1
|
Li C, Wang Z, Song B, Cheung KL, Chen J, Li R, Liu X, Jia X, Zhao Q, Zhong S. Arsenolipid-induced reproductive toxicity in Caenorhabditis elegans: Elucidating the mechanism through the HUS-1-CEP-1-EGL-1-CED-9-CED-4-CED-3 signaling pathway. Food Chem Toxicol 2025; 200:115340. [PMID: 39986564 DOI: 10.1016/j.fct.2025.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Arsenolipid (AsL) is a complex lipid-soluble organic arsenic compound, which is usually found in marine organisms. Among them, arsenic-containing hydrocarbons (AsHCs) are a common type. At present, the toxic effects of different AsHCs have not been elucidated due to their different hydrocarbon chain lengths and large numbers. A model Caenorhabditis elegans (C.elegans) was used to study the reproductive toxicity and mechanism of AsHC 332, AsHC 346 and AsHC 360, which are commonly found in seafood. The results showed that three different molecular weights of AsLs reduced the number of offspring and gonadal area of C. elegans, prolonged the generation time. Meanwhile, the three AsLs regulated the expression levels of oxidative stress genes (isp-1, mev-1, sod-3, gas-1), resulting in changes in the expression of apoptosis-related genes (ced-3, ced-4, ced-9) and DNA damage-related genes (hus-1, clk-2, cep-1 and egl-1). In addition, the mechanism of arsenolipid-induced nematode reproductive toxicity was further elucidated through the HUS-1-CEP-1-EGL-1-CED-9-CED-4-CED-3 signaling pathway. Therefore, our results suggest that AsHC 332 is more exposed to reproductive toxicity than AsHC 346 and AsHC 360, which is related to changes in physicochemical properties and DNA damage-induced germ cell apoptosis.
Collapse
Affiliation(s)
- Caiyan Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Kit-Leong Cheung
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Qiaoli Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Ha SE, Lee MH, Han SM, Kim SH, Hyun M, Heo JD. Comparative toxicity of eleven bisphenol analogs in the nematode Caenorhabditis elegans. Toxicol Lett 2025; 409:12-20. [PMID: 40287112 DOI: 10.1016/j.toxlet.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Bisphenol analogs are widely used as industrial substitutes for Bisphenol A (BPA) and are included in water bottles, food containers, and receipts commonly encountered daily. However, there are currently no specific regulations on these substitute substances, and reports on their harmful effects are also lacking. In this study, we examined the toxicity of eleven bisphenol analogs, including BPAP, BPB, BPC, BPC2, BPE, BPG, BPM, BPP, BPPH, BPZ, and TBBPA at 1 mM concentration using the C. elegans model. Our findings revealed that several bisphenol analogs, most notably BPB, BPC, BPE, and BPG, significantly increased lethality in embryonic and L1 larval stages. Additionally, developmental delays were observed with BPAP, BPB, BPC, and BPG, with a reduced fraction of animals reaching adulthood. Regarding reproductive toxicity, we found that BPAP, BPB, BPC, BPC2, and BPG reduced egg production. Furthermore, exposure to the analogs significantly shortened the lifespan of C. elegans, particularly with BPAP, BPB, BPC, and BPG, raising concerns about their potential impact on aging. This study suggests their potential harmful effects on development, reproduction, and longevity.
Collapse
Affiliation(s)
- Sang Eun Ha
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea
| | - Myon Hee Lee
- Department of Internal Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL 32610, USA
| | - Sung-Hwan Kim
- Division of Jeonbuk Advanced Bio Research, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
| | - Moonjung Hyun
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea.
| | - Jeong Doo Heo
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wu J, Wang D. 6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125539. [PMID: 39689833 DOI: 10.1016/j.envpol.2024.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
The toxicity of 6-PPD quinone (6-PPDQ) has been frequently detected. However, the possible transgenerational effects of 6-PPDQ remain largely unclear. Due to short life cycle and high sensitivity to environmental exposure, Caenorhabditis elegans is useful for study of transgenerational toxicology. In C. elegans, we observed the transgenerational increase in lipid accumulation after parental generation (P0-G) exposure to 6-PPDQ at 0.1-10 μg/L. Accompanied with this, transgenerational increase in expressions of genes governing fatty acid synthesis and monounsaturated fatty acyl-CoAs synthesis and decrease in genes governing fatty acid β-oxidation were induced by 6-PPDQ exposure. Moreover, 6-PPDQ exposure at P0-G caused transgenerational activation of mdt-15 and sbp-1 encoding lipid metabolic sensors. Meanwhile, exposure to 6-PPDQ induced transgenerational activation of set-2 and inhibition in rbr-2, two genes encoding components of COMPASS complex. The 6-PPDQ induced transgenerational lipid accumulation could be strengthened by RNAi of set-2 and suppressed by RNAi of rbr-2. Additionally, 6-PPDQ induced transgenerational neurotoxicity could be increased by RNAi of mdt-15, sbp-1, and rbr-2, and inhibited by RNAi of set-2. Therefore, our results demonstrated the possibility in resulting in transgenerational lipid accumulation by exposure to 6-PPDQ.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Zhang X, Kong Y, He Z, Yu W, Shao W, Gong C, Zhou W, Hu X. Exploring the effects of perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) on silkworm from the insights of metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117444. [PMID: 39632329 DOI: 10.1016/j.ecoenv.2024.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) are emerging environmental contaminants with recognized potential health and ecological risks. This study investigated the effects of PFOA and TBBP-A exposure on the global of metabolites of silkworm gut with GC-MS metabolomics. Our results revealed distinct metabolic alterations in silkworms exposed to PFOA and TBBP-A, highlighting their differential impacts on silkworm health and productivity. Exposure to these chemicals significantly altered metabolic profiles, leading to disruptions in pathways related to lipid, carbohydrate, and amino acid metabolism. These findings suggest that PFOA and TBBP-A disrupt crucial metabolic processes in silkworms, indicating potential toxicity and prompting further investigation into their effects on human health and the environment. Ongoing research is crucial to develop safer alternatives and mitigate the risks associated with these persistent contaminants.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifei Kong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zihan He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenbin Yu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenjing Shao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chengliang Gong
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaolong Hu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Wang Y, Wang D. Transgenerational intestinal toxicity of 6-PPD quinone in causing ROS production, enhancement in intestinal permeability and suppression in innate immunity in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125208. [PMID: 39481523 DOI: 10.1016/j.envpol.2024.125208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Toxicity of 6-PPD quinone (6-PPDQ) on organisms at various aspects has been frequently observed at parental generation (P0-G). In contrast, we know little about its possible transgenerational toxicity and underlying mechanisms. In Caenorhabditis elegans, exposure to 6-PPDQ (0.1-10 μg/L) at P0-G induced transgenerational reactive oxygen species (ROS) production in intestine. Accompanied with this, transgenerational increase in intestinal permeability and decrease in expressions of genes governing intestinal function were observed. Exposure to 6-PPDQ (1 and 10 μg/L) at P0-G caused transgenerational suppression in expressions of antimicrobial genes (lys-7 and spp-1) and LYS-7::RFP. Meanwhile, intestinal ROS production could be enhanced by RNAi of acs-22, hmp-2, pkc-3, lys-7, and spp-1. Moreover, acs-22, hmp-2, and pkc-3 RNAi could inhibit innate immune response induced by 6-PPDQ. Additionally, lys-7 and spp-1 RNAi could strengthen intestinal permeability in 6-PPDQ exposed nematodes. Therefore, 6-PPDQ caused transgenerational intestinal toxicity, which was associated with both enhanced intestinal permeability and suppressed innate immunity.
Collapse
Affiliation(s)
- Yuxing Wang
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Wu Z, Wang L, Chen W, Wang Y, Cui K, Chen W, Liu J, Jin H, Zhou Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. TOXICS 2024; 12:785. [PMID: 39590964 PMCID: PMC11598590 DOI: 10.3390/toxics12110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Emerging pollutants (EPs) are receiving increasing attention due to the threats they pose to the environment and human health. As EPs continue to emerge, risk assessment requires many model animals. Caenorhabditis elegans (C. elegans) has been an outstanding toxicological model organism due to its growth and development characteristics. Particularly, in studying the transgenerational influences of EPs, C. elegans has advantages in saving time and cost due to its short generation cycle. As infertility has become a major problem in human reproductive health, reproductive toxicities of EPs on contemporary nematodes and across generations of C. elegans were introduced in this review. Moreover, the underlying mechanisms involved in germ cell apoptosis, spermatogenesis, and epigenetic alteration were discussed. Future research opportunities and challenges are also discussed to expand our understanding of the reproductive influences of EPs.
Collapse
Affiliation(s)
- Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weihua Chen
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, China;
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Jijun Liu
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China;
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| |
Collapse
|
7
|
Xu T, Chen H, Zhang L, Xie D, Tan S, Guo H, Xiang M, Yu Y. Aged polystyrene microplastics cause reproductive impairment via DNA-damage induced apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2024; 362:142519. [PMID: 38830467 DOI: 10.1016/j.chemosphere.2024.142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Although polystyrene microplastics (PS-MPs) could induce toxic effects on environmental organisms, the toxicity of aged PS-MPs with H2O2 on soil organisms remains unclear. Our study utilized Caenorhabditis elegans as model organism to examine the reproductive toxicity of pristine PS-MPs (pPS-MPs) and aged PS-MPs (aPS-MPs) at environmentally relevant concentrations (0.1-100 μg/L). Acute exposure to aPS-MPs could induce greater reproductive impairment compared to pPS-MPs, as evidenced by changes in brood size and egg release. Assessment of gonad development using the number of mitotic cells, length of gonad arm, and relative area of gonad arm as parameters revealed a high reproductive toxicity caused by aPS-MPs exposure. Furthermore, aPS-MPs exposure promoted substantial germline apoptosis. Additionally, exposure to aPS-MPs (100 μg/L) markedly altered the expression of DNA damage-induced apoptosis-related genes (e.g., egl-1, cep-1, clk-2, ced-3, -4, and -9). Alterations in germline apoptosis caused by aPS-MPs were observed in mutants of cep-1, hus-1, egl-1, ced-3, -4, and -9. Consequently, the augmentation of reproductive toxicity resulting from aPS-MPs exposure was attributed to DNA damage-triggered cellular apoptosis. Additionally, the EGL-1-CEP-1-HUS-1-CED-3-CED-4-CED-9 signaling pathway was identified as a key regulator of germline apoptosis in nematodes. Our study provides insights into potential environmental risk of aPS-MPs with H2O2 on environmental organisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Luohong Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
8
|
Lu X, Yu M, Yang Y, Zhang X, Chen T, Lei B. G-Protein Coupled Receptor 1 Is Involved in Tetrachlorobisphenol A-Induced Inflammatory Response in Jurkat Cells. TOXICS 2024; 12:485. [PMID: 39058137 PMCID: PMC11281156 DOI: 10.3390/toxics12070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Estrogens can affect the immune inflammatory response through estrogen receptor alpha (ERα), but the specific role of estrogen member receptor G-protein coupled receptor 1 (GPER1) in this process remains unclear. In this study, we evaluated the effects of tetrachlorobisphenol A (TCBPA), which has estrogen activity, on immune inflammatory-related indicators of Jurkat cells, as well as investigated the role of GPER1 in these effects. The results showed that TCBPA at lower concentrations significantly promoted the viability of Jurkat cells, whereas higher concentrations decreased cell viability. TCBPA at concentrations ranging from 1 to 25 μM increased the intracellular reactive oxygen species (ROS) levels. Additionally, treatment with 10 μM TCBPA increased the protein expression of ERα and GPER1, elevated the phosphorylation of protein kinase B (p-Akt), and upregulated the mRNA levels of GPER1, Akt, and phosphoinositide 3-kinase (PI3K) genes. Treatment with 10 μM TCBPA also upregulated the protein or gene expression of pro-inflammatory cytokines, such as interleukins (IL1β, IL2, IL6, IL8, IL12α) and tumor necrosis factor alpha (TNFα) in Jurkat cells. Furthermore, pretreatment with a GPER1 inhibitor G15 significantly reduced the mRNA levels of Akt induced by 10 μM TCBPA. Moreover, the upregulation of mRNA expression of RelA (p65), TNFα, IL6, IL8, and IL12α induced by 10 μM TCBPA was also significantly attenuated after G15 pretreatment. These findings suggest that TCBPA upregulates the expression of genes related to inflammatory responses by activating the GPER1-mediated PI3K/Akt signaling pathway. This study provides new insights into the mechanism of TCBPA-induced inflammatory response.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| |
Collapse
|
9
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
10
|
van den Brand AD, Hessel EVS, Rijk R, van de Ven B, Leijten NM, Rorije E, den Braver-Sewradj SP. A prioritization strategy for functional alternatives to bisphenol A in food contact materials. Crit Rev Toxicol 2024; 54:291-314. [PMID: 38726570 DOI: 10.1080/10408444.2024.2341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 06/09/2024]
Abstract
The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM.
Collapse
Affiliation(s)
- Annick D van den Brand
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Bianca van de Ven
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Niels M Leijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Shalenie P den Braver-Sewradj
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Qiao H, Yang B, Lv X, Liu Y. Exposure to TCBPA stimulates the growth of arterial smooth muscle cells through the activation of the ROS/NF-κB/NLRP3 signaling pathway. Toxicology 2024; 503:153759. [PMID: 38369010 DOI: 10.1016/j.tox.2024.153759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Tetrachlorobisphenol A (TCBPA) and Tetrabromobisphenol S (TBBPS) are organic compounds widely used in industrial production, including in plastic and textile manufacturing. Presently, residual TCBPA is commonly detected in the environment as well as in human and animal sera. Therefore, it is imperative to assess the potential toxicological effects of TCBPA on organismal health. A series of biochemical experiments, including indirect immunofluorescence, ELISA, Western blot, MTT, etc, were conducted to analyze the effects of TCBPA on vascular smooth muscle cells. In this study, the biological impact of TCBPA on arterial smooth muscle cells (ASMCs) was investigated. CCK8 and EdU assays demonstrated significant proliferation of ASMCs following TCBPA treatment. Furthermore, TCBPA induced an inflammatory response in smooth muscle cells, as evidenced by the upregulated expression of inflammatory cytokines including IL-6, IL-1β, and MCP1. Additionally, we observed that TCBPA triggered an oxidative stress response in ASMCs by measuring ROS levels. To elucidate the underlying molecular mechanism of TCBPA-induced ASMC proliferation, we found that NLRP3 was essential for this process. Further investigation revealed that NLRP3 activation was mediated by NF-κB (which was activated by ROS). In summary, our findings suggest that TCBPA promotes the proliferation of ASMCs through the ROS/NF-κB/NLRP3 signaling cascade. This work indicates that TCBPA may represent a potential risk factor for the development of atherosclerosis, highlighting the need for judicious control of TCBPA usage.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Bo Yang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yongmin Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
12
|
Zhao Y, Ni S, Pei C, Sun L, Wu L, Xu A, Nie Y, Liu Y. Parental treatment with selenium protects Caenorhabditis elegans and their offspring against the reproductive toxicity of mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169461. [PMID: 38141982 DOI: 10.1016/j.scitotenv.2023.169461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Mercury (Hg) is one of the major pollutants in the environment, which requires effective countermeasures to manage its risk to both human health and the ecosystem. The antagonistic effect of selenium (Se) against methyl mercury (MeHg) and HgCl2 was evaluated using parent and offspring Caenorhabditis elegans (C. elegans) in this study. Through designated acute exposure of 24 h, our results showed that both MeHg and HgCl2 induced dose-dependent reproductive toxicity, including increased germ cell apoptosis, decrease in the number of oocytes, brood size, and sperm activation. The increased germ cell apoptosis was even higher in F1 and F2 generations, but returned to control level in F3 generation. Pretreatment with Se significantly suppressed the reproductive toxicity caused by Hg in both parental worms and their offspring, but had little influence on Hg accumulation. The protective role of Se was found closely related to the chemical forms of Hg: mtl-1 and mtl-2 genes participated in reducing the toxicity of HgCl2, while the gst-4 gene was involved in the reduced toxicity of MeHg. The formation of Se-Hg complex and the antioxidant function of Se were considered as possible antagonistic mechanisms. Our data indicated that pretreatment with Se could effectively protect C. elegans and their offspring against the reproductive toxicity of Hg in different chemical forms, which provided a reference for the prevention of Hg poisoning and essential information for better understanding the detoxification potential of Se on heavy metals.
Collapse
Affiliation(s)
- Yanan Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Shenyao Ni
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Chengcheng Pei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lingyan Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| |
Collapse
|
13
|
Li J, Dai L, Feng Y, Cao Z, Ding Y, Xu H, Xu A, Du H. Multigenerational effects and mutagenicity of three flame retardants on germ cells in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115815. [PMID: 38091675 DOI: 10.1016/j.ecoenv.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.
Collapse
Affiliation(s)
- Jiali Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China
| | - Linglong Dai
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Yu Feng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Zhenxiao Cao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuting Ding
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| |
Collapse
|
14
|
Hua X, Feng X, Liang G, Chao J, Wang D. Long-term exposure to 6-PPD quinone reduces reproductive capacity by enhancing germline apoptosis associated with activation of both DNA damage and cell corpse engulfment in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131495. [PMID: 37119572 DOI: 10.1016/j.jhazmat.2023.131495] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Recently, 6-PPD quinone (6-PPDQ), a derivative of tire antioxidant 6-PPD, was reported to have acute toxicity for organisms. However, the possible reproductive toxicity of 6-PPDQ is still largely unclear. In this study, the reproductive toxicity of 6-PPDQ after long-term exposure was further investigated in Caenorhabditis elegans. Exposure to 1 and 10 μg/L 6-PPDQ reduced the reproductive capacity. Meanwhile, exposure to 1 and 10 μg/L 6-PPDQ enhanced the germline apoptosis, which was accompanied by upregulation of ced-3, ced-4, and egl-1 expressions and downregulation of ced-9 expression. The observed increase in germline apoptosis in 1 and 10 μg/L 6-PPDQ exposed nematodes was associated with the enhancement in DNA damage and increase in expressions of related genes of cep-1, clk-2, hus-1, and mrt-2. The detected enhancement in germline apoptosis in 1 and 10 μg/L 6-PPDQ exposed nematodes was further associated with the increase in expressions of ced-1 and ced-6 governing the cell corpse engulfment process. Molecular docking analysis indicated the binding potentials of 6-PPDQ with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2) and corpse-recognizing phagocytic receptor CED-1. Therefore, our data suggested the toxicity on reproductive capacity by 6-PPDQ at environmentally relevant concentrations by enhancing DNA damage- and cell corpse engulfment-induced germline apoptosis in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Shao Y, Wang Y, Hua X, Li Y, Wang D. Polylactic acid microparticles in the range of μg/L reduce reproductive capacity by affecting the gonad development and the germline apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2023; 336:139193. [PMID: 37315859 DOI: 10.1016/j.chemosphere.2023.139193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Polylactic acid (PLA) accounts for approximately 45% of the global market of biodegradable plastics. Using Caenorhabditis elegans as an animal model, we examined the effect of long-term exposure to PLA microplastic (MP) on reproductive capacity and the underlying mechanism. Brood size, number of fertilized eggs in uterus, and number of hatched eggs were significantly reduced by exposure to 10 and 100 μg/L PLA MP. Number of mitotic cells per gonad, area of gonad arm, and length of gonad arm were further significantly decreased by exposure to 10 and 100 μg/L PLA MP. In addition, exposure to 10 and 100 μg/L PLA MP enhanced germline apoptosis in the gonad. Accompanied with the enhancement in germline apoptosis, exposure to 10 and 100 μg/L PLA MP decreased expression of ced-9 and increased expressions of ced-3, ced-4, and egl-1. Moreover, the induction of germline apoptosis in PLA MP exposed nematodes was suppressed by RNAi of ced-3, ced-4, and egl-1, and strengthened by RNAi of ced-9. Meanwhile, we did not detect the obvious effect of leachate of 10 and 100 μg/L PLA MPs on reproductive capacity, gonad development, germline apoptosis, and expression of apoptosis related genes. Therefore, exposure to 10 and 100 μg/L PLA MPs potentially reduces the reproductive capacity by influencing the gonad development and enhancing the germline apoptosis in nematodes.
Collapse
Affiliation(s)
- Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuxing Wang
- Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
16
|
Sun L, Zhou Y, Wang C, Nie Y, Xu A, Wu L. Multi-generation reproductive toxicity of RDX and the involved signal pathways in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115074. [PMID: 37257349 DOI: 10.1016/j.ecoenv.2023.115074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
As one of the most frequently used explosives, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can cause persistent pollution in the environment, leading to the potential ecological threat crossing the generations. In this study, we employed Caenorhabditis elegans to explore the toxic effects of RDX on the parental and offspring worms and the involved signaling pathways. Exposure up to 1000 ng/mL of RDX produced a significant increase in reactive oxygen species (ROS) production, germ cell apoptosis, and decrease in eggs laid. Various mutants were used to demonstrate the RDX-induced apoptosis signaling pathway, and the metabolism of RDX in the nematodes was found related to cytochrome P450 and GST through RNA sequencing. Exposure of parental worms to RDX produced significant reproductive toxicity in F1 and F2, but was recovered in F3 and F4. The transgenerational effects were associated with the decreased expression of met-2, spr-5, and set-2. Our findings revealed the signaling pathways related to the reproductive toxicity caused by RDX in C. elegans and their future generations, which provided the basis for further exploration of the ecological risks of energetic compounds in the environment.
Collapse
Affiliation(s)
- Lingyan Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yanping Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Chunyan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| |
Collapse
|
17
|
Hua X, Feng X, Hua Y, Wang D. Paeoniflorin attenuates polystyrene nanoparticle-induced reduction in reproductive capacity and increase in germline apoptosis through suppressing DNA damage checkpoints in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162189. [PMID: 36775158 DOI: 10.1016/j.scitotenv.2023.162189] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Due to high sensitivity to environmental exposures, Caenorhabditis elegans is helpful for toxicity evaluation and toxicological study of pollutants. Using this animal model, we investigated the reproductive toxicity of 20 nm polystyrene nanoparticle (PS-NP) in the range of μg/L and the following pharmacological intervention of paeoniflorin. After exposure from L1-larvae to young adults, 10-100 μg/L PS-NP could cause the reduction in reproductive capacity reflected by the endpoints of brood size and number of fertilized eggs in uterus. Meanwhile, the enhancements in germline apoptosis analyzed by AO staining and germline DNA damage as shown by alteration in HUS-1::GFP signals were detected in 10-100 μg/L PS-NP exposed nematodes, suggesting the role of DNA damage-induced germline apoptosis in mediating PS-NP toxicity on reproductive capacity. Following the exposure to 100 μg/L PS-NP, posttreatment with 25-100 mg/L paeoniflorin increased the reproductive capacity and inhibited both germline apoptosis and DNA damage. In addition, in 100 μg/L PS-NP exposed nematodes, treatment with 100 mg/L paeoniflorin modulated the expressions of genes governing germline apoptosis as indicated by the decrease in ced-3, ced-4, an egl-1 expressions and the increase in ced-9 expression. After exposure to 100 μg/L PS-NP, treatment with 100 mg/L paeoniflorin also decreased expressions of genes (cep-1, clk-2, hus-1, and mrt-2) governing germline DNA damage. Molecular docking analysis further demonstrated the binding potential of paeoniflorin with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2). Therefore, our data suggested the toxicity of PS-NP in the range of μg/L on reproductive capacity after exposure from L1-larvae to young adults, which was associated with the enhancement in DNA damage-induced germline apoptosis. More importantly, the PS-NP-induced reproductive toxicity on nematodes could be inhibited by the following paeoniflorin treatment.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingshun Hua
- Lintao Maternity and Child Health Center, Lintao 730500, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|