1
|
He L, Zhou J, Sun Y, Liu D, Liu X. Efficient removal of tetracycline hydrochloride by high entropy oxides in visible photo-Fenton catalytic process. ENVIRONMENTAL TECHNOLOGY 2024; 45:4656-4669. [PMID: 37947044 DOI: 10.1080/09593330.2023.2283054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/28/2023] [Indexed: 11/12/2023]
Abstract
A novel type of oxide material, high entropy oxide (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 (MFO) composites with spinel structure were successfully synthesized by a simple solution combustion in this paper, and it was first applied to the degradation of antibiotic organic pollutants in water by photo-Fenton. SEM and BET characterization showed that the composite was porous and had a large specific surface area. XPS results showed that Fe, Mn, Cu, Co and Ni all participated in the redox reaction of the catalytic process. The redox pairs of Mn2+/Mn3+, Cu+/Cu2+, Co2+/Co3+, Ni2+/Ni3+ can accelerate the Fe2+/Fe3+ redox cycling in MFO to activate H2O2 and produce more reactive oxygen species. The catalytic performance of MFO composite was investigated using tetracycline hydrochloride (TC-HCl) as a model pollutant. The results displayed that the degradation rate of TC-HCl by MFO was 92.9% when the initial pH was 4, the dose of H2O2 was 50 mM, and the irradiation time was 60 min. The high entropy oxide MFO composites could build up an internal electric field, which restrains electron-hole recombination, improves the transfer of photogenerated charge carriers and maximize photocatalytic property. In addition, the free radical capture experiment determined that the main active species of the degradation reaction were e-, •O2- and •OH. The synergistic effect of the five components in the high entropy oxide strengthens lattice distortion and defects, increases oxygen vacancies, and thus has enhanced catalytic effect for TC-HCl degradation. This work shows that high entropy oxides have excellent catalytic performance for tetracycline organic pollutants, and it is speculated that high entropy oxides have good application prospects in the field of advanced oxidation technology for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Lin He
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yixi Sun
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Dan Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Xianjie Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Sanchez-Lievanos K, Sun T, Gendrich EA, Knowles KE. Surface Adsorption and Photoinduced Degradation: A Study of Spinel Ferrite Nanomaterials for Removal of a Model Organic Pollutant from Water. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3981-3998. [PMID: 38764748 PMCID: PMC11099926 DOI: 10.1021/acs.chemmater.3c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
Spinel oxide nanocrystals are attractive materials for photoinduced advanced oxidation processes that degrade organic pollutants in water due to their chemical stability and tunability, visible light absorption, and magnetic recoverability. However, a systematic understanding of the structural and chemical factors that control the reactivity of specific spinel oxide nanocrystal materials toward photoinduced degradation processes is lacking. This Perspective illustrates these knowledge gaps through an investigation into the impacts of surface chemistry and composition of spinel ferrite nanocrystals of formula MFe2O4 (M = Mg, Fe, Co, Ni, Cu, Zn) on their ability to remove a model organic pollutant (methyl orange (MO)) from water. We identify two mechanisms by which the nanocrystals remove MO from water: (i) surface adsorption and (ii) photoinduced degradation under visible light irradiation in the presence of hydrogen peroxide via the photo-Fenton reaction. Nanocrystals that do not contain any surface ligands are more effective at removing MO from water than nanocrystals that contain surface ligands, despite our observation that the ligand-less nanocrystals do not form stable colloidal dispersions in water, while ligand-coated nanocrystals are colloidally stable. For many of the spinel ferrite compositions studied here, the fraction of methyl orange removal via adsorption to the nanocrystal surface in the absence of photoexcitation is larger than the fraction removed under irradiation. Our data indicate that the composition-dependent surface charge of the nanocrystals controls the degree of surface adsorption of the charged MO molecule. Overall, these results demonstrate that careful consideration of the impacts of surface chemistry on the behavior of spinel ferrite nanocrystals is required to accurately assess and subsequently understand their activity toward the photoinduced degradation of organic molecules.
Collapse
Affiliation(s)
| | - Tong Sun
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Elise A. Gendrich
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Kathryn E. Knowles
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Lv J, Zhao Q, Jiang J, Ding J, Wei L. Sludge dewaterability improvement with microbial fuel cell powered electro-Fenton system (MFCⓅEFs): Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171422. [PMID: 38432365 DOI: 10.1016/j.scitotenv.2024.171422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Throughout the entire process of sludge treatment and disposal, it is crucial to explore stable and efficient techniques to improve sludge dewaterability, which can facilitate subsequent resource utilization and space and cost savings. Traditional Fenton oxidation has been widely researched to enhance the performance of sludge dewaterability, which was limited by the additional energy input and the instabilities of Fe2+ and H2O2. To reduce the consumption of energy and chemicals and further break the rate-limiting step of the iron cycle, a novel and feasible method that constructed microbial fuel cell powered electro-Fenton systems (MFCⓅEFs) with ferrite and biochar electrode (MgFe2O4@BC/CF) was successfully demonstrated. The MFCⓅEFs with MgFe2O4@BC/CF electrode achieved specific resistance filtration and sludge cake water content of 2.52 × 1012 m/kg and 66.54 %. Cellular structure and extracellular polymeric substances (EPS) were disrupted, releasing partially bound water and destroying hydrophilic structures to facilitate sludge flocs aggregation, which was attributed to the oxidation of hydroxyl radicals. The consistent electron supply supplied by MFCⓅEFs and catalytically active sites on the surface of the multifunctional functional group electrode was responsible for producing more hydroxyl radicals and possessing a better oxidizing ability. The study provided an innovative process for sludge dewaterability improvement with high efficiency and low energy consumption, which presented new insights into the green treatment of sludge.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Xing Y, Li J, Fan Y, Lu S, Gu W. Coordination of iron ions with phycocyanin for an improved Fenton activity at weakly acidic pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123975. [PMID: 38306924 DOI: 10.1016/j.saa.2024.123975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Development of biomolecules coordinated iron ions-based Fenton agents is highly desirable for chemodynamic therapy in term of demanded biocompatibility and enhanced Fenton activity at tumor microenvironmental pH of 6.5. Herein, phycocyanin (PC), the only FDA-approved natural coloring agent, was selected to coordinate with iron ions. The spectroscopic investigations disclosed that PC displayed pH-dependent spectral and conformational responses upon addition of Fe ions. As a result, the effective formation of Fe-PC coordination merely occurred at pH 7 due to a less folded polypeptide matrix of PC. The formed Fe-PC coordination exerted an enhanced Fenton activity at pH 6.5 as attested by 3, 3', 5, 5'-tetramethlbenzidine assay and steady-state kinetic analysis. These findings not only provide fundamental insights of Fe-PC coordination but also highlight the potential biomedical significance of Fe-PC for severing as an effective Fenton agent in chemodynamic therapy.
Collapse
Affiliation(s)
- Yixin Xing
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jingyi Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yuanjie Fan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Shousi Lu
- School of Rehabilitation Medicine, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, PR China.
| | - Wei Gu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
5
|
Dippong T. Innovative Nanomaterial Properties and Applications in Chemistry, Physics, Medicine, or Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:145. [PMID: 38251110 PMCID: PMC10820615 DOI: 10.3390/nano14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Developing innovative nanomaterials unlocks new opportunities in physics, chemistry, medicine, and environmental protection [...].
Collapse
Affiliation(s)
- Thomas Dippong
- Faculty of Science, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
| |
Collapse
|
6
|
Yarahmadi H, Salamah SK, Kheimi M. Synthesis of an efficient MOF catalyst for the degradation of OPDs using TPA derived from PET waste bottles. Sci Rep 2023; 13:19136. [PMID: 37932417 PMCID: PMC10628211 DOI: 10.1038/s41598-023-46635-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
In this study, a method for degrading PET-waste plastic bottles using ZnCl2:Urea as a catalyst was developed, resulting in high conversion (87%). The terephthalic acid obtained from the degradation of Waste PET Bottles (WPTs) was combined with copper and zinc salts to synthesize bimetallic metal-organic frameworks (MOF). The effectiveness of a bimetallic Cu-Zn(BDC)-MOF in catalyzing the reduction reaction of organic pollutant dyes (OPDs) was investigated, and the degradation efficiency of individual dyes was optimized, achieving over 95% degradation within 6-12 min under optimal conditions. Various techniques, including FT-IR, XRD, FE-SEM, EDS, and TEM were used to characterize the synthesized MOF. Results showed that the catalytic activity of Cu-Zn-MOF in reduction reaction of OPDs was enhanced by increasing the copper content. The reaction kinetics were investigated following pseudo-first-order kinetics with rate constants of 0.581, 0.43, 0.37, and 0.30 min-1 for Methylene Blue (MB), Methyl Orange (MO), 4-Nitrophenol (4-NP), and 4-Nitroaniline (4-NA), respectively. The investigations revealed that the produced catalyst exhibited excellent stability and recoverability, while its activity remained well-preserved even after undergoing three reuse cycles.
Collapse
Affiliation(s)
- Hossein Yarahmadi
- Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran.
| | - Sultan K Salamah
- Civil Engineering Department, College of Engineering, Taibah University, P.O. Box 30002, 41447, Al-Madina, Saudi Arabia
| | - Marwan Kheimi
- Department of Civil and Environmental Engineering, Faculty of Engineering-Rabigh Branch, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Poomipuen K, Sakulthaew C, Chokejaroenrat C, Angkaew A, Techauay K, Poompoung T, Teingtham K, Phansak P, Lueangjaroenkit P, Snow DD. Dual Activation of Peroxymonosulfate Using MnFe 2O 4/g-C 3N 4 and Visible Light for the Efficient Degradation of Steroid Hormones: Performance, Mechanisms, and Environmental Impacts. ACS OMEGA 2023; 8:36136-36151. [PMID: 37810650 PMCID: PMC10552087 DOI: 10.1021/acsomega.3c04333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Single activation of peroxymonosulfate (PMS) in a homogeneous system is sometimes insufficient for producing reactive oxygen species (ROS) for water treatment applications. In this work, manganese spinel ferrite and graphitic carbon nitride (MnFe2O4/g-C3N4; MnF) were successfully used as an activator for PMS under visible light irradiation to remove the four-most-detected-hormone-contaminated water under different environmental conditions. The incorporation of g-C3N4 in the nanocomposites led to material enhancements, including increased crystallinity, reduced particle agglomeration, amplified magnetism, improved recyclability, and increased active surface area, thereby facilitating the PMS activation and electron transfer processes. The dominant active radical species included singlet oxygen (1O2) and superoxide anions (O2•-), which were more susceptible to the estrogen molecular structure than testosterone due to the higher electron-rich moieties. The self-scavenging effect occurred at high PMS concentrations, whereas elevated constituent ion concentrations can be both inhibitors and promoters due to the generation of secondary radicals. The MnF/PMS/vis system degradation byproducts and possible pathways of 17β-estradiol and 17α-methyltestosterone were identified. The impact of hormone-treated water on Oryza sativa L. seed germination, shoot length, and root length was found to be lower than that of untreated water. However, the viability of both ELT3 and Sertoli TM4 cells was affected only at higher water compositions. Our results confirmed that MnF and visible light could be potential PMS activators due to their superior degradation performance and ability to produce safer treated water.
Collapse
Affiliation(s)
- Kitipong Poomipuen
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chainarong Sakulthaew
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
- Department
of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chanat Chokejaroenrat
- Department
of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Athaphon Angkaew
- Department
of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Kanidrawee Techauay
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Thapanee Poompoung
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Kanokwan Teingtham
- Department
of Agronomy, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Piyaporn Phansak
- Division
of Biology, Faculty of Science, Nakhon Phanom
University, Nakhon
Phanom 48000, Thailand
| | | | - Daniel D. Snow
- School
of Natural Resources and Nebraska Water Center, Part of the Robert
B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0844, United
States
| |
Collapse
|
8
|
Xiao X, Ren Y, Lei Y, Li X, Guo H, Zhang C, Jiao Y. Jasmine waste derived biochar as green sulfate catalysts dominate non-free radical paths efficiently degraded tetracycline. CHEMOSPHERE 2023; 339:139610. [PMID: 37482311 DOI: 10.1016/j.chemosphere.2023.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Because of the potential environmental harm caused by the extensive application of tetracycline (TC), this study used jasmine waste rich in organic matter as a precursor and one-step carbonization into metal-free carbon-based materials to efficiently activate peroxymonosulfate (PMS) toward degrading TC. The jasmine waste biochar (JWB) with a heating rate of 10 °C min-1 and a heating temperature of 700 °C was selected as the most suitable material based on its catalytic performance. The effects of catalyst dose, PMS dose, initial pH value, coexisting inorganic anions and TC concentration on the JWB/PMS/TC system were thoroughly optimized. The results showed that the degradation efficiency of TC by JWB/PMS system was 90%. Meanwhile, the combination of electron paramagnetic resonance, masking experiments and X-ray photoelectron spectrometry confirmed that JWB degraded TC mainly through the non-radical radical pathway of 1O2 oxidation and mediated the electron transfer to PMS. In addition, some degradation products were analyzed by LC-MS and possible degradation pathways of the system were proposed. Therefore, this paper proposes a novel method for recycling jasmine waste and providing a low-cost catalyst for the oxidation treatment of refractory organic matter.
Collapse
Affiliation(s)
- Xiuchan Xiao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China.
| | - Yaqi Ren
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China
| | - Yan Lei
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xi Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China
| | - Hongyang Guo
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Chunhong Zhang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Yi Jiao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
9
|
Dippong T, Levei EA, Petean I, Deac IG, Cadar O. A Strategy for Tuning the Structure, Morphology, and Magnetic Properties of MnFe 2O 4/SiO 2 Ceramic Nanocomposites via Mono-, Di-, and Trivalent Metal Ion Doping and Annealing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2129. [PMID: 37513140 PMCID: PMC10386402 DOI: 10.3390/nano13142129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
This work presents the effect of monovalent (Ag+, Na+), divalent (Ca2+, Cd2+), and trivalent (La3+) metal ion doping and annealing temperature (500, 800, and 1200 °C) on the structure, morphology, and magnetic properties of MnFe2O4/SiO2 ceramic nanocomposites synthesized via sol-gel method. Fourier-transform infrared spectroscopy confirms the embedding of undoped and doped MnFe2O4 nanoparticles in the SiO2 matrix at all annealing temperatures. In all cases, the X-ray diffraction (XRD) confirms the formation of MnFe2O4. In the case of undoped, di-, and trivalent metal-ion-doped gels annealed at 1200 °C, three crystalline phases (cristobalite, quartz, and tridymite) belonging to the SiO2 matrix are observed. Doping with mono- and trivalent ions enhances the nanocomposite's structure by forming single-phase MnFe2O4 at low annealing temperatures (500 and 800 °C), while doping with divalent ions and high annealing temperature (1200 °C) results in additional crystalline phases. Atomic force microscopy (AFM) reveals spherical ferrite particles coated by an amorphous layer. The AFM images showed spherical particles formed due to the thermal treatment. The structural parameters calculated by XRD (crystallite size, crystallinity, lattice constant, unit cell volume, hopping length, density, and porosity) and AFM (particle size, powder surface area, and thickness of coating layer), as well as the magnetic parameters (saturation magnetization, remanent magnetization, coercivity, and anisotropy constant), are contingent on the doping ion and annealing temperature. By doping, the saturation magnetization and magnetocrystalline anisotropy decrease for gels annealed at 800 °C, but increase for gels annealed at 1200 °C, while the remanent magnetization and coercivity decrease by doping at both annealing temperatures (800 and 1200 °C).
Collapse
Affiliation(s)
- Thomas Dippong
- Faculty of Science, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Iosif Grigore Deac
- Faculty of Physics, Babes-Bolyai University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Laddha H, Yadav P, Sharma M, Agarwal M, Gupta R. Waste to value transformation: Converting Carica papaya seeds into green fluorescent carbon dots for simultaneous selective detection and degradation of tetracycline hydrochloride in water. ENVIRONMENTAL RESEARCH 2023; 227:115820. [PMID: 37003557 DOI: 10.1016/j.envres.2023.115820] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
Rampant use of antibiotics has resulted in their seepage into groundwater and ultimately ending up in the food chain, causing antimicrobial resistance. To address this issue, it is imperative to not only quantitatively detect but eliminate them from water. An eco-friendly, one-step microwave-induced pyrolysis of waste papaya seeds (PS) with ethylenediamine (EDA) for just 5min gave green fluorescent nitrogen-doped carbon dots (PS-CDs), which are capable of detecting and photocatalytically degrading TC. The fluorescence properties of PS-CDs displayed that it has high sensitivity and selectivity towards sensing of TC with a detection limit as low as 120 nM. Also, the method gave satisfactory recovery results when extrapolated to determine TC in spiked milk, orange juice, tap water, and honey samples. On the other hand, PS-CDs alone potentially function as an efficient photocatalyst for the degradation of TC. PS-CDs' dual functionality provides an effectual method for the simultaneous detection and degradation of TC by a single nanoprobe.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Yadav
- Department of Chemistry, JECRC University, Jaipur, India
| | - Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India; Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India.
| |
Collapse
|
11
|
Salih SJ, Mahmood WM. Review on magnetic spinel ferrite (MFe 2O 4) nanoparticles: From synthesis to application. Heliyon 2023; 9:e16601. [PMID: 37274649 PMCID: PMC10238938 DOI: 10.1016/j.heliyon.2023.e16601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Magnetic spinel ferrite materials offer various applications in biomedical, water treatment, and industrial electronic devices, which has sparked a lot of attention. This review focuses on the synthesis, characterization, and applications of spinel ferrites in a variety of fields, particularly spinel ferrites with doping. Spinel ferrites nanoparticles doped with the elements have remarkable electrical and magnetic properties, allowing them to be used in a wide range of applications such as magnetic fields, microwave absorbers, and biomedicine. Furthermore, the physical properties of spinel ferrites can be modified by substituting metallic atoms, resulting in improved performance. The most recent and noteworthy applications of magnetic ferrite nanoparticles are reviewed and discussed in this review. This review goes over the synthesis, doping and applications of different types of metal ferrite nanoparticles, as well as views on how to choose the appropriate magnetic ferrites based on the intended application.
Collapse
Affiliation(s)
- Shameran Jamal Salih
- Department of Chemistry, Koya University Koya KOY45, Kurdistan Region – F.R, Iraq
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Tishk International University, KRG, Erbil, Iraq
| | - Wali M. Mahmood
- Department of Chemistry, Koya University Koya KOY45, Kurdistan Region – F.R, Iraq
| |
Collapse
|
12
|
Yang HY, Wei JJ, Zheng JY, Ai QY, Wang AJ, Feng JJ. Integration of CuS/ZnIn 2S 4 flower-like heterojunctions and (MnCo)Fe 2O 4 nanozyme for signal amplification and their application to ultrasensitive PEC aptasensing of cancer biomarker. Talanta 2023; 260:124631. [PMID: 37163924 DOI: 10.1016/j.talanta.2023.124631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Vascular endothelial growth factor 165 (VEGF165) is a crucial regulator of angiogenesis and works as a major protein biomarker of cancer metastasis. Therefore, its quantitative detection is pivotal in clinic. In this work, CuS/ZnIn2S4 flower-like heterojunctions had strong and stable photocurrents, which behaved as photoactive material to construct a photoelectrochemical (PEC) aptasensor for detecting VEGF165, combined by home-prepared (MnCo)Fe2O4 nanozyme-mediated signal amplification. The interfacial photo-induced electron transfer mechanism was chiefly discussed by UV-vis diffuse reflectance spectroscopy in details. Specifically, the (MnCo)Fe2O4 modified VEGF165 aptamer was released from the PEC aptasensing platform for its highly specific affinity to target VEGF165, which terminated the color precipitation reaction, ultimately recovering the PEC signals. The developed sensor displayed a wider linear range from 1 × 10-2 to 1 × 104 pg mL-1 with a smaller limit of detection (LOD) of 0.1 fg mL-1. This study provides some valuable insights for building other ultrasensitive aptasensors for clinical assays of cancer biomarkers in practice.
Collapse
Affiliation(s)
- Hong-Ying Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Jing Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Ying Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qing-Ying Ai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
13
|
Recent Advances in the Development of Novel Iron–Copper Bimetallic Photo Fenton Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Advanced oxidation processes (AOPs) have been postulated as viable, innovative, and efficient technologies for the removal of pollutants from water bodies. Among AOPs, photo-Fenton processes have been shown to be effective for the degradation of various types of organic compounds in industrial wastewater. Monometallic iron catalysts are limited in practical applications due to their low catalytic activity, poor stability, and recyclability. On the other hand, the development of catalysts based on copper oxides has become a current research topic due to their advantages such as strong light absorption, high mobility of charge carriers, low environmental toxicity, long-term stability, and low production cost. For these reasons, great efforts have been made to improve the practical applications of heterogeneous catalysts, and the bimetallic iron–copper materials have become a focus of research. In this context, this review focuses on the compilation of the most relevant studies on the recent progress in the application of bimetallic iron–copper materials in heterogeneous photo–Fenton-like reactions for the degradation of pollutants in wastewater. Special attention is paid to the removal efficiencies obtained and the reaction mechanisms involved in the photo–Fenton treatments with the different catalysts.
Collapse
|
14
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
15
|
Xiao S, Zhou J, Liu D, Liu W, Li L, Liu X, Sun Y. Efficient degradation of tetracycline hydrochloride by peroxymonosulfate activated by composite materials FeSe2/Fe3O4 under visible light. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Adsorption Mechanism and Electrochemical Characteristic of Methyl Blue onto Calcium Ferrite Nanosheets. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/6999213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A rapid combustion process was applied to prepare CaFe2O4 nanomaterials using CaBr2·xH2O and Fe(NO3)3·9H2O as raw materials and CaFe2O4 nanomaterials were characterized by SEM, TEM, VSM, XRD, and FTIR techniques. The results showed that the prepared nanomaterials had a sheet-like structure, and for larger adsorption capacity of dyes, CaFe2O4 nanosheets prepared at 700°C for 2 h with average grain size was 93.3 nm, a thickness of 8.4 nm, and the saturation magnetization of 8.15 emu/g were employed as adsorbate for the removal of methyl blue (MB). The adsorption performance of MB onto CaFe2O4 nanosheets was investigated; CaFe2O4 nanosheets displayed favorable adsorption capacity, and the adsorption conformed to the pseudo-second-order model and the Freundlich model, which demonstrated that the adsorption process of MB on CaFe2O4 nanosheets belonged to multilayer chemisorption process. When the pH value reached 3, the adsorption capacity of MB by CaFe2O4 nanosheets kept maximum value of 478.07 mg/g; and after 5 regenerations, the removal efficiency of MB was reduced to 59.06% of the first time. The electrochemical behavior of MB onto the nanosheets was evaluated through CV in conjunction with EIS. The CaFe2O4 nanosheets revealed a promising prospect for the adsorption of dyes.
Collapse
|
17
|
Jia K, Liu G, Lang DN, Chen SF, Yang C, Wu RL, Wang W, Wang JD. Degradation of tetracycline by visible light over ZnO nanophotocatalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|