1
|
Su M, Li W, Fang J, Cao T, Ai Y, Lü C, Zhao J, Yang Z, Yang M. Effects of Oxygenation Resuspension on DOM Composition and Its Role in Reducing Dissolved Manganese in Drinking Water Reservoirs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40387247 DOI: 10.1021/acs.est.5c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Anaerobic conditions in source water sediments are a key driver of manganese (Mn) release in drinking water systems. Enhancing sediment oxidation can inhibit Mn release, but the mechanisms of Mn speciation under varying oxidative conditions remain unclear. This study examined sediment exposure to oxygenated water layers at controlled dissolved oxygen levels (0, 2, 5, 7 mg L-1) through laboratory simulations. Results showed Mn release is negatively correlated with DO (R2 = 0.93, p = 0.034), with oxygen driving reactions between dissolved organic matter (C2 and C3 components) and forming functional groups (-OH, -COOH) that remove Mn through adsorption or complexation (C2: R2 = 0.57, p < 0.001; C3: R2 = 0.53, p < 0.001). Field studies in six reservoirs identified operational thresholds for sediment resuspension to mitigate Mn risks (compensation threshold: 17.4 μg L-1; risk threshold: China: 95.5 μg L-1; WHO: 70.8 μg L-1). These findings clarify Mn-organic matter interactions and can provide practical guidance for Mn and algae removal in source water systems.
Collapse
Affiliation(s)
- Ming Su
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan, Beijing 100049, China
| | - Weiwei Li
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
- School of Ecology and Environment, Inner Mongolia University, No.235 West College Road, Saihan, Hohhot 010021, China
| | - Jiao Fang
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
| | - Tengxin Cao
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan, Beijing 100049, China
| | - Yufan Ai
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan, Beijing 100049, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, No.235 West College Road, Saihan, Hohhot 010021, China
| | - Jinbo Zhao
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
| | - Ziyi Yang
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian, Beijing 100085, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan, Beijing 100049, China
| |
Collapse
|
2
|
Jiang F, Wu Q, Li Q, Jiqin K, Zeng J, Gao S, Yi S, Liu S, Liang F. Integrated quantitative tracing for Karst groundwater contamination: A case study of landfill in Zunyi, Guizhou Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125731. [PMID: 39837380 DOI: 10.1016/j.envpol.2025.125731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Sudden groundwater pollution in karst areas poses a serious threat to drinking water safety. Tracing contamination sources is crucial for managing and remediating groundwater pollution. Traditional tracing methods often lack accuracy, so this study combined multiple techniques to trace and quantify pollution sources near the municipal solid waste (MSW) landfill in Zunyi City, Guizhou Province, China. Analysis revealed that 83.2% of samples exceeded Chinese standards for ammonium, 81.5% for CODMn, and 47.9% for chloride, indicating severe pollution. To address these alarming findings, we implemented a comprehensive approach to identify and quantify the sources of contamination more accurately. First, major element geochemical tracing identified primary contamination sources. Second, trace element analysis provided more precise identification and highlighted additional sources. Third, isotopic tracing (δ15N-NO3-, δ18O-NO3-) determined types and quantities of pollution sources. Finally, long-term water quality monitoring and the PMF model enabled quantitative source apportionment of pollutants. This integrated approach found that the primary pollutants were landfill leachate (64.6%), domestic sewage (19.0%), and solute filtration from water-soil-rock interactions (16.4%). Our findings demonstrate that combining these methods enhances source resolution accuracy in aquatic environments and has the potential to be utilized in other karst regions worldwide.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Karst Geological Resources and Environment, (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China; 114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi, 563000, China
| | - Qixin Wu
- Key Laboratory of Karst Geological Resources and Environment, (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China.
| | - Qiang Li
- Key Laboratory of Karst Geological Resources and Environment, (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China; 114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi, 563000, China
| | - Kebuzi Jiqin
- 114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi, 563000, China
| | - Jie Zeng
- Key Laboratory of Karst Geological Resources and Environment, (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Shilin Gao
- Key Laboratory of Karst Geological Resources and Environment, (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550000, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Shiyou Yi
- 114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi, 563000, China
| | - Shuang Liu
- 114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi, 563000, China
| | - Feng Liang
- 114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi, 563000, China
| |
Collapse
|
3
|
Tunçal T, Demirkol PY. Factors affecting iron and manganese dissolution in groundwater: treatments with simultaneous oxidation and precipitation methods. ENVIRONMENTAL TECHNOLOGY 2025:1-11. [PMID: 39813310 DOI: 10.1080/09593330.2025.2450552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
This study explores variations in groundwater (GW) pH, conductivity, ammonium, iron, and manganese parameters to reveal prospective interactions having an impact on the dissolved metal concentrations. To this end, bivariate and partial correlation procedures were applied to the data to obtain incisive evaluation. Besides characterisation efforts, photocatalytic iron and manganese removal experiments were also carried out with Ni-doped TiO2 nano-composite thin films (TFs) on real GW samples. UV-A (365 nm) An LED array was used as the illumination source. The experimental setup was based on three treatment routes including photocatalytic oxidation (PCO), NaOH-aided precipitation and PCO with simultaneous precipitation (SPCO-P). The main statistical analysis and treatment efforts have been performed on data and samples of a single well, respectively (N = 15). However, extended statistical analysis has also been performed on larger data groups (N = 1366) obtained from different GW sources as well. Analytical results have revealed that about 90% of iron and manganese were in oxidised forms which do not precipitate by simple pH regulation. Statistical analysis has also revealed significant interactions between metal concentrations and observed parameters depending on the level of pH and conductivity. Furthermore, the SPCO-P strategy has provided a four-fold increase in reaction rate (pseudo-first-order, kobs: 0.04 min-1). Removal efficiencies of iron and manganese also increased from 10% to 96% - 85%, respectively.
Collapse
Affiliation(s)
- Tolga Tunçal
- Çorlu Engineering Faculty, Environmental, Engineering Department, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Pınar Yıldız Demirkol
- Tekirdağ Metropolitan Municipality, TESKİ, Water and Sewerage Administration, Tekirdağ, Turkey
| |
Collapse
|
4
|
Lai C, Zhan J, Chai Q, Wang C, Yang X, He H, Huang B, Pan X. Dissolved carbon in biochar: Exploring its chemistry, iron complexing capability, toxicity in natural redox environment. J Environ Sci (China) 2025; 147:217-229. [PMID: 39003041 DOI: 10.1016/j.jes.2023.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 07/15/2024]
Abstract
Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.
Collapse
Affiliation(s)
- Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Qiuyun Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Changlu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Wang H, Liu F, Zhang Y, Gong X, Zhu J, Tan W, Yuan Y, Zhang J, Chen H, Xi B. Aerobic Fe transformation induced decrease in the adsorption and enhancement in the reduction of Cr(VI) by humic acid-ferric iron coprecipitates. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135595. [PMID: 39182292 DOI: 10.1016/j.jhazmat.2024.135595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Humic substance (HS)-ferric iron (Fe(III)) coprecipitates are widespread organo-mineral associations in soils and aquifers and have the capacity to immobilize and detoxify Cr(VI). These coprecipitates undergo transformation owing to their thermodynamic instability; however, the effects of this transformation on their environmental behaviors remain unclear, particularly in aerobic environments. In this study, the aerobic transformation of humic acid (HA)-Fe(III) coprecipitates, a representative of HS-Fe(III) coprecipitates, was simulated. The environmental effect was then evaluated after conducting an adsorption-reduction batch experiment toward Cr(VI). The aerobic transformation characteristics, as well as the adsorption/reduction capacity of HA-Fe(III) coprecipitates, were found to depend strongly on their structures. In ferrihydrite (Fh)-like coprecipitates, amorphous Fh is readily transformed into crystalline hematite and goethite at aerobic environments, leading to a much lower specific surface area and adsorption capacity. However, this increasing degree of crystallization enhanced the inductive reduction ability towards Cr(VI) owing to the more significant shift of electron pairs in the FeOC bond toward the HA direction. In HS-like coprecipitates, Fe(III) always serves as a cation bridge connecting HA molecules, but can be reduced to Fe(II) by the associated HA after aerobic transformation. The produced Fe(II), therefore, drove the reduction of the adsorbed Cr(VI). These findings emphasize the pivotal role of aerobic transformation in enhancing the reduction capacity for Cr(VI), which opens a new avenue for the development of in-situ remediation agents for Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Fengping Liu
- Chinese Academy for Environmental Planning, Beijing 100020, PR China
| | - Yankun Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China; Chinese Academy for Environmental Planning, Beijing 100020, PR China
| | - Xueying Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Jinqi Zhu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jia Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China.
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
6
|
Xia X, Han X, Zhai Y. Activation of iron oxide minerals in an aquifer by humic acid to promote adsorption of organic molecules. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120543. [PMID: 38479284 DOI: 10.1016/j.jenvman.2024.120543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
In aquifers, the sequestration and transformation of organic carbon are closely associated with soil iron oxides and can facilitate the release of iron ions from iron oxide minerals. There is a strong interaction between dissolved organic matter (DOM) and iron oxide minerals in aquifers, but the extent to which iron is activated by DOM exposure to active iron minerals in natural aquifers, the microscopic distribution of minerals on the surface, and the mechanisms involved in DOM molecular transformation are currently unclear. This study investigated the nonbiological reduction transformation and coupled adsorption of iron oxide minerals in aquifers containing DOM from both macro- and micro perspectives. The results of macroscopic dynamics experiments indicate that DOM can mediate soluble iron release during the reduction of iron oxide minerals, that pH strongly affects DOM removal, and that DOM is more efficiently degraded at low rather than high pH values, suggesting that a low pH is conducive to DOM adsorption and oxidation. Spherical aberration-corrected scanning transmission electron microscopy (SACTS) indicates that the reacted mineral surfaces are covered with large amounts of carbon and that dynamic agglomeration of iron, carbon, and oxygen occurs. At the nanoscale, three forms of DOM are found in the mineral surface agglomerates (on the surfaces, inside the surface agglomerates, and in the polymer pores). The microscopic organic carbon and iron mineral reaction patterns can form through oxidation reactions and selective adsorption effects. Fourier transform ion cyclotron resonance mass spectra indicate that both synergistic and antagonistic reactions occur between DOM and the minerals, that the release of iron is accompanied by DOM decomposition and humification, that large oxygen- and carbon-containing molecules are broken down into smaller oxygen- and carbon-containing compounds and that more molecules are produced through oxidation under acidic rather than alkaline conditions. These molecules provide adsorption sites for sediment, meaning that more iron can be released. Microscopic evidence for the release of iron was acquired. These results improve the understanding of the geochemical processes affecting iron in groundwater, the nonbiological transformation mechanisms that occur at the interfaces between natural iron minerals and organic matter, groundwater pollution control, and the environmental behavior of pollutants.
Collapse
Affiliation(s)
- Xuelian Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xu Han
- Department of Ecology and Environment of Heilongjiang Province, 150090, Harbin, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
7
|
Jin C, Li Z, Huang M, Ding X, Chen J, Li B. Mechanisms of cadmium release from manganese-rich sediments driven by exogenous DOM and the role of microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116237. [PMID: 38503104 DOI: 10.1016/j.ecoenv.2024.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Dissolved organic matter (DOM) is a crucial component of natural sediments that alters Cd sequestration. Nevertheless, how different types of DOM fuel Cd mobilization in Mn-rich sediments has not been elucidated. In the present study, four typical DOM, fluvic acid (FA), bovine serum albumin (BSA), sodium alginate (SA), and sodium dodecyl benzene sulfonate (SDBS), were used to amend Cd-contaminated sediment to study their effects on Cd/Mn biotransformation and microbial community response. The results demonstrated that different DOM drive microbial community shifts and enhance microbially mediated Mn oxide (MnO) reduction and Cd release. The amendment of terrestrial- and anthropogenic-derived DOM (FA and SDBS) mainly contributed to enriching Mn-reducing bacteria phylum Proteobacteria, and its abundance increased by 38.16-74.47 % and 56.41-73.98 %, respectively. Meanwhile, microbial-derived DOM (BSA and SA) mainly stimulated the abundances of metal(loid)-resistant bacteria phylum Firmicutes. Accompanied by microbial community structure, diversity, and co-occurrence network shifts, the DOM concentration and oxidation-reduction potential changed, resulting in enhanced Cd mobilization. Importantly, FA stimulated Cd release most remarkably, probably because of the decreased cooperative interactions between bacterial populations, stronger reduction of MnOs, and higher aromaticity and hydrophobicity of the sediment DOM after amendment. This study linked DOM types to functional microbial communities, and explored the potential roles of different DOM types in Cd biotransformation in lake sediments.
Collapse
Affiliation(s)
- Changsheng Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Geography Science, Hunan Normal University, Changsha 410081, PR China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Hunan Normal University, Changsha 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
8
|
Li Y, Rong Q, Han C, Li H, Luo J, Yan L, Wang D, Jones KC, Zhang H. Development and validation of an in situ high-resolution technique for measuring antibiotics in sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133551. [PMID: 38301441 DOI: 10.1016/j.jhazmat.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Important biogeochemical processes occur in sediments at fine scales. Sampling techniques capable of yielding information with high resolution are therefore needed to investigate chemical distributions and fluxes and to elucidate key processes affecting chemical fates. In this study, a high-resolution diffusive gradients in thin-films (DGT) technique was systematically developed and tested in a controlled sediment system to measure organic contaminants, antibiotics, for the first time. The DGT probe was used to resolve compound distributions at the mm scale. It also reflected the fluxes from the sediment pore-water and remobilization from the solid phase, providing more dynamic information. Through the fine scale detection, a reduction of re-supply was observed over time, which was concentration and location dependent. Compared to the Rhizon sampling method, antibiotic concentrations obtained by DGT probes were less than the pore-water concentrations, as DGT measures the labile fraction of the compounds. The DGT probe was also tested on an intact sediment core sampled from a lake in China and used to measure the distribution of labile antibiotics with depth in the core at the mm scale. ENVIRONMENTAL IMPLICATION: The abuse of antibiotics and widespread of their residues influences the ecosystem, induces the generation of super-bacteria, and finally poses threat to human health. Sediments adsorbs pollutants from the aquatic environment, while may also release them back to the environment. We systematically developed DGT probe approach for measuring antibiotics in sediment in situ in high resolving power, it provides information at fine scale to help us investigate biogeochemical processes take place in sediment and sediment-water interface.
Collapse
Affiliation(s)
- Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Hanbing Li
- Department of Environmental Science, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
9
|
Hu Z, McKenna AM, Wen K, Zhang B, Mao H, Goual L, Feng X, Zhu M. Controls of Mineral Solubility on Adsorption-Induced Molecular Fractionation of Dissolved Organic Matter Revealed by 21 T FT-ICR MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2313-2322. [PMID: 38266164 DOI: 10.1021/acs.est.3c08123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Mineral adsorption-induced molecular fractionation of dissolved organic matter (DOM) affects the composition of both DOM and OM adsorbed and thus stabilized by minerals. However, it remains unclear what mineral properties control the magnitude of DOM fractionation. Using a combined technique approach that leverages the molecular composition identified by ultrahigh resolution 21 T Fourier transform ion cyclotron resonance mass spectrometry and adsorption isotherms, we catalogue the compositional differences that occur at the molecular level that results in fractionation due to adsorption of Suwannee River fulvic acid on aluminum (Al) and iron (Fe) oxides and a phyllosilicate (allophane) species of contrasting properties. The minerals of high solubility (i.e., amorphous Al oxide, boehmite, and allophane) exhibited much stronger DOM fractionation capabilities than the minerals of low solubility (i.e., gibbsite and Fe oxides). Specifically, the former released Al3+ to solution (0.05-0.35 mM) that formed complexes with OM and likely reduced the surface hydrophobicity of the mineral-OM assemblage, thus increasing the preference for adsorbing polar DOM molecules. The impacts of mineral solubility are exacerbated by the fact that interactions with DOM also enhance metal release from minerals. For sparsely soluble minerals, the mineral surface hydrophobicity, instead of solubility, appeared to be the primary control of their DOM fractionation power. Other chemical properties seemed less directly relevant than surface hydrophobicity and solubility in fractionating DOM.
Collapse
Affiliation(s)
- Zhen Hu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ke Wen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Bingjun Zhang
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Hairuo Mao
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lamia Goual
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
- Department of Geology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Cao X, Han X, Chen Y, Li J, Zhai Y. Flood irrigation increases the release of phosphorus from aquifer sediments into groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104297. [PMID: 38219282 DOI: 10.1016/j.jconhyd.2024.104297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Nonpoint source pollution caused by agricultural activities has long attracted widespread attention from people in society and academia. Many studies have found that human activities not only convey exogenous pollutants into aquifers but also affect the mobilization and transport of geogenic pollutants in aquifers. Geogenic groundwater with high phosphorus concentrations has been found, but it is unclear whether the changes in hydrogeochemical conditions caused by flood irrigation in paddy fields affect the fate of phosphorus. We investigated the temporal and spatial distribution characteristics of phosphorus in groundwater under the influence of flood irrigation through laboratory experiments, proved its impact on phosphorus in groundwater, and explored the mechanisms influencing P concentrations. The results show that flood irrigation can increase the release of phosphorus in the aquifer media and greatly increase the phosphorus concentration in the groundwater of the study area, which has a negative impact on groundwater quality. The main mechanism of increase in phosphorus concentration in groundwater involves an increase in the reducibility of the aquifer via flood irrigation; as a result, iron oxides are reductively dissolved and iron-bound phosphorus is released into the groundwater. Changes in pH also result in the dissolution of calcium phosphate minerals and the release calcium-bound phosphorus. This study not only advances the theory of multielement-coupled hydrogeochemistry but also provides a reference for agricultural planning and groundwater pollution prevention and control in rice-growing areas.
Collapse
Affiliation(s)
- Xinyi Cao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xu Han
- Department of Ecology and Environment of Heilongjiang Province, Harbin 150090, China
| | - Yaoxuan Chen
- China Institute of Geo-Environmental Monitoring, Beijing 100081, China
| | - Jian Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Zhou L, Ye T, Zheng S, Zhu X, Chen Z, Wu Y. Experimental and modeling investigation of dual-source iron release in water-solid-gas interaction of abandoned coal mine drainage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8433-8449. [PMID: 37634178 DOI: 10.1007/s10653-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
After mine closure and flooding, abandoned iron-prone devices and equipment (e.g., steel bolts and ground support meshes) and iron-bearing minerals (e.g., pyrite) form a dual-source iron pollution system in mine groundwater. Dual-source iron contributes to the water-solid-gas interaction in abandoned coal mines and the release of iron at different periods after mine closure, posing environmental risks in groundwater and discharging acid mine drainage, which contains large amounts of iron. In this study, a series of hydrochemical experiments were conducted to simulate the iron release process of the dual-source system, and electrochemical experiments were carried out to reveal the reaction mechanism, characterize the dual-source iron pollution release mode and quantify the release rate ratio. PHREEQC package was used to simulate the long-term hydrogeochemistry reactions of the water-solid-gas interaction to determine the key factors and suitable conditions that inhibit dual-source iron release. The results show that the dual-source system of iron-bearing minerals (pyrite) and steel bolts promote iron release from each other. The resulting calculated annual iron release indicated that the overall iron release rate ratio is: dual-source > bolt > pyrite, indicating that mine water would remain acidic for a long time due to the continuous release of iron from the system. Numerical modeling results show that maintaining the environment temperature below 25 °C and the pH above 3.5 is an effective way to reduce the iron release rate.
Collapse
Affiliation(s)
- Lai Zhou
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, 221116, China.
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Tao Ye
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, 221116, China
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shuangshuang Zheng
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, 221116, China
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, 221116, China
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhongwei Chen
- School of Mechanical and Mining Engineering, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yu Wu
- State Key Laboratory for Geomechanics & Deep Underground Engineering, Xuzhou, 221116, China
| |
Collapse
|
12
|
Yao Y, Ma K, Li S, Zhang Y, Zhang Z, Fang F, Lin Y, Yin L, Sun L, Zhang C. Dissolved organic matter and Fe/Mn enhance the combination and transformation of As in Lake Chaohu Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119425. [PMID: 39492388 DOI: 10.1016/j.jenvman.2023.119425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The phenomenon of algal blooms resulting from lake eutrophication has the potential to increase the concentration of dissolved organic matter (DOM) and consequently influence the environmental behaviour of arsenic (As). In the subtropical region, the interplay between DOM, Fe/Mn and As becomes complex as Fe/Mn-rich substances from soils and sediments enter eutrophic lakes. The mechanisms by which DOM-Fe/Mn interactions affect the transformation of As species remain uncertain. Therefore, the Chaohu Lake Basin was selected as a representative case study site to investigate the levels of DOM, As, Fe and Mn in the water and to establish their associations. In addition, the interaction mechanism between DOM-Fe/Mn and As was investigated by elucidating the transformation behaviour of DOM-Fe/Mn on As species in a controlled laboratory environment. The results showed that in cases where the coexistence of Fe and Mn concentrations was relatively low (e.g. Fe < ∼0.5 mg/L and Mn < ∼0.6 mg/L), the concentration of As in water would increase proportionally with the simultaneous increase of both Fe and Mn concentrations (As < 5 μg/L). However, when the concentration of either Fe or Mn reached 10 mg/L, the proportion of As complexed by DOM increased significantly, reaching 99.73% and 99.66%, respectively. In the configuration of a metallic bridge, the elements Fe and Mn act as connectors between negatively charged DOM and As, thereby increasing the adsorption capacity of DOM for As. The alcohol and alkene functional groups present on the DOM-Fe/Mn surface show a preference for binding with free species of As in aqueous environments. In addition, the reductive groups on the surface of DOM not only directly convert As(V) to As(III), but also facilitate the reduction of Fe(III) to Fe(II), resulting in the indirect conversion of As(V) to As(III). Thus, this study provides a comprehensive understanding of the transport and transformation processes of arsenic in subtropical eutrophic lakes.
Collapse
Affiliation(s)
- Youru Yao
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Kang Ma
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Zhiming Zhang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Fengman Fang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Yuesheng Lin
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lian Sun
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Chonghong Zhang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| |
Collapse
|
13
|
Xia X, Yue W, Zhai Y, Teng Y. DOM accumulation in the hyporheic zone promotes geogenic Fe mobility: A laboratory column study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165140. [PMID: 37391144 DOI: 10.1016/j.scitotenv.2023.165140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Hyporheic zone (HZ) systems have a natural purification capacity, and they are commonly used to provide high quality drinking water. However, the presence of organic contaminants in HZ systems in anaerobic environments causes the aquifer sediments to release metals (e.g., Fe) at levels above drinking water standards, which affects the quality of groundwater. In this study, the effects of typical organic pollutants (dissolved organic matter (DOM)) on Fe release from anaerobic HZ sediments were investigated. Ultraviolet fluorescence spectroscopy, three-dimensional excitation-emission matrix fluorescence spectroscopy, excitation-emission matrix spectroscopy coupled with parallel factor analysis and Illumina MiSeq high-throughput sequencing were used to determine the effects of the system conditions on Fe release from HZ sediments. Compared with the control conditions (low traffic and low DOM as a baseline), the Fe release capacity was enhanced by 26.7 % and 64.4 % at low flow rate (85.8 m/d) and high organic matter concentration (1200 mg/L), which was consistent with the residence-time effect. The transport of heavy metals under different system conditions varied with the influent organic composition. The influent organic matter composition and fluorescence parameters (the humification index, biological index and fluorescence index) were closely related to the release of the Fe effluent, while these factors had less influence on Mn and As. From 16S rRNA analysis of the aquifer media at different depths at the end of the experiment, under low flow rate and high influent concentration conditions, reduction of Fe minerals by Proteobacteria, Actinobacteriota, Bacillus, and Acidobacteria promoted the release of Fe. These functional microbes play an active role in the Fe biogeochemical cycle in addition to reducing Fe minerals to promote Fe release. In summary, this study reveals the effects of the flow rate and influent DOM concentration on the release and biogeochemistry of Fe in the HZ. The results presented herein will contribute to a better understanding of the release and transport of common groundwater contaminants in the HZ and other groundwater recharge environments.
Collapse
Affiliation(s)
- Xuelian Xia
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Weifeng Yue
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuanzheng Zhai
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Liu W, Qian K, Xie X, Xiao Z, Xue X, Wang Y. Co-occurrence of arsenic and iodine in the middle-deep groundwater of the Datong Basin: From the perspective of optical properties and isotopic characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121686. [PMID: 37105462 DOI: 10.1016/j.envpol.2023.121686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Redox processes can induce arsenic (As) and iodine (I) transformation and thus change As and I co-occurrence, yet there is no evidence that Fe-C-S coupled redox processes have such an impact on the co-occurrence of As and I. To fill this gap, middle-deep groundwater from the Datong Basin were samples for the purpose of exploring how dissolved organic matter (DOM) reactivity affects As and I enrichment and how iron reduction and sulfate reduction processes influence As and I co-occurrence. We identified three DOM components: reduced and oxidized quinone compounds (C1 and C3) and a labile DOM from terrestrial inputs (C2). Two pathways of DOM processing take place in the aquifer, including the degradation of labile DOM to HCO3- and the transformation of oxidized quinone compounds to reduced quinone compounds. Electrons transfer drives the reduction of the terminal electron acceptors. The supply of electrons promotes the reduction of iron and sulfate by microbes, enhancing As and I co-enrichment in groundwater. Thus, the reduction processes of iron and sulfate triggered by the dual roles of DOM affect dissolved As and I co-enrichment. As and I biogeochemical cycling interacts with C, Fe, and S cycling. These results provide isotopic and fluorescence evidence that explains the co-occurrence of arsenic and iodine in middle-deep aquifers.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Kun Qian
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China.
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Ziyi Xiao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Xiaobin Xue
- Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jingzhou, Hubei, 434020, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| |
Collapse
|
15
|
Li P, Sabarathinam C, Elumalai V. Groundwater pollution and its remediation for sustainable water management. CHEMOSPHERE 2023; 329:138621. [PMID: 37031835 DOI: 10.1016/j.chemosphere.2023.138621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shannxi, China.
| | - Chidambaram Sabarathinam
- Water Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | | |
Collapse
|
16
|
Zeng G, Wang J, Dai M, Meng Y, Luo H, Zhou Q, Lin L, Zang K, Meng Z, Pan X. Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: Applications, mechanisms, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161826. [PMID: 36708820 DOI: 10.1016/j.scitotenv.2023.161826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Natural iron-bearing minerals are widely distributed in the environment and show prominent catalytic performance in pollutant removal. This work provides an overview of groundwater restoration technologies utilizing heterogeneous electro-Fenton (HEF) techniques with the aid of different iron forms as catalysts. In particular, applications of natural iron-bearing minerals in groundwater in the HEF system have been thoroughly summarized from either the view of organic pollutant removal or degradation. Based on the analysis of the catalytic mechanism in the HEF process by pyrite (FeS2), goethite (α-FeOOH), and magnetite (Fe3O4) and the geochemistry analysis of these natural iron-bearing minerals in groundwater, the feasibility and challenges of HEF for organic degradation by using typical iron minerals in groundwater have been discussed, and natural factors affecting the HEF process have been analyzed so that appropriate in situ remedial measures can be applied to contaminated groundwater.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ji Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutong Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academic of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
17
|
Jiang J, Zhu Y, He Z, Bing X, Wang K, Ma H, Liu F, Ding J, Wei J. Multiple spectral comparison of dissolved organic matter in the drainage basin of a reservoir in Northeast China: Implication for the interaction among organic matter, iron, and phosphorus. Heliyon 2023; 9:e14797. [PMID: 37025844 PMCID: PMC10070608 DOI: 10.1016/j.heliyon.2023.e14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Dissolved organic matter (DOM) plays a major role in ecological systems, affecting the fate and transportation of iron (Fe) and phosphorus (P). To better understand the geochemical cycling of these components, soil and sediment samples were collected around a reservoir downstream of a typical temperate forest in Northeast China. The DOM fractions from these soils, river, and reservoir sediments were extracted and then characterized by spectroscopic techniques. Comparative characterization data showed that the DOM pool of the Xishan Reservoir was partly autochthonous and derived from runoff and deposition of material in terrestrial ecosystems upstream. The upper reaches of the reservoir had significantly lower total Fe (TFe) content in the DOM extracts than those found in the reservoir (p < 0.05). Within the DOM, TFe was correlated with the amino acid tryptophan (p < 0.01). There was also a strong positive correlation between total P (TP) concentrations in DOM and tyrosine (p < 0.01). Organic P (Po) comprised most of the DOM TP, and was related to dissolved organic carbon (DOC) content and the amino acid tyrosine (p < 0.01). The interaction among DOM, Fe, and P appears to be due to complexation with tryptophan (Fe) and tyrosine (P). This suggests that the formation of Fe-DOM-P would be produced more readily than DOM-Fe-P complexes under optimal conditions. The interaction among DOM, Fe, and P can promote the coordinated migration, transformation, and ultimate fate of components that are complex with DOM from riverine and reservoir ecosystems, ultimately leading to accumulation within a reservoir and transport to downstream regions when reservoir dams are released. Reservoir dams can effectively intercept DOM and minerals prevent its flow downstream; however, it is important to understand the co-cycling of DOM, Fe and P within reservoirs, downstream rivers, and ultimately oceans. The involvement of amino acid components of DOM, tyrosine and tryptophan, in DOM complexation is an issue that requires further study.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Corresponding author.;
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, 1100 Allen Toussaint Blvd., New Orleans, LA 70124, USA
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kuo Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huihui Ma
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Liu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jian Wei
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Corresponding author.
| |
Collapse
|
18
|
Jat Baloch MY, Zhang W, Zhang D, Al Shoumik BA, Iqbal J, Li S, Chai J, Farooq MA, Parkash A. Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13325. [PMID: 36293904 PMCID: PMC9603767 DOI: 10.3390/ijerph192013325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 05/25/2023]
Abstract
Arsenic (As) contamination in groundwater is a worldwide concern for drinking water safety. Environmental changes and anthropogenic activities are making groundwater vulnerable in Pakistan, especially in Southern Punjab. This study explores the distribution, hydrogeochemical behavior, and pathways of As enrichment in groundwater and discusses the corresponding evolution mechanism, mobilization capability, and health risks. In total, 510 groundwater samples were collected from three tehsils in the Punjab province of Pakistan to analyze As and other physiochemical parameters. Arsenic concentration averaged 14.0 μg/L in Vehari, 11.0 μg/L in Burewala, and 13.0 μg/L in Mailsi. Piper-plots indicated the dominance of Na+, SO42-, Ca2+, and Mg2+ ions in the groundwater and the geochemical modeling showed negative saturation indices with calcium carbonate and salt minerals, including aragonite (CaCO3), calcite (CaCO3), dolomite (CaMg(CO3)2), and halite (NaCl). The dissolution process hinted at their potential roles in As mobilization in groundwater. These results were further validated with an inverse model of the dissolution of calcium-bearing mineral, and the exchange of cations between Ca2+ and Na+ in the studied area. Risk assessment suggested potential carcinogenic risks (CR > 10-4) for both children and adults, whereas children had a significant non-carcinogenic risk hazard quotient (HQ > 1). Accordingly, children had higher overall health risks than adults. Groundwater in Vehari and Mailsi was at higher risk than in Burewala. Our findings provide important and baseline information for groundwater As assessment at a provincial level, which is essential for initiating As health risk reduction. The current study also recommends efficient management strategies for As-contaminated groundwater.
Collapse
Affiliation(s)
- Muhammad Yousuf Jat Baloch
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | | | - Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shuxin Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Anand Parkash
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang’an West Street 620, Xi’an 710119, China
| |
Collapse
|
19
|
Xia X, Zhai Y, Teng Y. Microbial response to biogeochemical profile in a perpendicular riverbank filtration site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114070. [PMID: 36099687 DOI: 10.1016/j.ecoenv.2022.114070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Due to extensive water exchanges and abundant active biochemical compositions, active and complex hydrogeochemical processes often exist in riverbank filtration (RBF). The distribution of microbes is considered to be profoundly affected by these processes and is considered to impact the hydrogeochemical processes and the migration and transformation of water pollutants in turn and then impact the water quality. The distribution of microbes and their response to the physiochemical properties along a vertical RBF profile perpendicular to the Songhua River in Northeast China was explored by using 16 S rRNA and redundancy analysis (RDA). The results showed that various microbes were found in the vertical riparian filter (RBF) curve, including Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. With increasing depth (vertical) and distance from the river (lateral), the microbial community and diversity in the RBF sediment profile decreased. Nitrospirota, Pseudomonas, Gammaproteobacteria, Ochrobactrum, Acinetobacter and Desulfobacterota of the RBF core taxa were also significantly correlated with the biotransformation behavior of typical groundwater pollutants (ammonia, Fe, Mn and S). The amount of As in the RBF is too low to sustain microbial survival. Some microbes in RBF can also degrade natural organic pollutants. This study not only revealed the spatial distribution of geological microbes under the impact of hydrological processes but also lays a foundation for the further study of the hydrobiogeochemical processes of active biochemical compositions in groundwater and water quality evolution, which is of positive significance to ensure the quality safety of the drinking water supplied by RBFs.
Collapse
Affiliation(s)
- Xuelian Xia
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
20
|
Biogeochemistry of Iron Enrichment in Groundwater: An Indicator of Environmental Pollution and Its Management. SUSTAINABILITY 2022. [DOI: 10.3390/su14127059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Iron (Fe) is one of the most biochemically active and widely distributed elements and one of the most important elements for biota and human activities. Fe plays important roles in biological and chemical processes. Fe redox reactions in groundwater have been attracting increasing attention in the geochemistry and biogeochemistry fields. This study reviews recent research into Fe redox reactions and biogeochemical Fe enrichment processes, including reduction, biotic and abiotic oxidation, adsorption, and precipitation in groundwater. Fe biogeochemistry in groundwater and the water-bearing medium (aquifer) often involves transformation between Fe(II) and Fe(III) caused by the biochemical conditions of the groundwater system. Human activities and anthropogenic pollutants strongly affect these conditions. Generally speaking, acidification, anoxia and warming of groundwater environments, as well as the inputs of reducing pollutants, are beneficial to the migration of Fe into groundwater (Fe(III)→Fe(II)); conversely, it is beneficial to the migration of it into the media (Fe(II)→Fe(III)). This study describes recent progress and breakthroughs and assesses the biogeochemistry of Fe enrichment in groundwater, factors controlling Fe reactivity, and Fe biogeochemistry effects on the environment. This study also describes the implications of Fe biogeochemistry for managing Fe in groundwater, including the importance of Fe in groundwater monitoring and evaluation, and early groundwater pollution warnings.
Collapse
|