1
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
2
|
Liu D, Zhang Z, Zhang Z, Yang J, Chen W, Liu B, Lu J. The fate of pharmaceuticals and personal care products (PPCPs) in sewer sediments:Adsorption triggering resistance gene proliferation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134255. [PMID: 38669934 DOI: 10.1016/j.jhazmat.2024.134255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
In recent years, large quantities of pharmaceuticals and personal care products (PPCPs) have been discharged into sewers, while the mechanisms of PPCPs enrichment in sewer sediments have rarely been revealed. In this study, three PPCPs (tetracycline, sulfamethoxazole, and triclocarban) were added consecutively over a 90-day experimental period to reveal the mechanisms of PPCPs enrichment and the transmission of resistance genes in sewer sediments. The results showed that tetracycline (TC) and triclocarban (TCC) have higher adsorption concentration in sediments compared to sulfamethoxazole (SMX). The absolute abundance of Tets and suls genes increased in sediments under PPCPs pressure. The increase in secretion of extracellular polymeric substances (EPS) and the loosening of the structure exposed a large number of hydrophobic functional groups, which promoted the adsorption of PPCPs. The absolute abundance of antibiotic resistance genes (ARGs), EPS and the content of PPCPs in sediments exhibited significant correlations. The enrichment of PPCPs in sediments was attributed to the accumulation of EPS, which led to the proliferation of ARGs. These findings contributed to further understanding of the fate of PPCPs in sewer sediments and opened a new perspective for consideration of controlling the proliferation of resistance genes.
Collapse
Affiliation(s)
- Duoduo Liu
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zigeng Zhang
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zhiqiang Zhang
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Jing Yang
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Wentao Chen
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Bo Liu
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Jinsuo Lu
- Environmental and Municipal Engineering Department, Xi' an University of Architecture and Technology, Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, China; Key Laboratory of Environmental Engineering, Shaanxi, China.
| |
Collapse
|
3
|
Cao X, Gao L, Jiang X, Cheng X, Zhang Y, Liu Y, Ai Q, Weng J, Zheng M. Short- and medium-chain chlorinated paraffins in sediment from the Haihe River Basin: Sources, distributions, and ecological risk assessment. CHEMOSPHERE 2024; 349:140856. [PMID: 38048831 DOI: 10.1016/j.chemosphere.2023.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Chlorinated paraffins (CPs) can accumulate in sediment and pose risks to ecological systems and human health. The Haihe River Basin is one of the seven main river basins in China and is mainly in the Beijing-Tianjin-Hebei region, which is densely populated and very urbanized. There is therefore a high probability of CP pollution in the Haihe River Basin. However, CP pollution and the environmental risks posed by CPs in the Haihe River are not well understood. In this study, the concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in sediment from six rivers in the Haihe River Basin system were determined using two-dimensional gas chromatography electron-capture negative ionization mass spectrometry. The total SCCP and MCCP concentrations in the sediment samples ranged from 131.83 to 1767.71 and from 89.72 to 1442.82 ng/g dry weight, respectively. The total organic carbon content did not significantly correlate with the CP concentrations. The dominant SCCP congener groups were C10Cl6-7 and the dominant MCCP congener groups were C14Cl7-8. Significant relationships (R = 0.700, p < 0.05) were found between the SCCP and MCCP concentrations, indicating that SCCPs and MCCPs may have similar sources. Hierarchical cluster analysis and principal component analysis indicated that sediment in the study area was contaminated with CPs through the use of the CP-42 and CP-52 commercial products in industrial processes and human activities. The ecological risks posed by CPs were assessed and SCCPs were found to pose high risks in the Yongding New River but moderate risks in the other rivers. MCCPs were found to pose minimal risks to the aquatic environment at most of the sampling points.
Collapse
Affiliation(s)
- Xiaoying Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Xiaoxu Jiang
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| | - Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
4
|
Zhang H, Zhou X, Li Z, Bartlam M, Wang Y. Anthropogenic original DOM is a critical factor affecting LNA bacterial community assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166169. [PMID: 37562635 DOI: 10.1016/j.scitotenv.2023.166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
We investigated the geographical and environmental distance-decay relationships for both of the two bacteria in the Haihe River, Tianjin, China. HNA bacteria exhibited a stronger geographical variation-dependent pattern while LNA bacteria exhibited a stronger environmental variation-dependent pattern. Variance partition analysis (VPA), Mantel test, and partial mantel test validated the discrepant impacts of geographical distance and environmental factors on their two communities. The heterogeneous selection dominated community assembly of LNA bacteria demonstrates their greater sensitivity to environmental conditions. As the deterministic environmental factor, anthropogenic original dissolved organic matter (DOM) functions exclusively on LNA bacteria, and it is the critical factor leading to the discrepant biogeographical patterns of LNA and HNA bacteria. LNA bacteria interact with HNA bacteria and mediate the DOM driving total bacteria assembly. The LNA keystone taxa, Pseudomonas, Rheinheimera, Candidatus Aquiluna, and hgcl clade are capable to compete with HNA bacteria for anthropogenic original DOM, and are potential indicators of anthropogenic pollution. Our research reveals the non-negligible effect of the LNA bacteria in regulating the ecological response of total bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Xinzhu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Wu Y, Song S, Chen X, Shi Y, Cui H, Liu Y, Yang S. Source-specific ecological risks and critical source identification of PPCPs in surface water: Comparing urban and rural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158792. [PMID: 36113789 DOI: 10.1016/j.scitotenv.2022.158792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
To control the concentrations of pharmaceutical and personal care products (PPCPs) in the surface water of urban and rural areas, it is important to explore the spatial variation in source-specific ecological risks and identify critical sources. Here, we focused on 22 PPCPs found in the effluent from wastewater treatment plants and surface water in Tianjin, and source-specific risk was quantitatively apportioned combining positive matrix factorization with ecological risk assessment. Results showed that rural areas exhibited a more severe contamination level than urban areas. Medical wastewater (30.1 %) accounted for the highest proportion, while domestic sewage posed the greatest threat to aquatic ecosystems. The incidence of potential risks (RQ > 0.01) caused by domestic sewage in urban areas (88.9 %) was higher than that in rural areas (75.9 %). However, PPCP risks caused by farmland drainage, aquaculture, and livestock discharge were mainly distributed in rural areas. The critical source identified in the entire region was domestic sewage (weight, 0.36), and its weight (0.51) in urban areas was greater than that in rural areas (0.32). The impact of aquaculture (weight, 0.16) in rural areas was noteworthy. These findings may contribute to developing environmental management strategies in key areas to help alleviate PPCP contamination worldwide.
Collapse
Affiliation(s)
- Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; School of Civil Engineering and Architecture, Guangxi University, Nanning City, Guangxi 530004, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinchuang Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- School of Civil Engineering and Architecture, Guangxi University, Nanning City, Guangxi 530004, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
6
|
Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Balachandar R, Karmegam N. Origin, transport and ecological risk assessment of illicit drugs in the environment - A review. CHEMOSPHERE 2023; 311:137091. [PMID: 36356815 DOI: 10.1016/j.chemosphere.2022.137091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Illicit drugs are a novel group of emerging pollutants. A growing global environmental load and ecological risk is created by the ongoing release of these toxins into the environment. Conventional water processing plants fail to completely remove drugs of abuse from both surface water and wastewater. The origin, environmental fate and ecological repercussions of illicit drugs, despite their detection in surface waterways around the world, are not well understood. In this review, illicit drug detections in potable water, surface water and wastewater globally have been studied during the past 15 years in order to establish a baseline for future years. The most common drugs with abuse potential detected in different sources of potable and surface water were methadone (0.12-22.7 ng/L), cocaine (0.05-506.6 ng/L), benzoylecgonine (0.07-1019 ng/L), amphetamine (1.4-342.6 ng/L), and codeine (0.002-42 ng/L). The bulk of research only looked at a small number of drugs of abuse, indicating that despite widespread use, a large spectrum of these intoxicants has yet to be detected. This review focuses on the origin of illicit drug contaminants in water bodies, air, and soil, their persistence in the environment, and the typical concentrations at which they occur in the environment. The impact of these drugs on aquatic organisms like Elliptio complanata mussels, crayfish and zebrafish has also been reviewed.
Collapse
Affiliation(s)
- R Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam, 686 518, Kerala, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105. Tamil Nadu, India.
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Chennai, 602 025, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
7
|
Effective removal of nitroimidazole antibiotics in aqueous solution by an aluminum-based metal-organic framework: Performance and mechanistic studies. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|