China
| | - Shujie Qian
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing 100029, China
| | - Yaquan Liang
- China Municipal Engineering Northwest Design & Research Institute Co., Ltd., Lanzhou 730050, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Dongyang Wei
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing 100029, China.
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
2
|
Zhu H, Hu C, Jiang R, Xiao M, Fu Y, Wang Q, Zhao K. Sustainable chitosan-based adsorbents for phosphorus recovery and removal from wastewater: A review. Int J Biol Macromol 2025; 313:144160. [PMID: 40373908 DOI: 10.1016/j.ijbiomac.2025.144160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/30/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Phosphates are considered one of the main nutrient pollutants causing eutrophication and deterioration of water quality. Among those commonly used removal technologies, adsorption has shown effectiveness in removing phosphate from polluted water. Over the past decade, various chitosan-based materials (CSMats) have been widely developed and applied in desalination treatment of phosphate-containing wastewater due to their biocompatibility, nontoxicity, high phosphate adsorption capacities, and low-cost. This review summarized systematically the research progress on preparation and modification strategies of CSMats to accelerate the adsorption rate and enhance adsorption capacities of phosphate removal. Moreover, insights into the effect of experimental parameters (such as pH and coexisting ions) are also outlined. The desorption, regeneration and reutilization of exhausted CSMats has been discussed and analyzed. The contribution mechanisms (hydrogen bonding, electrostatic attraction, Lewis acid-base interaction, ligand/ion exchange, surface precipitation) of phosphate adsorption on CSMats are also summarized. Finally, present research gaps and challenges in the removal of phosphate adsorption on CSMats have been highlighted. In summary, the main purpose of this review is to provide the latest information helpful for preparing novel CSMats with better adsorption properties and promoting practical applications for desalination of phosphate-containing wastewater in future.
Collapse
Affiliation(s)
- Huayue Zhu
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, PR China.
| | - Chundan Hu
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China
| | - Ru Jiang
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, PR China.
| | - Mei Xiao
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China
| | - Yongqian Fu
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Kai Zhao
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China.
| |
Collapse
|
3
|
Xiong L, Song B, Lin X, Wu Y, Yu J, Wang X, Huang H, Cheng Y, Zhou Q, Xue G. Tuning pH to motivate chain reaction of iron release with extracellular polymeric substances formation for long lasting Fe 0-driven autotrophic denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125580. [PMID: 40311364 DOI: 10.1016/j.jenvman.2025.125580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
Although zero-valent iron (Fe0)-driven autotrophic denitrification (ADN) is free of external carbon source during nitrogen removal, Fe0 surface passivation restricted the nitrogen removal capacity of Fe0-driven ADN. Tuning influent pH can boost Fe0 corrosion, thereby improving Fe0-driven ADN. It is imperative to find the pH balance between Fe0 corrosion and autotrophic denitrifying bacteria growth. Herein, by altering pH over a wide range of 5.0-9.0 in batch operation, it was confirmed that the optimal pH of 6.0 maintained Fe0 corrosion and denitrifying bacteria growth simultaneously. The maximum total nitrogen (TN) removal efficiency of 87.0 % was accomplished at the influent pH of 6.0 in batch operation. Furthermore, the TN removal efficiency in continuous flow operation reached as high as 84.8 % when the influent pH was 6.0 and hydraulic retention time was 24 h. Meanwhile, the released Fe2+ and Fe3+ from Fe0 corrosion significantly promoted the formation of extracellular polymeric substances (EPS). EPS facilitated the electron transfer between Fe0 and nitrate (NO3--N), consequently promoting nitrogen removal. The genera of Thauera and Defluviimonas were dominant denitrifiers in batch operation, while Ellin6067 prevailed in continuous flow operation, utilizing EPS as carbon source. The microbial community exhibits a certain disparity between batch and continuous flow operation modes. However, the similar nitrogen removal pathway maintained a stable denitrification efficiency in both batch and continuous flow reactors. Modulating influent pH to bolster Fe0-driven ADN was a promising and handy strategy in actual application.
Collapse
Affiliation(s)
- Ling Xiong
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Binxue Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jintao Yu
- Shanghai Institute of Chemical Industry Environmental Engineering Co, 2666 West Guangfu Road, Shanghai, 200062, China.
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huahan Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yimei Cheng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
4
|
Zhu M, Ma M, Chen S, Yuan R, Wang S. Study on the Synchronous Removal of Nitrogen and Phosphorus by Autotrophic/Heterotrophic Denitrification in the Presence of Pyrite. Molecules 2025; 30:2412. [PMID: 40509300 PMCID: PMC12155907 DOI: 10.3390/molecules30112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 06/18/2025] Open
Abstract
Pollution caused by N and P is a significant contributor to water eutrophication. While traditional biological treatment processes can remove some N and P elements from water, the effluent quality often fails to meet the stringent requirements of sensitive areas. The autotrophic denitrification's simultaneous nitrogen and phosphorus removal pro-cess, known for its low operating cost and minimal sludge production, has garnered considerable attention from researchers. In this study, natural pyrite was used for the removal of nitrogen and phosphorus in a denitrification system, and the underlying mechanisms were elucidated. The results indicate that the N and P removal efficiency was influenced by empty bed contact time (EBCT) and the pH value. The highest NO3--N removal rate of 90.24% was achieved at an EBCT of 8 h, while the PO43--P removal rate reached 81.58% at an EBCT of 12 h. The addition of a carbon source enhanced the synergistic autotrophic/heterotrophic denitrification, significantly improving phosphorus removal with an increasing C/N ratio. Microbial characteristics analysis revealed that, at the phylum level, Chlorobiota, Bacteroidota, and Chloroflexota played a crucial role in heterotrophic autotrophic denitrification. At the genus level, Thauera, Aridibacter, and Gemmatimonas were key players in heterotrophic denitrification, while Thiobacillus, Rhodoplanes, and Geobacter were associated with autotrophic denitrification.
Collapse
Affiliation(s)
| | | | | | - Rongfang Yuan
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Z.); (M.M.); (S.C.)
| | - Shaona Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Z.); (M.M.); (S.C.)
| |
Collapse
|
5
|
Nie R, Xu X, Xu P, Zhuge Y, Zheng T, Yu X, Yao R, Tan H, Li G, Zhao X, Du Q. Taxonomic and functional responses of benthic macroinvertebrates to wastewater effluents in the receiving river of ecologically vulnerable karst areas in Southwest China. ENVIRONMENTAL RESEARCH 2025; 278:121666. [PMID: 40268223 DOI: 10.1016/j.envres.2025.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Discharges of wastewater effluents have a profound impact on the health of receiving river ecosystems, especially with regard to benthic macroinvertebrate communities. However, the effects of different wastewater types on the taxonomy and function of benthic macroinvertebrates in the receiving rivers in vulnerable karst regions of China are still rarely known. Here, we collected benthic macroinvertebrate samples from the Yanjin River, which could be divided into reaches mainly influenced by industrial, domestic and mixed wastewater, as well as from its adjacent Guanyinsi River, which was unaffected by wastewater. We found that both taxonomic and functional structures of benthic macroinvertebrates in the receiving river differed significantly under the influence of various wastewater types, which was linked to fluctuations in nutrient-related water quality, despite seasonal variation. Watershed-scale anthropogenic activities played important roles in determining the water quality, thereby indirectly driving the functional trait adaptation of benthic macroinvertebrate communities. Notably, we observed that the expansion of cropland dramatically decreased the functional diversities of benthic macroinvertebrates. Threshold responses of multi-faceted diversities in benthic macroinvertebrates to pollutants suggested that the critical concentrations of chemical oxygen demand (CODMn) and ammonia nitrogen (NH4-N) were 4.16 mg/L and 0.23 mg/L, respectively. Our study provided insights into the impacts of anthropogenic activities on benthic macroinvertebrates from both taxonomic and functional perspectives, highlighting the need to incorporate watershed-scale human activity management into water quality control strategies for urban river ecosystems, tailored to local conditions.
Collapse
Affiliation(s)
- Rui Nie
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xuming Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Peijie Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yisi Zhuge
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiao Yu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Rui Yao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Hongwu Tan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Guoqiang Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xiaohui Zhao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiang Du
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
6
|
Qian Z, Pan H, Xu J, Han M, Qi L, Ye L. Pyrite and PHBV combined as substrates for groundwater denitrification. ENVIRONMENTAL TECHNOLOGY 2025:1-14. [PMID: 40186856 DOI: 10.1080/09593330.2025.2486792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
Nitrate pollution in groundwater has steadily increased globally, posing a potential threat to human health. Introduction of exogenous electron donors can significantly enhance nitrogen removal from nitrate-contaminated groundwater. Yet, conventional individual autotrophic or heterotrophic denitrification approaches have the disadvantage of low efficiency or high cost. This study investigated the performance of a laboratory-scale solid-phase denitrification (SPD) permeable reactive barrier (PRB) using a polyhydroxybutyrate-co-valerate (PHBV)/pyrite mixture as an electron donor for groundwater denitrification. Two different mass ratios (1:1 and 1:2) were established for the experimental setup. The results showed that under influent levels between 20 and 37 mg·L-1, the PHBV/pyrite system at a ratio of 1:1 achieved a maximum nitrate removal efficiency of 97.03%, with a nitrate removal rate of 99.13 mg NO 3 - - N NO 3 - - N ·L-1·d-1. Moreover, the PHBV/pyrite system at 1:2 reached 97.65% and 111.04 mg NO 3 - - N ·L-1·d-1 in terms of the optimum nitrate removal efficiency and rate. Dissolved organic carbon was undetectable in the effluent in both systems. The nitrate removal performance of the PHBV/pyrite system at 1:2 was superior to the one at 1:1, implying appropriate addition of pyrite in mixtrophic systems could enhance denitrification in groundwater. Additionally, the dominant genera identified were respectively Cloacibacterium and Acinetobacter in two systems, indicating that varying PHBV/pyrite ratios can modulate the succession of dominant nitrogenremoving microorganisms. Specifically, the system at 1:2 favoured aerobic microbial growth, thereby enhancing the efficiency of biological nitrogen removal. The findings have provided a valuable alternative for mixtrophic denitrification in in-situ remediation of nitrate-polluted groundwater.
Collapse
Affiliation(s)
- Zhengkun Qian
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, People's Republic of China
- School of Ecology and Environment, Anhui Normal University, Wuhu, People's Republic of China
| | - Haodong Pan
- School of Ecology and Environment, Anhui Normal University, Wuhu, People's Republic of China
| | - Jiayi Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, People's Republic of China
| | - Mengyuan Han
- School of Ecology and Environment, Anhui Normal University, Wuhu, People's Republic of China
| | - Linyan Qi
- School of Geography and Tourism, Anhui Normal University, Wuhu, People's Republic of China
| | - Liangtao Ye
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, People's Republic of China
- School of Ecology and Environment, Anhui Normal University, Wuhu, People's Republic of China
| |
Collapse
|
7
|
Wu L, Li P, Wang G, Sijan AH, Zhang B. High-efficiency nitrogen and phosphorus removal for low C/N rural wastewater using a full-scale multi-stage A 2O biofilm reactor combined with horizontal-vertical flow constructed wetlands system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125023. [PMID: 40121987 DOI: 10.1016/j.jenvman.2025.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Rural wastewater treatment faces significant challenges in achieving stable effluent quality due to factors such as temperature fluctuations, variations in water quality and quantity, and low carbon-to-nitrogen (C/N) ratios. This study developed a full-scale, non-membrane, multi-stage anaerobic-anoxic-oxic (MSA2O) biofilm reactor integrated with horizontal-vertical flow constructed wetlands (HVCWs), which was operated continuously for approximately 320 days with an average flow of 11.9 m3/d in a rural area of northern China. Key parameters were optimized: hydraulic retention time (HRT) of 21-32 h, aeration rate of 4.0 m3/h, carbon source dosing at 1.25 L/h, PAC dosing at 0.55 L/h, and mixed liquor reflux ratio at 200 %. The system demonstrated high removal efficiencies for COD (74.2 %), NH4+-N (93.4 %), TN (90.6 %), and TP (86.3 %), consistently meeting the class 1A of GB18918-2002, China (COD ≤50 mg/L, NH4+-N ≤ 5 mg/L, TN ≤ 15 mg/L, TP ≤ 0.5 mg/L), even under challenging conditions such as low C/N (3.3) and rainy seasons. More than 70 % of nitrogen and phosphorus were removed in the MSA2O system. Microbial analysis revealed the enrichment of many functional bacteria. Proteobacteria play a key role in denitrification and phosphorus removal. Actinomycetes, Acidobacteria, and Firmicutes to nitrogen fixation and organic matter degradation. Nitrosomonas dominated ammonia oxidation, while Dechloromonas and Accumulibacter significantly contributed to phosphorus uptake. Seasonal variations in microbial diversity enabled consistent and highly efficient nutrient removal. The HVCWs system contributed 16.3 % of total phosphorus removal through selected plant species and phosphorus-absorbing modified ceramsite, ensuring effluent polishing and stability. With low operational costs ($0.12/m3), the integrated system provides an effective and scalable solution for rural wastewater treatment, delivering high-quality effluent with minimal energy consumption.
Collapse
Affiliation(s)
- Lingyan Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guodong Wang
- School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, 88 Anning Road, Lanzhou, 730070, China
| | - Adib Hossain Sijan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Jia L, Zhou Q, Wu W. Optimized Mn cycle enhanced synchronous removal of nitrate and antibiotics driven by manganese oxides/solid carbon composites: Microbiota assembly patterns and electron transport. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136875. [PMID: 39706025 DOI: 10.1016/j.jhazmat.2024.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The reactive substance consisting manganese oxides (MnOx) and solid carbon have been reported to be effective in polishing secondary wastewater; however, the treatment characteristics and mechanism remains limited. In this study, MnOx/carbon (Mn-C) composites were applied in biofilters to evaluate simultaneous removal of nitrate and sulfamethoxazole (SMX), with the single carbon composites as control. Results showed that the effluent concentrations of NO3--N and SMX were below 2.87 mg L-1 and 7.97 μg L-1 under hydraulic retention time (HRT) of 6 h. The intermittent aeration optimized Mn cycle with treatment performance improved under lower HRT and Mn(II) accumulation decreased. Mn-C composites could reduce the emission of N2O, CO2 and CH4. The dominant genera gradually evolved from fermentation to glycogen aggregation, and from heterotrophic/sulfur autotrophic to heterotrophic denitrifiers by intracellular substance and manganese autotrophic/heterotrophic bacteria. Microbial network analysis indicated higher antagonism, lower modularity and shorter average path among microbes in Mn-C biofilters, which highlighted microbial differentiation and faster electron transfer. Improved functions of denitrification and Mn respiration, and the increasing genes encoding electron transfer chain, including NADH dehydrogenase, Cytc and ubiquinone, further elucidated the superiority of Mn-C composites. These results improved our understanding of Mn-C composites application in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Engineering, School of Environmental and Resource Science, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
9
|
Nie Y, Yuan S, Zhang S, Peng G, Wang Q, Xie Y, Ming T, Wang Z. Microbial interactions elucidate the mechanisms of hydraulic retention time altering denitrification pathway in a sole pyrite-based electrochemical bioreactor (PEBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124467. [PMID: 39923637 DOI: 10.1016/j.jenvman.2025.124467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
In the current context of low-carbon wastewater treatment, pyrite-based autotrophic denitrification (PAD) has gained attention as an energy-efficient and environmentally sustainable method for nitrogen elimination. However, the limited dissolution of pyrite and the associated slow autotrophic denitrification rate restrict its practical application. To tackle this, a pyrite-based electrochemical bioreactor (PEBR) was constructed and the microbial effect of hydraulic retention time (HRT) on denitrification efficiency and sulfide or iron oxidation in the PEBR system was investigated. It was found that upon the conclusion of phase V (HRT = 12 h), the nitrate removal efficiency (NRE) reached 92.53% ± 0.96%, and the concentration of NH4+-N in the effluent reached 2.63 ± 0.57 mg/L with a minimal accumulation of NO2--N (0.03 ± 0.05 mg/L) when the optimal treatment performance was obtained. As the HRT increased, the proportion of heterotrophic denitrification decreased substantially to 1%. Desulfobacterota, a sulfate-reducing bacteria (SRB), became dominant, with a relative abundance ranging from 0.04% to 19.44%. The PAD-related genera, such as Thiobacillus and Ferritrophicum, exhibited a positive correlation with HRT, indicating that PAD was enhanced with the extension of HRT. The functional genes related to Fe2+ intracellular oxidation (e.g., korA/B) positively correlated with HRT. The positive correlation of dsrA/B with HRT highlighted the role of dissimilatory sulfate reduction (DSR) as a primary contributor to reduced sulfate production. Furthermore, the variations in the relative abundance of aprA/B for sulfate reduction with the extension of HRT reflected that HRT affected sulfate reduction probably via the APS→SO32- process. This study might shed light on the optimization of HRT in PEBR for the treatment of nitrogenous wastewater.
Collapse
Affiliation(s)
- Yuhu Nie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Sicheng Yuan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Gang Peng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qinglong Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufan Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
10
|
Yang X, Yao M, Li P, van der Hoek JP, Zhang L, Liu G. Mutual symbiosis of electroactive bacteria and denitrifiers for improved refractory carbon utilization and nitrate reduction. ENVIRONMENT INTERNATIONAL 2025; 197:109330. [PMID: 39965474 DOI: 10.1016/j.envint.2025.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Mutual symbiosis of electroactive bacteria (EAB) and denitrifier may be the key for solving the refractory carbon and residual nitrogen in wastewater treatment plant effluent. However, its application is hampered by unclear co-metabolic model and uncertain electron transfer. Here, we achieved 3-5 times increase in refractory carbon degradation, 40 % improvement in denitrification, and 36.0 % decrease in N2O emission by co-culturing P. aeruginosa strain GWP-1 and G. sulfurreducens. Such an enhancement is obtained by both refractory carbon co-metabolism and interspecies electron transfer (IET) between GWP-1 and G. sulfurreducens. Importantly, IET was quantified via isotopic approach, which revealed that G. sulfureducens supplies more electrons to GWP-1 when the system was fed with cellulose (0.071 mM) than glucose (0.012 mM). This study demonstrates that the residual refractory carbon and nitrogen in treated wastewater could be further converted by mutual symbiosis of EAB and denitrifiers, which paves a synergic way for pollution and carbon reduction.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 Beijing, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 Beijing, PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; University of Chinese Academy of Sciences 100049 Beijing, PR China
| | - Peng Li
- China Water Environment Group, Beijing 101101 PR China
| | - Jan Peter van der Hoek
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; Waternet, Department Research & Innovation 1090 GJ Amsterdam, the Netherlands
| | - Lujing Zhang
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; China Water Environment Group, Beijing 101101 PR China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 Beijing, PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; University of Chinese Academy of Sciences 100049 Beijing, PR China.
| |
Collapse
|
11
|
Li Z, Wei Y, Wu H, Yuan P. Efficient and regenerative phosphate removal from wastewater using stable magnetite/magnesium iron oxide nanocomposites. ENVIRONMENTAL RESEARCH 2025; 264:120268. [PMID: 39481778 DOI: 10.1016/j.envres.2024.120268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Using magnetite-based nanocomposite adsorbents to remove and recycle phosphate from wastewater is crucial for controlling eutrophication and ensuring the sustainable use of phosphorus resources. However, the weak structural stability between magnetite and adsorptive nanoparticles often reduces phosphate removal efficiency in real-world applications. This instability primarily results from the loss of adsorptive nanoparticles from the magnetite surfaces, particularly when metal oxide nanoparticles are used for phosphate removal and recycling. In this study, we present a top-down approach that involves lattice locking magnesium iron oxide nanoparticles to the magnetite core, preventing magnesium loss from the magnetite surfaces. These nanocomposites exhibit exceptional performance in both phosphate recycling and removal, with a maximum adsorption capacity of 101.8 mg P·g-1. Excellent adsorption performance is also observed even in the presence of competing anions at phosphate-to-competing ion molar ratios of 1:5, 1:25, and 1:100, as well as dissolved organic matter, across a broad pH range of 4-10. The adsorbent also demonstrated minimal magnesium release during regeneration and in acidic conditions. Microscopic and spectroscopic analyses reveal that surface precipitation is the primary mechanism of phosphate removal in the magnesium-containing shells. The findings of this study address the current limitations of magnetite nanocomposites in phosphate removal, paving the way for the development of highly stable and sustainable nanocomposites for various chemical removal and recycling applications in wastewater treatment.
Collapse
Affiliation(s)
- Zheng Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Srivastava G, Aboudi K, Tyagi VK, Kazmi AA. Role of intracellular storage polymers in simultaneous biological nutrient removal and resources recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123720. [PMID: 39693972 DOI: 10.1016/j.jenvman.2024.123720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Simultaneous biological nutrient removal (SBNR) using an anaerobic-anoxic-oxic phase is the key feature of advanced wastewater treatment plants (WWTPs). Removing ammonia, total nitrogen, and phosphorus concurrently with organic matter and suspended solids from wastewater is essential to meeting stringent effluent discharge standards via SBNR in WWTPs. More insight into the mechanisms of SBNR, i.e., simultaneous nitrification-denitrification (SND) and enhanced biological phosphorus removal (EBPR) processes, the intracellular carbon reserves, i.e., polyhydroxyalkanoates (PHA) and specifically poly-β-hydroxybutyrates (PHB), will play a critical role in nutrients removal and resource recovery in WWTPs. Volatile fatty acids (VFA) in wastewater are the preferable source of PHA formation. However, municipal wastewater could not supply sufficient VFA fractions owing to short sewer lines; therefore, developing pre-fermentation chambers and other technological integration in the WWTPs can play an effective role in VFA production from raw sewage, resulting in the effective formation of PHA. On the other hand, PHA is a value-added biochemical, i.e., a potential substitute for fossil fuel plastics. WWTPs complying with SBNR are the bio-refineries for PHA (bioplastic precursors) production using diverse microbial populations. This review enlightens three dimensions of progressive systems and engineering-based viewpoints: (i) Increasing the SBNR by optimizing operational conditions subject to the substrate storage mechanisms of treatment systems; (ii) Technical solutions to enhance the VFA availability in sewage in WWTPs to achieve effective SBNR; and (iii) production of PHB (PHA) in WWTPs.
Collapse
Affiliation(s)
- Ghazal Srivastava
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Kaoutar Aboudi
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, P.O. Box n 40, Puerto Real, 11510, Cádiz, Spain
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee, Uttarakhand, 247667, India
| | - Absar Ahmad Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
13
|
Zhou Q, Wang J. Sulfur-based mixotrophic denitrification: A promising approach for nitrogen removal from low C/N ratio wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177419. [PMID: 39542261 DOI: 10.1016/j.scitotenv.2024.177419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Sulfur-based mixotrophic denitrification has significant potential as a promising denitrification technology for treating low ratio of carbon-to‑nitrogen (C/N) wastewater. This paper provided an in-depth and comprehensive overview of the sulfur-based mixotrophic denitrification process and discussed the underlying mechanisms and functional microorganisms. Possible electron transfer pathways involved in the sulfur-based mixotrophic denitrification process are also analyzed in detail. This review focused on the various sulfur-based electron donors used in the sulfur-based mixotrophic denitrification process, including S0, S2-, S2O32-, and pyrite (FeS2), and their performances when combined with various carbon sources (such as methanol, ethanol, glucose, and woodchips) were also explored. The analysis of the contribution proportion between autotrophic and heterotrophic denitrification suggested an appropriate C/N ratio can emphasize the dominance of autotrophs, thus exerting synergistic effects and reducing the consumption of carbon sources. Additionally, three strategies, including developing new composites, new bioreactors, and new sulfur sources, were proposed to improve the performance and stability of the sulfur-based mixotrophic denitrification process. Finally, the applications (such as secondary effluent, groundwater, and agricultural/urban storm water runoff), challenges, and perspectives of the sulfur-based mixotrophic denitrification were highlighted. This review provided an in-depth insight into the coupling mechanism of sulfur-based autotrophic and heterotrophic denitrification and guidance for the future implementation of the sulfur-based mixotrophic denitrification process.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
14
|
Pei C, Li B, Li X, Wang J, Zhang H, Chen X, She J. Preparation and optimization of sulfur ferrous inorganic carbon composite filler for autotrophic denitrification nitrogen and phosphorus removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123181. [PMID: 39500162 DOI: 10.1016/j.jenvman.2024.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Sulfur autotrophic denitrification (SAD) occurs without organic carbon sources, offering advantages in removing nitrogen pollutants from water with low carbon to nitrogen ratio. However, ensuring nitrate-reducing sulfide-oxidizing bacteria ability to access the necessary sulfur and inorganic carbon sources is a challenge. Therefore, this study investigated the feasibility of utilizing a SAD composite filler to mitigate nitrogen and phosphorus pollutants concentrations in secondary effluent of wastewater treatment plants (WWTPs) and reduce eutrophication risk in the receiving water. The use of paraffin optimized composite filler with a satisfying 3.70 % break rate and wear rate without dramatically deteriorating contaminant removal performance. The process achieved 94.26 % total nitrogen (TN) and 90.91 % PO43--P removal rates in treating synthetic wastewater; and 2.72 ± 1.92 mg/L and 0.29 ± 0.06 mg/L of TN and PO43--P discharge in treating WWTPs secondary effluent, respectively. The results indicated that denitrification performance of the filler was primarily influenced by variations in NH4+-N resulting from SAD and dissimilatory nitrate reduction to ammonia caused by differences in filler composition and preparation factors. Based on the performance difference in SAD, Fex + leached by H+ in the filler changed, affecting phosphorus removal performance. The change in mechanical properties of the filler was primarily dependent on the surface characteristics of the filler and the content/type of the binder. This study demonstrates the feasibility of using SAD for advanced nitrogen and phosphorus removal from wastewater and applying sulfur/siderite integrated composite filler as a pilot, thereby offering insights for the preparation of SAD fillers.
Collapse
Affiliation(s)
- Changying Pei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Han Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jian She
- Central-Southern Safety & Environment Technology Institute Co., Ltd, China.
| |
Collapse
|
15
|
Zhang J, Wang L, Li H, Yu J, Wang H. Effect of elemental sulfur on anaerobic ammonia oxidation: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 262:119778. [PMID: 39155040 DOI: 10.1016/j.envres.2024.119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
Biological nitrogen removal processes provide effective means to mitigate nitrogen-related issues in wastewater treatment. Previous studies have highlighted the collaborative efficiency between sulfur autotrophic denitrification and Anammox processes. However, the trigger point induced the combination of nitrogen and sulfur metabolism is unclear. In this study, elemental sulfur (S0) was introduced to Anammox system to figure out the performance and mechanism of S0-mediated autotrophic denitrification and Anammox (S0SAD-A) systems. The results showed that the nitrogen removal performance of the Anammox reactor decreased with the increasing concentrations of NH4+-N and NO2--N in influent, denitrification occurred when NH4+-N concentration reached 100 mg/L. At stage ⅳ (150 mg/L NH4+-N), the total nitrogen removal efficiency in S0SAD-A system (95.99%) was significantly higher than that in the Anammox system (77.22%). Throughout a hydraulic retention time, the consumption rate of NH4+-N in S0SAD-A was faster than that in Anammox reactor. And there existed a nitrate-concentration peak in S0SAD-A system. Metagenomic sequencing was performed to reveal functional microbes as well as key genes involved in sulfur and nitrogen metabolism. The results showed that the introduction of S0 elevated the abundance of Ca. Brocadia. Moreover, the relative abundance of Anammox genes, such as hao, hzsA and hzsC were also stimulated by sulfur. Notably, unclassified members in Rhodocyclaceae acted as the primary contributor to key genes involved in the sulfur metabolism. Overall, the interactions between Anammox and denitrification were stimulated by sulfur metabolism. Our study shed light on the potential significance of Rhodocyclaceae members in the S0SAD-A process and disclosed the relationship between anammox and denitrification.
Collapse
Affiliation(s)
- Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Biology institute, Hebei academy of science, Shijiazhuang, 050081, PR China
| | - Lurong Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Haitao Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, PR China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, PR China.
| |
Collapse
|
16
|
Zhou Q, Jia L, Li Y, Wu W, Wang J. Deciphering stratified structure and microbiota assembly of biofilms from a pyrite-based biofilter driven by mixotrophic denitrification. BIORESOURCE TECHNOLOGY 2024; 414:131568. [PMID: 39366511 DOI: 10.1016/j.biortech.2024.131568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The precise structure and assembly process of pyrite-based biofilms remain poorly understood. The polysaccharides (PN), proteins (PS), and extracellular DNA were enriched in the soluble extracellular polymeric substance (EPS), loosely bound EPS, and tightly bound EPS, respectively, indicating a significant stratified structure of biofilms. The tryptophan facilitated mixotrophic metabolic processes. Both dominant (>1%) and rare species (<0.01 %) harbored core bacteria, including sulfur autotrophic bacteria, sulfate-reducing bacteria, and heterotrophic bacteria. Furthermore, partial least-squares path modeling quantified the contributions of total phosphorus (TP) (λ = 0.32), dissolved organic matter (DOC) (λ = 0.29), and NH4+-N (λ = 0.26) to variations in the microbial community. Nonmetric multidimensional scaling analysis revealed three distinct stages in biofilm development: colonization (0-36 d), succession (36-149 d), and maturation/old (149-215 d). Furthermore, neutral community model indicated that stochastic processes drove the colonization and maturation/old stages, while deterministic processes dominated the succession stage. This study offered valuable insights into the regulation of pyrite-based engineered ecosystems.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Sun L, Shewa WA, Bossy K, Dagnew M. Simultaneous nitrification and denitrification framework for decentralized systems: Long-term study utilizing rope-type biofilm media under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177337. [PMID: 39500459 DOI: 10.1016/j.scitotenv.2024.177337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/12/2024]
Abstract
This research introduces a novel approach to achieve simultaneous nitrification-denitrification (SND) under dynamic load conditions using a cost-effective rope-type biofilm technology. The approach represents a significant advancement in wastewater treatment, particularly beneficial for remote and decentralized communities. The biofilm-based SND process was developed using a pilot-scale flow-through reactor by implementing upstream carbon management with constant-timer-based aeration control versus dynamic-sensor-based aeration control strategies. The findings indicate that adding an upstream anaerobic pretreatment process to handle excess carbon plays a substantial role in achieving a sustainable SND process under a dynamic load environment using simple aeration on-off control. The most optimal nitrification performance of 0.32 g NH3-N/m2/d (89 % removal) was achieved under a 1-hour ON/30-minute OFF aeration. The process sustained an average bulk liquid DO of 5.16 mg/L and 3.80 mg/L during the aeration ON and OFF periods, respectively, facilitating a 0.13 g N/m2/d (41 %) total inorganic nitrogen (TIN) removal, notably, implementing advanced aeration strategies driven by DO, NH3, and NO3 sensors enhanced TIN removal efficiency to 72 %. The nitrification performance remained comparable (89 % removal), resulting in 3 and 10 mg N/L effluent ammonia and TIN concentration, respectively. Additionally, utilizing two multivariate approaches accounting for 82 % and 64 % of the variance, this study discerned patterns in monitored variables and performance. Additionally, the analysis underscored the difference of bulk liquid DO levels in the biofilm versus suspended systems inhibiting the SND process. Distinct bacterial communities were established in biofilms under aerobic, anaerobic, and SND conditions, with the SND reactor showing a hierarchy of functional group and enzymes, enriched sequentially from heterotrophs to denitrifiers, nitrifiers, and anammox bacteria. These innovations underline the potential of tailored control strategies to enhance a passive biofilm-based SND process efficiency under dynamic conditions, providing scalable solutions for diverse target water quality demands in remote communities and decentralized systems.
Collapse
Affiliation(s)
- Lin Sun
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London N6A 5B9, ON, Canada
| | - Wudneh Ayele Shewa
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London N6A 5B9, ON, Canada; Bishop Water Inc., 203-16 Edward Street South, Arnprior K7S 3W4, ON, Canada
| | - Kevin Bossy
- Bishop Water Inc., 203-16 Edward Street South, Arnprior K7S 3W4, ON, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London N6A 5B9, ON, Canada.
| |
Collapse
|
18
|
Jathan Y, Marchand EA. Enhanced coagulation for removal of dissolved organic nitrogen in water: A review. CHEMOSPHERE 2024; 366:143429. [PMID: 39349069 DOI: 10.1016/j.chemosphere.2024.143429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Wastewater treatment plants (WWTPs) meeting strict nutrient discharge regulations typically effectively remove inorganic nitrogen, leaving dissolved organic nitrogen (DON) as the main component of total nitrogen in the effluent. DON in treated effluent from both WWTPs and drinking water treatment plants (DWTPs) has the potential to induce eutrophication and contribute to the formation of nitrogenous disinfection byproducts (N-DBP). While numerous studies have investigated DON in different water sources, a limited number of studies have focused on its removal through enhanced coagulation. The variable removal efficiencies of dissolved organic carbon (DOC) and DON in treatment processes highlight the need for comprehensive research on enhanced coagulation for DON removal. Enhanced coagulation is a viable option for DON removal, but underlying mechanisms and influencing factors are still being actively researched. The effectiveness of enhanced coagulation depends on DON characteristics and coagulant properties, but knowledge gaps remain regarding their influence on treatment. DON is a complex mixture of compounds, with only a small fraction identified, such as proteins, degraded amino acids, urea, chelating agents, humic substances, and soluble microbial products. Understanding molecular-level characteristics of DON is crucial for identifying unknown compounds and understanding its fate and transformation during treatment processes. This review identifies knowledge gaps regarding enhanced coagulation process for DON removal, including the role of coagulant aids, novel coagulants, and pretreatment options. It discusses DON characteristics, removal mechanisms, and molecular-level transformation of DON during enhanced coagulation. Addressing these gaps can lead to process optimization, promote efficient DON removal, and facilitate safe water production.
Collapse
Affiliation(s)
- Yasha Jathan
- Department of Civil and Environmental Engineering University of Nevada, Reno, Reno, NV, 89557, USA
| | - Eric A Marchand
- Department of Civil and Environmental Engineering University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
19
|
Zhang L, Liu H, Wang Y, Wang Q, Pan W, Tang Z, Chen Y. Transition from sulfur autotrophic to mixotrophic denitrification: Performance with different carbon sources, microbial community and artificial neural network modeling. CHEMOSPHERE 2024; 366:143432. [PMID: 39357655 DOI: 10.1016/j.chemosphere.2024.143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
To address the limitations inherent in both sulfur autotrophic denitrification (SAD) and heterotrophic denitrification (HD) processes, this study introduces a novel approach. Three carbon sources (glucose, methanol, and sodium acetate) were fed into the SAD system to facilitate the transition towards mixotrophic denitrification. Batch experiments were conducted to explore the effects of influencing factors (pH, HRT) on the denitrification performance of the mixotrophic system. Carbon source dosages were varied at 12.5%, 25%, and 50% of the theoretical amounts required for HD (18, 36, and 72 mg/L, respectively). The results showed distinct optimal dosages for each of the three organic carbon sources. The mixotrophic system, initiated with sodium acetate at 25% of the theoretical value, demonstrated the highest denitrification performance, achieving NO3--N removal efficiency of 99.8% and the NRR of 6.25 mg/(L·h). In contrast, the corresponding systems utilizing glucose (at 25% of the theoretical value) and methanol (at 50% of the theoretical value) achieved lower removal efficiency of 77.0% and 88.4%, respectively. The corresponding NRRs were 4.85 mg/(L·h) and 5.65 mg/(L·h). Following the transition from SAD to a mixotrophic system, the abundance of Thiobacillus decreased from 78.5% to 34.4% at the genus level, and the mixotrophic system cultivated a variety of other denitrifying bacteria (Thauera, Aquimonas, Azoarcus, and Pseudomonas), indicating an enhanced microbial community structure diversity. The established artificial neural network (ANN) model accurately predicted the effluent quality of mixotrophic denitrification, which predicted values closely aligning with experimental results (R2 > 0.9). Furthermore, initial pH exerted greater relative importance for COD removal and sulfur conversion, while the relative importance of HRT was more pronounced for NO3--N removal.
Collapse
Affiliation(s)
- Li Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yunxia Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wentao Pan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Zhiqiang Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
20
|
Yang Y, Bai W, Gan D, Zhu Y, Li X, Liang C, Xia S. A practical study on the near-zero discharge of rainwater and the collaborative treatment and regeneration of rainwater and sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173137. [PMID: 38740207 DOI: 10.1016/j.scitotenv.2024.173137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Non-conventional water recovery, recycling, and reuse have been considered imperative approaches to addressing water scarcity in China. The objective of this study was to evaluate the technical and economic feasibility of Water Reclamation Plants (WRP) based on an anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR) system for unconventional water resource treatment and reuse in towns (domestic sewage and rainwater). Rainwater is collected and stored in the rainwater reservoir through the rainwater pipe network, and then transported to the WRP for treatment and reuse through the rainwater reuse pumping station during the peak water demand period. During a year of operation and evaluation process, a total of 610,000 cubic meters of rainwater were reused, accounting for 10.4 % of the treated wastewater. In the A2O-MBR operation, the average effluent concentrations for COD (chemical oxygen demand), NH4+-N (ammonium), TN (total nitrogen), and TP (total phosphorus) were 14.23 ± 4.07 mg/L, 0.22 ± 0.26 mg/L, 11.97 ± 1.54 mg/L, and 0.13 ± 0.09 mg/L, respectively. The effluent quality met standards suitable for reuse in industrial cooling water or for direct discharge. The WRP demonstrates a positive financial outlook, with total capital and operating costs totaling 0.16 $/m3. A comprehensive cost-benefit analysis indicates a positive net present value for the WRP, and the estimated annualized net profit is 0.024 $/m3. This research has achieved near-zero discharge of wastewater and effective allocation of rainwater resources across time and space.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenlong Bai
- Inner Mongolia Dongyuan Environmental Protection Technology Co., LTD, Inner Mongolia 014399, China
| | - Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengyu Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Sun L, Yue X, Zhang G, Wang A. A pilot-scale anoxic-anaerobic-anoxic-oxic combined with moving bed biofilm reactor system for advanced treatment of rural wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173074. [PMID: 38734101 DOI: 10.1016/j.scitotenv.2024.173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Rural domestic poses a significant challenge to treatment technologies due to significant fluctuations in both water quality, particularly in terms of carbon concentration, and quantity. Conventional biological technology, such as anaerobic-anoxic-oxic (A2O) systems, is inefficient. In this work, a continuous pilot-scale anoxic-anaerobic-anoxic-oxic (A3O) reactor with a moving bed biofilm reactor (MBBR) system was constructed and optimized to improve the treatment efficiency of rural domestic wastewater. The sludge return ratio, volume ratio of the oxic-to-anoxic zone (Voxi/Vano), step-feeding and hydraulic retention time (HRT) at low temperature were considered the main parameters for optimization. Microbial analysis was performed on both the mixed liquor and carrier of the A3O-MBBR system under initial and post-optimized conditions. The results indicated that the A3O-MBBR improved the treatment efficiency of rural domestic wastewater, especially for total phosphorus (TP), which increased by 20 % compared with that of the A2O-MBR. In addition, the removal efficiencies of nitrogen and phosphorus were further optimized, and the average concentrations of total nitrogen (TN) and TP in the effluent reached 2.46 and 0.364 mg/L, respectively, at a sludge reflux ratio of 100 or 150 %, Voxi/Vano =200 %, step-feeding of 0.5Q/0.5Q (anaerobic/anoxic) and HRT of 15 h at low temperature in the A3O-MBBR, which met standard A of GB18918-2002, China (TN < 15 mg/L, TP < 0.5 mg/L). The average rate of attaining the standard increased by 58.63 % (post optimization). The microbial analysis showed an increase in species diversity and richness after the parameters were optimized. Moreover, compared to the microbial community structure before optimization, the post-optimization exhibited a more stable microbial structure with a significant enrichment of functional bacteria. Defluviimonas, Novosphingobium and Bifidobacterium, considered as the dominant nitrification or denitrifying bacteria, were enriched in the suspended sludge of the MBBR reactor, which the relative abundance increased by 3.11 %, 3.84 %, and 3.24 %, respectively. Further analysis of the microbial community in the carrier revealed that the abundance of Nitrospira and the denitrifying bacteria carried by the carrier were much greater than those in the suspended sludge. Consequently, the microorganism cooperation between suspended sludge and biofilm might be responsible for the improved performance of the optimized A3O-MBBR.
Collapse
Affiliation(s)
- Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xinbo Yue
- School of Intelligent Manufacturing Technology, Nanyang Vocational College, Xixia 474550, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
22
|
Cheng Q, Tian H, Zuo Y, Nengzi L, Du E, Peng M, Cheng X. Influence of temperature on performance and mechanism of advanced synergistic nitrogen removal in lab-scale denitrifying filter with biogenic manganese oxides. CHEMOSPHERE 2024; 359:142269. [PMID: 38719129 DOI: 10.1016/j.chemosphere.2024.142269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Temperature is a significant operational parameter of denitrifying filter (DF), which affects the microbial activity and the pollutants removal efficiency. This study investigated the influence of temperature on performance of advanced synergistic nitrogen removal (ASNR) of partial-denitrification anammox (PDA) and denitrification, consuming the hydrolytic and oxidation products of refractory organics in the actual secondary effluent (SE) as carbon source. When the test water temperature (TWT) was around 25, 20, 15 and 10 °C, the filtered effluent total nitrogen (TN) was 1.47, 1.70, 2.79 and 5.52 mg/L with the removal rate of 93.38%, 92.25%, 87.33% and 74.87%, and the effluent CODcr was 8.12, 8.45, 10.86 and 12.29 mg/L with the removal rate of 72.41%, 66.17%, 57.35% and 51.87%, respectively. The contribution rate of PDA to TN removal was 60.44%∼66.48%, and 0.77-0.96 mg chemical oxygen demand (CODcr) was actually consumed to remove 1 mg TN. The identified functional bacteria, such as anammox bacteria, manganese oxidizing bacteria (MnOB), hydrolytic bacteria and denitrifying bacteria, demonstrated that TN was removed by the ASNR, and the variation of the functional bacteria along the DF layer revealed the mechanism of the TWT affecting the efficiency of the ASNR. This technique presented a strong adaptability to the variation of the TWT, therefore, it has broad application prospect and superlative application value in advanced nitrogen removal of municipal wastewater.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yanting Zuo
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Lichao Nengzi
- Academy of Environmental and Economics Sciences, Xichang University, Xichang, 615000, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xiuwen Cheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Zhou Q, Jia L, Li Y, Wu W, Wang J. Significantly Enhanced Nitrate and Phosphorus Removal by Pyrite/Sawdust Composite-Driven Mixotrophic Denitrification with Boosted Electron Transfer: Comprehensive Evaluation of Water-Gas-Biofilm Phases during a Long-Term Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10149-10161. [PMID: 38808456 DOI: 10.1021/acs.est.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Further reducing total nitrogen (TN) and total phosphorus (TP) in the secondary effluent needs to be realized effectively and in an eco-friendly manner. Herein, four pyrite/sawdust composite-based biofilters were established to treat simulated secondary effluent for 304 days. The results demonstrated that effluent TN and TP concentrations from biofilters under the optimal hydraulic retention time (HRT) of 3.5 h were stable at <2.0 and 0.1 mg/L, respectively, and no significant differences were observed between inoculated sludge sources. The pyrite/sawdust composite-based biofilters had low N2O, CH4, and CO2 emissions, and the effluent's DOM was mainly composed of five fluorescence components. Moreover, mixotrophic denitrifiers (Thiothrix) and sulfate-reducing bacteria (Desulfosporosinus) contributing to microbial nitrogen and sulfur cycles were enriched in the biofilm. Co-occurrence network analysis deciphered that Chlorobaculum and Desulfobacterales were key genera, which formed an obvious sulfur cycle process that strengthened the denitrification capacity. The higher abundances of genes encoding extracellular electron transport (EET) chains/mediators revealed that pyrite not only functioned as an electron conduit to stimulate direct interspecies electron transfer by flagella but also facilitated EET-associated enzymes for denitrification. This study comprehensively evaluates the water-gas-biofilm phases of pyrite/sawdust composite-based biofilters during a long-term study, providing an in-depth understanding of boosted electron transfer in pyrite-based mixotrophic denitrification systems.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Zhao Y, Zhang J, Ni M, Pan Y, Li L, Ding Y. Cultivation of phosphate-accumulating biofilm: Study of the effects of acyl-homoserine lactones (AHLs) and cyclic dimeric guanosine monophosphate (c-di-GMP) on the formation of biofilm and the enhancement of phosphate metabolism capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172408. [PMID: 38608880 DOI: 10.1016/j.scitotenv.2024.172408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
This study investigated the mechanisms of microbial growth and metabolism during biofilm cultivation in the biofilm sequencing batch reactor (BSBR) process for phosphate (P) enrichment. The results showed that the sludge discharge was key to biofilm growth, as it terminated the competition for carbon (C) source between the nascent biofilm and the activated sludge. For the tested reactor, after the sludge discharge on 18 d, P metabolism and C source utilization improved significantly, and the biofilm grew rapidly. The P concentration of the recovery liquid reached up to 157.08 mg/L, which was sufficient for further P recovery via mineralization. Meta-omics methods were used to analyze metabolic pathways and functional genes in microbial growth during biofilm cultivation. It appeared that the sludge discharge activated the key genes of P metabolism and inhibited the key genes of C metabolism, which strengthened the polyphosphate-accumulating metabolism (PAM) as a result. The sludge discharge not only changed the types of polyphosphate-accumulating organisms (PAOs) but also promoted the growth of dominant PAOs. Before the sludge discharge, the necessary metabolic abilities that were spread among different microorganisms gradually concentrated into a small number of PAOs, and after the sludge discharge, they further concentrated into Candidatus_Contendobacter (P3) and Candidatus_Accumulibacter (P17). The messenger molecule C-di-GMP, produced mostly by P3 and P17, facilitated P enrichment by regulating cellular P and C metabolism. The glycogen-accumulating organism (GAO) Candidatus_Competibacter secreted N-Acyl homoserine lactones (AHLs), which stimulated the secretion of protein in extracellular polymeric substances (EPS), thus promoting the adhesion of microorganisms to biofilm and improving P metabolism via EPS-based P adsorption. Under the combined action of the dominant GAOs and PAOs, AHLs and C-di-GMP mediated QS to promote biofilm development and P enrichment. The research provides theoretical support for the cultivation of biofilm and its wider application.
Collapse
Affiliation(s)
- Yimeng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Zhang
- Suzhou Drainage Company Limited, Suzhou 215009, China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanyan Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
25
|
Lan Z, Zhang Y, Liang R, Wang Z, Sun J, Lu X, He Y, Wang Y. Comprehensive comparison of integrated fixed-film activated sludge (IFAS) and AAO activated sludge methods: Influence of different operational parameters. CHEMOSPHERE 2024; 357:142068. [PMID: 38636921 DOI: 10.1016/j.chemosphere.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.
Collapse
Affiliation(s)
- Zihua Lan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Renli Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Zhiqiang Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Xu F, Peng Y, Gu X, Sun S, Li A, He S. Revealing sulfur-iron coupling mechanism for enhanced autotrophic denitrification in ecological floating beds. BIORESOURCE TECHNOLOGY 2024; 402:130800. [PMID: 38734259 DOI: 10.1016/j.biortech.2024.130800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
A sulfur-iron coupled ecological floating bed (EFB-SFe) was developed to enhance the denitrification capability of sulfur-based ecological floating beds (EFB-S). The denitrification performance, kinetic process and microbial community composition were explored. Results showed that sulfur-iron coupling effectively enhanced the denitrification performance of EFB, surpassing the sum of their individual effects. The average total nitrogen removal rate ranged from 1.56 to 4.56 g·m-2·d-1, with a removal efficiency of 22-84 %. The k value for the S + Fe group increased from 0.04 to 0.18 d-1 to 0.40-0.46 d-1 relative to the S group. The sulfur-iron coupling promoted the enrichment of denitrifying bacteria (Thiobacillus and Ferritrophicum). The denitrification genes in EFB-SFe were upregulated, being 12-22 times more abundant than in EFB-S. Sulfur and iron autotrophic denitrification were identified as the main nitrogen removal processes in EFB-SFe. Overall, sulfur-iron coupling showed the potential to enhance the denitrification capacity of EFB-S for treating low-pollution water.
Collapse
Affiliation(s)
- Feng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Anqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
27
|
Tang X, Huang Y, Tan S, Yang H. Vertical spatial denitrification performance and microbial community composition in denitrification biofilters coupled with water electrolysis. RSC Adv 2024; 14:15431-15440. [PMID: 38741968 PMCID: PMC11090088 DOI: 10.1039/d4ra02260b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, a denitrification biofilter coupled with water electrolysis (DNBF-WE) was developed as a novel heterotrophic-hydrogen autotrophic denitrification system, which could enhance denitrification with limited organic carbon in the secondary effluent. The volumetric denitrification rate of DNBF-WE reached 152.16 g N m-3 d-1 (C/N = 2, I = 60 mA, and HRT = 5 h). Besides, the vertical spatial denitrification of DNBF-WE was explored, with the nitrate removal rate being 49.5%, 16.3%, and 29.3% in the top, middle, and bottom, respectively. The concentration of extracellular polymeric substances (EPSs) was consistent with the denitrification performance vertically. The high-throughput sequencing analysis results revealed that autotrophic denitrification bacteria (e.g. Thauera) gradually enriched along DNBF-WE from top to bottom. The functional gene prediction results illustrated the vertical stratification mechanisms of the denitrification. Both dissimilatory nitrate reduction and denitrification contributed to nitrate removal, and denitrification became more advantageous with an increase in the filter depth. The research on both the performance of DNBF-WE and the characteristics of microbial communities in the vertical zones of the biofilter may lay a foundation for the biofilter denitrification process in practice.
Collapse
Affiliation(s)
- Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology Wuhan 430070 China
| | - Yu Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology Wuhan 430070 China
| | - Shenyu Tan
- School of Civil Engineering and Architecture, Wuhan University of Technology Wuhan 430070 China
| | - Heng Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
28
|
Mokhtariazar A, Hassani AH, Borghei M, Massoudinejad M. A comparative study on performance of the conventional and fixed-bed membrane bioreactors for treatment of Naproxen from pharmaceutical wastewater. Sci Rep 2024; 14:9944. [PMID: 38688946 PMCID: PMC11061303 DOI: 10.1038/s41598-024-52872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/24/2024] [Indexed: 05/02/2024] Open
Abstract
Here, a comparative study was designed to survey the treatment efficiency of pharmaceutical wastewater containing Naproxen by Membrane bioreactor (MBR) and MBR with fixed-bed packing media (FBMBR). To this end, the performance of MBR and FBMBR in different aeration conditions including average DO (1.9-3.8 mg/L), different organic loading (OLR) (0.86, 1.14 and 1.92 kg COD per cubic meter per day), and Naproxen removal efficiency. The BOD5 removal efficiency, effluent quality and membrane fouling were monitored within 140 days. The results obtained from the present study indicated that COD removal efficiency for FBMBR (96.46%) was higher than that for MBR (95.33%). In addition, a high COD removal efficiency was experienced in both MBR and FBMBR in operational conditions 3 and 4, even where OLR increased from 1.14 to 1.92 kgCOD/m3 d and DO decreased from 4 to < 1 mg/L. Furthermore, the higher Naproxen removal efficiency was observed in FBMBR (94.17%) compared to that for MBR (92.76%). Therefore, FBMBR is a feasible and promising method for efficient treatment of pharmaceuptical wastewater with high concentrations of emerging contaminant, especially, the Naproxen.
Collapse
Affiliation(s)
- Akbar Mokhtariazar
- Department of Environmental Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Borghei
- Department of Biochemical Engineering and Environmental Control Research Center, Sharif University of Technology, Tehran, Iran
| | - Mohamadreza Massoudinejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Behashti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
30
|
Salahshoori I, Yazdanbakhsh A, Baghban A. Machine learning-powered estimation of malachite green photocatalytic degradation with NML-BiFeO 3 composites. Sci Rep 2024; 14:8676. [PMID: 38622235 PMCID: PMC11018770 DOI: 10.1038/s41598-024-58976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This study explores the potential of photocatalytic degradation using novel NML-BiFeO3 (noble metal-incorporated bismuth ferrite) compounds for eliminating malachite green (MG) dye from wastewater. The effectiveness of various Gaussian process regression (GPR) models in predicting MG degradation is investigated. Four GPR models (Matern, Exponential, Squared Exponential, and Rational Quadratic) were employed to analyze a dataset of 1200 observations encompassing various experimental conditions. The models have considered ten input variables, including catalyst properties, solution characteristics, and operational parameters. The Exponential kernel-based GPR model achieved the best performance, with a near-perfect R2 value of 1.0, indicating exceptional accuracy in predicting MG degradation. Sensitivity analysis revealed process time as the most critical factor influencing MG degradation, followed by pore volume, catalyst loading, light intensity, catalyst type, pH, anion type, surface area, and humic acid concentration. This highlights the complex interplay between these factors in the degradation process. The reliability of the models was confirmed by outlier detection using William's plot, demonstrating a minimal number of outliers (66-71 data points depending on the model). This indicates the robustness of the data utilized for model development. This study suggests that NML-BiFeO3 composites hold promise for wastewater treatment and that GPR models, particularly Matern-GPR, offer a powerful tool for predicting MG degradation. Identifying fundamental catalyst properties can expedite the application of NML-BiFeO3, leading to optimized wastewater treatment processes. Overall, this study provides valuable insights into using NML-BiFeO3 compounds and machine learning for efficient MG removal from wastewater.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Baghban
- Department of Process Engineering, NISOC Company, Ahvaz, Iran.
| |
Collapse
|
31
|
Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123478. [PMID: 38311158 DOI: 10.1016/j.envpol.2024.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Qatar produces more than 850,000 m3/day of highly treated wastewater. The present study aims at characterizing the effluents coming out of three central wastewater treatment plants (WWTPs) of chemical pollutants including metals, metalloids and antibiotics commonly used in the country. Additionally, the study is assessing human health risks associated with the exposure to the treated wastewater (TWW) via dermal and ingestion routes. Although the origin of domestic wastewater is desalinated water (the only source of fresh water), the results show that the targeted parameters in TWW were within the international standards. Concentrations of Cl, F, Br, NO3, NO2, SO4 and PO4, were 389, <0.1, 1.2, 25, <0.1, 346, and 2.8 mg/L, respectively. On the other hand, among all cations, metals and metalloids, only boron (B) was 2.1 mg/L which is higher than the Qatari guidelines for TWW reuse in irrigation of 1.5 mg/L. Additionally, strontium (Sr) and thallium (Tl) were detected with relatively high concentrations of 30 mg/L and 12.5 μg/L, respectively, due to their natural and anthropogenic sources. The study found that the low concentrations of all tested metals and metalloids do not pose any risk to human health. However, Tl presents exposure levels above the 10 % of oral reference dose (HQ = 0.4) for accidental oral ingestion of TWW. The results for antibiotics show that exposure for adults and children to TWW are far below the admissible daily intakes set using minimum therapeutic dose and considering uncertainty factors. Treated wastewater of Qatar can be used safely for irrigation. However, further investigations are still needed to assess microbiological quality.
Collapse
Affiliation(s)
- Basem Shomar
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain.
| |
Collapse
|
32
|
Zhang C, Li S, Sun H, Li X, Fu L, Zhang C, Sun S, Zhou D. Assessing the impact of low organic loading on effluent safety in wastewater treatment: Insights from an activated sludge reactor study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133083. [PMID: 38181593 DOI: 10.1016/j.jhazmat.2023.133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
In this study, an organic loading (OL) of 300 mg/(L d) was set as the relative normal condition (OL-300), while 150 mg/(L d) was chosen as the condition reflecting excessively low organic loading (OL-150) to thoroughly assess the associated risks in the effluent of the biological wastewater treatment process. Compared with OL-300, OL-150 did not lead to a significant decrease in dissolved organic carbon (DOC) concentration, but it did improve dissolved organic nitrogen (DON) levels by ∼63 %. Interestingly, the dissolved organic matter (DOM) exhibited higher susceptibility to transformation into chlorinated disinfection by-products (Cl-DBPs) in OL-150, resulting in an increase in the compound number of Cl-DBPs by ∼16 %. Additionally, OL-150 induced nutrient stress, which promoted engendered human bacterial pathogens (HBPs) survival by ∼32 % and led to ∼51 % increase in the antibiotic resistance genes (ARGs) abundance through horizontal gene transfer (HGT). These findings highlight the importance of carefully considering the potential risks associated with low organic loading strategies in wastewater treatment processes.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Shaoran Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Haoran Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaoshuang Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Chaofan Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Shijun Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
33
|
Pan Z, Wei H, Qiu C, Yang Q, Liang Y, Huang Z, Li J. Two-stage sequencing batch reactors with added iron shavings for nutrient removal and aerobic sludge granulation treating real wastewater with low carbon to nitrogen ratios. BIORESOURCE TECHNOLOGY 2024; 396:130380. [PMID: 38281551 DOI: 10.1016/j.biortech.2024.130380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
In response to the challenges of limited nutrient removal and the difficulty in forming aerobic granular sludge (AGS) with low carbon to nitrogen (C/N) ratios, a novel two-stage sequencing batch reactors (SBRs) (R1 and R2) system with added iron shavings was proposed and established. The results showed that AGS was developed and nitrogen (82.8 %) and phosphorus (94.7 %) were effectively removed under a C/N ratio at 1.7 ± 0.5. The average size of R1 and R2 increased from 45.3 μm to 138.7 μm and 132.8 μm. Under high biological selective pressure, phosphorus accumulating organisms like Comamonadaceae (14.8 %) and Chitinophagales (5.7 %) experienced enrichment in R1. Furthermore, R2 exhibited an increased abundance of nitrifying bacteria (2.3 %) and a higher proportion of nitrogen removal through autotrophic denitrification (>17.5 %). Overall, this study introduces an innovative two-stage SBRs with added iron shavings, offering a novel approach for the treatment of low C/N ratios wastewater.
Collapse
Affiliation(s)
- Zengrui Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtang Wei
- Zhejiang Shuanglin Environment Co., Ltd., Hangzhou 311100, China
| | - Chong Qiu
- Zhejiang Shuanglin Environment Co., Ltd., Hangzhou 311100, China
| | - Qianjin Yang
- Zhejiang Shuanglin Environment Co., Ltd., Hangzhou 311100, China
| | - Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zuchao Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
34
|
Lu C, Chen Y, Shuang C, Wang Z, Tian Y, Song H, Li A, Chen D, Li X. Simultaneous removal of nitrate nitrogen and orthophosphate by electroreduction and electrochemical precipitation. WATER RESEARCH 2024; 250:121000. [PMID: 38118253 DOI: 10.1016/j.watres.2023.121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Electrochemical methods can effectively remove nitrate nitrogen (NO3-N) and orthophosphate phosphorus (PO4-P) from wastewater. This work proposed a process for the simultaneous removal of NO3-N and PO4-P by combining electroreduction with electrochemically-induced calcium phosphate precipitation, and its performance and mechanisms were studied. For the treatment of 100 mg L-1 NO3-N and 5 mg L-1 PO4-P, NO3-N removal of 60-90% (per cathode area: 0.25-0.38 mg h-1 cm-2) and 80-90% (per cathode area: 0.33-0.38 mg h-1 cm-2) could be acquired within 3 h in single-chamber cell (SCC) and dual-chamber cell (DCC), while P removal was 80-98% (per cathode area: 0.10-0.12 mg h-1 cm-2) in SCC after 30 min and 98% (per cathode area: 0.37 mg h-1 cm-2) in DCC within 10 min. The faster P removal in DCC was due to the higher pH and more abundant Ca2+ in the cathode chamber of DCC, which was caused by the cation exchange membrane (CEM). Interestingly, NO3-N reduction enhanced P removal because more OH- can be produced by nitrate reduction than hydrogen evolution for an equal-charge reaction. For 10 mg L-1 PO4-P in SCC, when the initial NO3-N was 0, 20, 100, and 500 mg L-1, the P removal efficiencies after 1 h treatment were < 10%, 45-55%, 86-99%, and above 98% respectively. An increase in Ca2+ concentration also promoted P removal. However, Ca and P inhibited nitrate reduction in SCC at the relatively low initial Ca/P, as CaP on the cathode limited the charge or mass transfer process. The removal efficiency of NO3-N in SCC after 3 h reaction can reduce by about 17%, 40%, and 34% for Co3O4/Ti, Co/Ti, and TiO2/Ti. The degree of inhibition of P on NO3-N removal was related to the content and composition of CaP deposited on the cathode. On the cathode, the lower the deposited Ca and P, and the higher the deposited Ca/P molar ratio, the weaker the inhibition of P on NO3-N removal. Especially, P had little or even no inhibition on nitrate reduction when treated in DCC instead of SCC or under high initial Ca/P. It is speculated that under these conditions, a high local pH and local high concentration Ca2+ layer near the cathode led to a decrease in CaP deposition and an increase in Ca/P molar ratio on the cathode. High initial concentrations of NO3-N might also be beneficial in reducing the inhibition of P on nitrate reduction, as few CaP with high Ca/P molar ratios were deposited on the cathode. The evaluation of the real wastewater treatment was also conducted.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yechao Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haiou Song
- School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinghao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Wang Y, Ji Z, Pei Y. Highly selective electrochemical reduction of nitrate via CoO/Ir-nickel foam cathode to treat wastewater with a low C/N ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132813. [PMID: 37918076 DOI: 10.1016/j.jhazmat.2023.132813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Thorough nitrate removal from reclaimed water by biological techniques without carbon sources is difficult. Flexible, controllable electrochemical nitrate reduction is widely researched. Herein, ultrathin CoO nanosheets were constructed through amino group induction and orientation. The interfacial electron transfer resistance of two-dimensional CoO was 43.4% lower than that of one-dimensional nanoparticles, resulting in higher current density and improved nitrate reduction efficiency. Nickel foam and IrO2-nickel foam electrodes have almost no effect on nitrate reduction. It is worth noting that iridium loading on CoO (nanosheet) regulated the electronic band structure and generated active atomic H* . The nitrate removal rate increased from 45.1% (CoO (nanoparticle)-nickle foam) and 63.8% (CoO (nanosheet)-nickle foam) to 94.64% (CoO/Ir10 wt%-nickle foam). The proton enhancement effect improved indirect nitrate reduction by atomic H* and increased the NO3--N removal rate to 99.8%. Active chlorine species generated by Cl- in the wastewater selectively converted more than 99% of nitrate to N2, exceeding previous Co-based cathode results. In situ DEMS indicated that electrochemical reduction of nitrate included deoxidation (NO3-→*NO2-→*NO→*N/*N2O→N2) and hydrogenation (*NH2→*NH3→NH4+). The NO3--N removal rate of CoO/Ir10 wt% exceeded 65% during treatment of wastewater treatment plant effluents, verifying the feasibility of electrochemical nitrate reduction with the CoO/Ir10 wt% cathode. A strategy for designing electrochemical nitrate reduction electrocatalysts with excellent potential for full-scale application to treat wastewater treatment plant effluent is provided.
Collapse
Affiliation(s)
- Youke Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zehua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
36
|
Zhang Y, He Y, Jia L, Xu L, Wang Z, He Y, Xiong L, Lin X, Chen H, Xue G. Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe 0 in mixotrophic advanced denitrification: Proof of concept from simulated to authentic secondary effluent. WATER RESEARCH 2024; 249:120924. [PMID: 38029486 DOI: 10.1016/j.watres.2023.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
To offset the imperfections of higher cost and emission of CO2 greenhouse gas in heterotrophic denitrification (HDN) as well as longer start-up time in autotrophic denitrification (ADN), we synergized the potential ternary electron donors of organic carbon source, thiosulfate and zero-valent iron (Fe0) to achieve efficient mixotrophic denitrification (MDN) of oligotrophic secondary effluent. When the influent chemical oxygen demand to nitrogen (COD/N) ratio ascended gradually in the batch operation with sufficient sulfur to nitrogen (S/N) ratio, the MDN with thiosulfate and Fe0 added achieved the highest TN removal for treating simulated and authentic secondary effluents. The external carbon is imperative for initiating MDN, while thiosulfate is indispensable for promoting TN removal efficiency. Although Fe0 hardly donated electrons for denitrification, the suitable circumneutral environment for denitrification was implemented by OH- released from Fe0 corrosion, which neutralized H+generated during thiosulfate-driven ADN. Meanwhile, Fe0 corrosion consumed the dissolved oxygen (DO) and created the low DO environment suitable for anoxic denitrification. This process was further confirmed by the continuous flow operation for treating authentic secondary effluent. The TN removal efficiency achieved its maximum under the combination condition of influent COD/N ratio of 3.1-3.5 and S/N ratio of 2.0-2.1. Whether in batch or continuous flow operation, the coordination of thiosulfate and Fe0 maintained the dominance of Thiobacillus for ADN, with the dominant heterotrophic denitrifiers (e.g., Plasticicumulans, Terrimonas, Rhodanobacter and KD4-96) coexisting in MDN system. The interaction insights of ternary electron donors in MDN established a pathway for realizing high-efficiency nitrogen removal of secondary effluent.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongtao He
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Linchun Jia
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Xiong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
37
|
Gallegos-Cerda SD, Hernández-Varela JD, Chanona Pérez JJ, Huerta-Aguilar CA, González Victoriano L, Arredondo-Tamayo B, Reséndiz Hernández O. Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO 2 nanoparticles for the degradation of organic dyes. Carbohydr Polym 2024; 324:121476. [PMID: 37985080 DOI: 10.1016/j.carbpol.2023.121476] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
A hybrid ultra-light and porous cellulose aerogel was prepared by extracting cellulose fibers from white paper, alkali/urea as a crosslinker agent, and functionalized with CNTs and pure anatase TiO2 nanoparticles. Since CNTs work as mechanical reinforcement for aerogels, physical and mechanical properties were measured. Besides, since TiO2 acts as a photocatalyst for degrading dyes (rhodamine B and methylene blue), UV-Vis spectroscopy under UV light, visible light, and darkroom was used to evaluate the degradation process. XRD, FTIR, and TGA were employed to characterize the structural and thermal properties of the composite. The nanostructured solid network of aerogels was visualized in SEM microscopy confirming the structural uniformity of cellulose and TiO2-CNTs onto fibers. Moreover, CLSM was used to study the nano-porous network distribution of cellulose fibers and porosity, and the functionalization process in a detailed way. Finally, the photocatalytic activity of aerogels was evaluated by degradation of dye aqueous solutions, with the best photocatalytic removal (>97 %) occurring after 110 min of UV irradiation. In addition, HPLC-MS facilitated the proposed mechanism for the degradation of dyes. These results confirm that cellulose aerogels coupled with nanomaterials enable the creation of economic support to reduce water pollution with higher decontamination rates.
Collapse
Affiliation(s)
- Susana Dianey Gallegos-Cerda
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - Josué David Hernández-Varela
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - José Jorge Chanona Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico.
| | | | - Lizbeth González Victoriano
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - Benjamín Arredondo-Tamayo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico; Universidad Tecnológica de México, Campus Marina-Cuitláhuac, San Salvador Xochimanca, Azcapotzalco, 02870 Mexico City, Mexico
| | - Omar Reséndiz Hernández
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Av. Legaría, Irrigación, 11500 Mexico City, Mexico
| |
Collapse
|
38
|
Yang Y, Huang G, Chen C, Li R. Pyrrhotite-sulfur-limestone composite for high rate nitrogen and phosphorus removal from wastewater: Column study. CHEMOSPHERE 2024; 347:140711. [PMID: 37981019 DOI: 10.1016/j.chemosphere.2023.140711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Pyrrhotite-sulfur-limestone composite (PSLC) was prepared and PSLC autotrophic denitrification biofilter (PSLCAD) was constructed with PSLC particle (2-4.75 mm) in this study. During treating synthetic, municipal and industrial secondary effluent, PSLCAD showed good NO3--N and PO43--P removal, and the highest TON (Total oxidized nitrogen) removal rate of PSLCAD was up to 1749.91 mg/L/d. At HRT 0.5 h, and influent NO3--N 21.09 mg/L, TON removal rate was up to 1005.12 mg/L with effluent NO3--N 0.10 mg/L. PSLCAD achieved effluent PO43--P below 0.2 mg/L when influent PO43--P was around 0.5 mg/L. HRT down to 0.5 h had no negative impacts on N removal. Effluent pH below 7 was harmful to denitrification performance of PSLCAD. TON removal rate increased with influent NO3--N increasing, but influent NO3--N over 103.55 mg/L decreased NO3--N removal rate. In PSLCAD biofilter, the most dominant bacteria were Thiobacillus and Sulfurimonas, and they played the most important role in denitrification, but the abundance of heterotrophic denitrifiers was also quite high. PO43- was mainly removed through precipitate of Fe-P in PSLCAD. The synergistic effects between pyrrhotite and sulfur autotrophic denitrification were much enhanced, and that caused PSLCAD to achieve high rate N and P removal.
Collapse
Affiliation(s)
- Yinuo Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China
| | - Gaopan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China
| | - Changxin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
39
|
Zhang H, Zhang SS, Zhang W, Ma WC, Pan Y, Chen L, Zhu L, Li YP, Li JR. Clarification of the phosphorus release mechanism for recovering phosphorus from biofilm sludge in alternating aerobic/anaerobic biofilm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166811. [PMID: 37673249 DOI: 10.1016/j.scitotenv.2023.166811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/16/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
A novel wastewater treatment plant process was constructed to overcome the challenge of simultaneous nitrate removal and phosphorus (P) recovery. The results revealed that the P and nitrate removal efficiency rose from 39.0 % and 48.4 % to 92.8 % and 93.6 % after 136 days of operation, and the total P content in the biofilm (TPbiofilm) rose from 15.8 mg/g SS to 57.8 mg/g SS. Moreover, the increase of TPbiofilm changed the metabolic mode of denitrifying polyphosphate accumulating organisms (DPAOs), increasing the P concentration of the enriched stream to 172.5 mg/L. Furthermore, the acid/alkaline fermentation led to the rupture of the cell membrane, which released poly-phosphate and ortho-phosphate of cell/EPS in DPAOs and released metal‑phosphorus (CaP and MgP). In addition, high-throughput sequencing analysis demonstrated that the relative abundance of DPAOs involved in P storage increased, wherein the abundance of Acinetobacter and Saprospiraceae rose from 8.0 % and 4.1 % to 16.1 % and 14.0 %. What's more, the highest P recovery efficiency (98.3 ± 1.1 %) could be obtained at optimal conditions for struvite precipitation (pH = 7.56 and P: N: Mg = 1.87:3.66:1) through the response surface method (RSM) simulation, and the precipitates test analysis indicated that P recovery from biofilm sludge was potentially operable. This research was of great essentiality for exploring the recovery of P from biofilm sludge.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuang-Shuang Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wu-Cheng Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jing-Ru Li
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
40
|
Luo J, Luo Y, Cheng X, Liu X, Wang F, Fang F, Cao J, Liu W, Xu R. Prediction of biological nutrients removal in full-scale wastewater treatment plants using H 2O automated machine learning and back propagation artificial neural network model: Optimization and comparison. BIORESOURCE TECHNOLOGY 2023; 390:129842. [PMID: 37820968 DOI: 10.1016/j.biortech.2023.129842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The effective control of total nitrogen (ETN) and total phosphorus (ETP) in effluent is challenging for wastewater treatment plants (WWTPs). In this work, automated machine learning (AutoML) (mean square error = 0.4200 ∼ 3.8245, R2 = 0.5699 ∼ 0.6219) and back propagation artificial neural network (BPANN) model (mean square error = 0.0012 ∼ 6.9067, R2 = 0.4326 ∼ 0.8908) were used to predict and analyze biological nutrients removal in full-scale WWTPs. Interestingly, BPANN model presented high prediction performance and general applicability for WWTPs with different biological treatment units. However, the AutoML candidate models were more interpretable, and the results showed that electricity carbon emission dominated the prediction. Meanwhile, increasing data volume and types of WWTP hardly affected the interpretable results, demonstrating its wide applicability. This study demonstrated the validity and the specific advantages of predicting ETN and ETP using H2O AutoML and BPANN model, which provided guidance on the prediction and improvement of biological nutrients removal in WWTPs.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yuting Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xinyi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environment Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
41
|
Liu X, Xin X, Yang W, Zhang X. Effect mechanism of micron-scale zero-valent iron enhanced pyrite-driven denitrification biofilter for nitrogen and phosphorus removal. Bioprocess Biosyst Eng 2023; 46:1847-1860. [PMID: 37955735 DOI: 10.1007/s00449-023-02941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
This study aims to explore the effect mechanism of micron-scale zero-valent iron (mZVI) to improve nitrogen and phosphorus removal in a pyrite (FeS2)-driven denitrification biofilter (DNBF) for the secondary effluent treatment. Two similar DNBFs (DNBF-A with FeS2 as fillers and DNBF-B with the mixture mZVI and FeS2 as carrier) were developed. The results showed that NO3--N, total nitrogen (TN) and PO43--P removal efficiencies were up to 91.64%, 67.44% and 80.26% in DNBF-B, which were obviously higher than those of DNBF-A (with NO3--N, TN and PO43--P removal efficiencies of 38.39%, 44.89% and 53.02%, respectively). Kinetic analysis of both PO43--P and NO3--N showed an increase in the rate constant (K) for DNBF-B compared to DNBF-A. The addition of mZVI not only improved the electron transport system activity (ETSA), but also achieved system Fe(II)/Fe(III) redox cycle in DNBF-B. In addition, the high-throughput sequencing analysis indicated that the addition of mZVI could obviously stimulate the enrichment of functional bacteria, such as Thiobacillus (11.99%), Mesotoga (7.50%), JGI-0000079D21 (6.37%), norank_f__Bacteroidetes_vadinHA17 (6.19%), Aquimonas (5.93%) and Arenimonas (3.97%). These genus played the important role in nitrogen and phosphorus removal in DNBF-B. Addition mZVI in the FeS2-driven denitrification biofilter is highly promising for TN and TP removal during secondary effluent treatment.
Collapse
Affiliation(s)
- Xin Liu
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Xinyu Zhang
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
42
|
Zhao Q, Wang Y, Heng J, Ji M, Zhang J, Xie H, Dang Y, Wang Y, Hu Z. Comparison study on enhancement of phosphorus recovery from low-strength wastewater treated with different magnesium-based electrochemical constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118840. [PMID: 37604105 DOI: 10.1016/j.jenvman.2023.118840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Phosphorus (P) recovery from wastewaters treated with constructed wetlands (CWs) could alleviate the current global P crisis but has not received sufficient attention. In this study, P transformation in different magnesium-based electrochemical CWs, including micro-electrolysis CW (M-CW), primary battery CW (P-CW), and electrolysis CW (E-CW), was thoroughly examined. The results revealed that the P removal efficiency was 53.0%, 75.8%, and 61.9% in the M-CW, E-CW, and P-CW, respectively. P mass balance analysis showed that P electrode deposition was the main reason for the higher P removal in the E-CW and P-CW. Significant differences were found between the E-CW and P-CW, P was distributed primarily on the magnesium plate in the P-CW but was distributed on the carbon plate in the E-CW. The E-CW had excellent P recovery capacity, and struvite was the major P recovery product. More intense magnesium plate corrosion and alkaline environment increased struvite precipitation in the E-CW, with the proportion of 61.6%. The results of functional microbial community analysis revealed that the abundance of electroactive bacteria was positively correlated with the deposition of struvite. This study provided an essential reference for the targeted electrochemical regulation of electric field processes and microorganisms in CWs to enhance P recovery.
Collapse
Affiliation(s)
- Qian Zhao
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, 266237, PR China
| | - Yuru Wang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, 266237, PR China
| | - Jiayang Heng
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, 266237, PR China
| | - Mingde Ji
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, 266237, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yuechang Wang
- Beijing Further Tide Eco-construction Co., Ltd, Beijing, 100012, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
43
|
Han C, Dai H, Guo Z, Zhu G, Li B, Nawaz Abbasi H, Wang X. Insight into the mechanism of nutrients removal and response regulation of denitrifying phosphorus removal system under calcium ion stress. BIORESOURCE TECHNOLOGY 2023; 388:129747. [PMID: 37717705 DOI: 10.1016/j.biortech.2023.129747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The influent quality is an important factor affecting the nutrients removal and operational stability of denitrifying phosphorus removal (DPR) system. This study investigated the effects of calcium ion (Ca2+) on the nutrients removal, nitrogen oxide (N2O) release, microbial community, and quorum sensing in DPR system. Results showed that high accumulation of Ca2+ had a significant impact on the carbon footprint of DPR system. Specifically, N2O release reached 2.11 mg/L under Ca2+ of 150 mg/L, which represented 214.93% increase compared to 0 mg/L of Ca2+. The DPR system demonstrated its adaptability to elevated Ca2+ concentrations by modifying key enzyme activities involved in nitrogen and phosphorus removal, altering the microbial community structure, and adjusting the type and content of signal molecules. These findings hold significant implications for understanding the stress mechanism of Ca2+ on DPR system, ultimately aiding in the maintenance and enhancement of stable operational performance in biological wastewater treatment process.
Collapse
Affiliation(s)
- Cheng Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng 224000, China
| | - Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| |
Collapse
|
44
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
45
|
Huang X, Ren X, Zhang Z, Gu P, Yang K, Miao H. Characteristics in dissolved organic matter and disinfection by-product formation during advanced treatment processes of municipal secondary effluent with Orbitrap mass spectrometry. CHEMOSPHERE 2023; 339:139725. [PMID: 37543233 DOI: 10.1016/j.chemosphere.2023.139725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Dissolved organic matter (DOM) is reported to be a precursor to disinfection by-products (DBPs), which have adverse effects on human health. Therefore, it is crucial to effectively remove DOM before water disinfection. Characteristics of DOM and DBPs formation during advanced treatment processes including coagulation, adsorption, ultraviolet (UV) irradiation, and ozone (O3) oxidation in municipal secondary effluent were investigated in this research. DOM was characterized by Fourier transform infrared spectroscopy (FTIR), excitation-emission matrix fluorescence spectroscopy (EEM), and Orbitrap mass spectrometry (Orbitrap MS). Moreover, DBPs formation potential under different advanced treatment processes was also discussed. FTIR results indicated that various functional groups existing in DOM may react with the disinfectant to form toxic DBPs. EEM analysis indicated that DOM in all water samples was dominated by soluble microbial product-like (SMPs) and humic acid-like (HA) substances. The municipal secondary effluent was abundant with DOM and rich in carbon, hydrogen, oxygen, and nitrogen atoms, contained a certain dosage of phosphorus and sulfur atoms, and the highest proportion is lignin. Most of the precursors (CHO features) had positive double bond equivalent subtracted oxygen per carbon [(DBE-O)/C] and negative carbon oxidation state (Cos) in all four different advanced treatment processes. DBPs formation potential (DBPFP) of coagulation, adsorption, UV irradiation, and O3 oxidation advanced treatment processes were 487 μg L-1, 586 μg L-1, 597 μg L-1, and 308 μg L-1, respectively. And the DBPs precursors removal efficiency of coagulation, adsorption, UV irradiation, and O3 oxidation advanced treatment processes were 50.8%, 40.8%, 39.8%, and 69.0%, respectively. This study provides in-depth insights into the changes of DOM in municipal secondary effluent at the molecular level and the removal efficiency of DBPs precursors during coagulation, adsorption, UV irradiation, and O3 oxidation advanced treatment processes.
Collapse
Affiliation(s)
- Xin Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Xueli Ren
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Zengshuai Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Kunlun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China.
| |
Collapse
|
46
|
Wang Y, Sun Z, Qiang Z. Start-up of solid-phase denitrification process for treatment of nitrate-rich water in recirculating mariculture system: Carbon source selection and nitrate removal mechanism. CHEMOSPHERE 2023; 338:139568. [PMID: 37479001 DOI: 10.1016/j.chemosphere.2023.139568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Efficient nitrate removal from recirculating mariculture system (RMS) water is of significance since high concentration of nitrate would cause chronic health effects on aquatic organisms and eutrophication. Solid-phase denitrification (SPD) is a safer and more sustainable approach than conventional heterotrophic denitrification by dosing liquid carbon sources. Thus, its application for treating nitrate-rich RMS water was investigated in this study. Poly 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) was identified with the best nitrate removal among four kinds of carbon sources. PHBV-filled reactors started with mariculture, municipal and mixing sludges (at the ratio of 1:1) and fed with 200 mg L-1 nitrate-rich RMS water all achieved over 81% nitrate removals with a HRT of 4 days. The dissolved organic carbon concentrations of the reactors were in the range of 3-9 mg L-1. Arcobacter, Halomonas, and Psedomonas were dominant genera responsible for nitrate removal in different reactors. Metagenomic analyses indicate that both denitrification and assimilatory nitrate reduction (ANR) are the main contributors to nitrate removals. Metagenomic results illustrated nirB/D cooperated with nasA may perform ANR pathway, which transformed nitrate to ammonia for biosynthesis. These results indicate that SPD could be a safer alternative for treating nitrate-rich RMS water, and provide new insights into nitrogen metabolism pathways in SPD process.
Collapse
Affiliation(s)
- Yinghan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Tu P, Zhang G, Cen Y, Huang B, Li J, Li Y, Deng L, Yuan H. Enhanced phosphate adsorption and desorption characteristics of MgO-modified biochars prepared via direct co-pyrolysis of MgO and raw materials. BIORESOUR BIOPROCESS 2023; 10:49. [PMID: 38647775 PMCID: PMC10991339 DOI: 10.1186/s40643-023-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 04/25/2024] Open
Abstract
Biochar modified by metal ions-particularly Mg-is typically used for the effective recovery of phosphorous. In this study, MgO-modified biochars were synthesized via the direct co-pyrolysis of MgO and raw materials such as rice straw, corn straw, Camellia oleifera shells, and branches from garden waste, which were labeled as MRS, MCS, MOT, and MGW, respectively. The resulting phosphate (PO) adsorption capacities and potential adsorption mechanisms were analyzed. The PO adsorption capacities of the biochars were significantly improved after the modification with MgO: MRS (24.71 ± 0.32 mg/g) > MGW (23.55 ± 0.46 mg/g) > MOT (15.23 ± 0.19 mg/g) > MCS (14.12 ± 0.21 mg/g). PO adsorption on the modified biochars was controlled by physical adsorption, precipitation, and surface inner-sphere complexation processes, although no electrostatic attraction was observed. Furthermore, PO adsorbed on modified biochars could be released under acidic, alkaline, and neutral conditions. The desorption efficiency of MRS was modest, indicating its suitability as a slow-release fertilizer.
Collapse
Affiliation(s)
- Panfeng Tu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Guanlin Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingyuan Cen
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Baoyuan Huang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Juan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Yongquan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Haoran Yuan
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
48
|
Coelho MG, Franco DDM, Siqueira JCD, Ribeiro ICA, Crippa RA, Fia R, Matos MPD. Sewage phosphorus recovery through sachets loaded with water treatment plant sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:922-931. [PMID: 37651329 PMCID: wst_2023_247 DOI: 10.2166/wst.2023.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) present low phosphorus (P) removal capacity. Conversely, water treatment plants (WTPs) produce sludge with great P sorption from wastewater; however, directly adding the sludge into the wastewater treatment system could increase the effluent turbidity. As a novel approach, the present study evaluated the performance of WTP sludge within paper sachets for P removal from treated sewage. Different sludge concentrations (2-30 g L-1) and contact times (1-27 d) were applied to treat sewage from a university WWTP outlet. The sludge was characterized by P, Fe, and Al content. Larger sludge masses showed higher P removal efficiencies due to their high Fe content, especially at longer contact times (up to 100% at the final of the experiment). However, there is a more significant P reduction in the first 10 d (more than 90% in the most efficient treatment - 30 mg L-1). Based on the kinetic and isotherm analyses and the sludge chemical composition, precipitation proved to be a mechanism of great importance in P removal. Therefore, WTP sludge sachets can be a promising way to remove P from sewage, and the formed solid waste might be reused as an alternative fertilizer.
Collapse
Affiliation(s)
- Miriam Gabrielle Coelho
- Department of Environmental Engineering, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil E-mail:
| | - Débora de Melo Franco
- Department of Environmental Engineering, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil
| | - Juliano Curi de Siqueira
- Department of Hydraulics and Sanitation, São Carlos School of Engineering - University of São Paulo (EESC-USP), São Carlos, SP 13563-120, Brazil
| | | | - Rodolfo Appoloni Crippa
- Department of Environmental Engineering, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil
| | - Mateus Pimentel de Matos
- Department of Environmental Engineering, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil
| |
Collapse
|
49
|
Dai T, Wang L, Li T, Qiu P, Wang J, Song H. Potential linkage between WWTPs-river-integrated area pollution risk assessment and dissolved organic matter spectral index. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6693-6711. [PMID: 37355494 DOI: 10.1007/s10653-023-01637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
The direct discharge of wastewater can cause severe damage to the water environment of the surface water. However, the influence of dissolved organic matter (DOM) present in wastewater on the allocation of DOM, nitrogen (N), and phosphorus (P) in rivers remains largely unexplored. Addressing the urgent need to monitor areas affected by direct wastewater discharge in a long-term and systematic manner is crucial. In this paper, the DOM of overlying water and sediment in the WWTPs-river-integrated area was characterized by ultraviolet-visible absorption spectroscopy (UV-vis), three-dimensional excitation-emission matrix combined with parallel factor (PARAFAC) method. The effects of WWTPs on receiving waters were investigated, and the potential link between DOM and N, P pollution was explored. The pollution risk was fitted and predicted using a spectral index. The results indicate that the improved water quality index (IWQI) is more suitable for the WWTPs-river integration zone. The DOM fraction in this region is dominated by humic-like matter, which is mainly influenced by WWTPs drainage as well as microbial activities. The DOM fractions in sediment and overlying water were extremely similar, but fluorescence intensity possessed more significant spatial differences. The increase in humic-like matter facilitates the production and preservation of P and also inhibits nitrification, thus affecting the N cycle. There is a significant correlation between DOM fraction, fluorescence index, and N, P. Fluorescence index (FI) fitting of overlying water DOM predicted IWQI and trophic level index, and a(254) fitting of sediment DOM predicted nitrogen and phosphorus pollution risk (FF) with good results. These results contribute to a better understanding of the impact of WWTPs on receiving waters and the potential link between DOM and N and P pollution and provide new ideas for monitoring the water environment in highly polluted areas.
Collapse
Affiliation(s)
- Taoyan Dai
- School of Water Resources and Electricity, Heilongjiang University, Harbin, 150080, China
| | - Liquan Wang
- School of Water Resources and Electricity, Heilongjiang University, Harbin, 150080, China.
| | - Tienan Li
- Heilongjiang Province Hydraulic Research Institute, Harbin, 150080, China
| | - Pengpeng Qiu
- Heilongjiang Province Hydraulic Research Institute, Harbin, 150080, China
| | - Jun Wang
- Heilongjiang Province Hydraulic Research Institute, Harbin, 150080, China
| | - Haotian Song
- School of Water Resources and Electricity, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
50
|
Wang Z, Song B, Xu L, He Y, Chen H, Zhang A, Wang Y, Tai J, Zhang R, Song L, Xue G. Organic carbon source excites extracellular polymeric substances to boost Fe 0-mediated autotrophic denitrification in mixotrophic system. CHEMOSPHERE 2023:139352. [PMID: 37394192 DOI: 10.1016/j.chemosphere.2023.139352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Fe0-mediated autotrophic denitrification (ADN) can be suppressed by iron oxide coverage resulting from Fe0 corrosion. The mixotrophic denitrification (MDN) coupling Fe0-mediated ADN with heterotrophic denitrification (HDN) can circumvent the weakening of Fe0-mediated ADN over operation time. But the interaction between HDN and Fe0-mediated ADN for nitrogen removal of secondary effluent with deficient bioavailable organics remains unclear. When the influent COD/NO3--N ratio increased from 0.0 to 1.8-2.1, the TN removal efficiency was promoted significantly. The increased carbon source did not inhibit ADN, but promoted ADN and HDN synchronously. The formation of extracellular polymeric substances (EPS) was also facilitated concomitantly. Protein (PN) and humic acid (HA) in EPS increased significantly, which capable of accelerating electron transfer of denitrification. Due to that the electron transfer of HDN occurs intracellularly, the EPS with the capacity of accelerating electron transfer had a negligible influence on HDN. But for Fe0-mediated ADN, the increased EPS as well as corresponding PN and HA facilitated TN and NO3--N removal significantly, while accelerated the electron release originating from Fe0 corrosion. The bioorganic-Fe complexes were generated on Fe0 surface after used, meaning that the soluble EPS and soluble microbial products (SMP) participated in the electron transfer of Fe0-mediated ADN. The coexistence of HDN and ADN denitrifiers demonstrated the synchronous enhancement of HDN and ADN by the external carbon source. From the perspective of EPS and related SMP, the insight of enhancing Fe0-mediated ADN by external carbon source is beneficial to implement high-efficiency MDN for organics-deficient secondary wastewater.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Binxue Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yayi Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co. Ltd, Shanghai, 200232, China
| | - Ruina Zhang
- Shanghai Environmental Sanitation Engineering Design Institute Co. Ltd, Shanghai, 200232, China
| | - Lijie Song
- Shanghai Environmental Sanitation Engineering Design Institute Co. Ltd, Shanghai, 200232, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|