1
|
Geng S, Yao J, Wang L, Wang Y, Wang X, Li J. Electrochemical Degradation of Sulfamethoxazole Enhanced by Bio-Inspired Iron-Nickel Encapsulated Biochar Particle Electrode. Int J Mol Sci 2024; 25:13579. [PMID: 39769341 PMCID: PMC11678343 DOI: 10.3390/ijms252413579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.0456 min-1. Quenching experiments and electron paramagnetic resonance experiments showed that the excellent SMX degradation efficiency in the EC/FeNi@BC system was attributed to the synergistic effect of multiple reactive oxygen species (ROS) and revealed their evolution path. Characterization results showed that FeNi3 generated in the FeNi@BC electrode was a key bimetallic active site for improving electrocatalytic activity and repolarization ability. More importantly, the degradation pathway and reaction mechanism of SMX in the EC/FeNi@BC system were proposed. In addition, the influencing factors of the reaction system (voltage, pH, initial SMX concentration, electrode dosage, and sodium sulfate concentration, etc.) and the stability of the catalyst (maintained more than 81% after 5 cycles) were systematically evaluated. This study may provide help for the construction of environmentally friendly catalytic and efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Shuang Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.G.); (J.L.)
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| | - Jingang Yao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.G.); (J.L.)
| | - Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| | - Yangyang Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| | - Junmin Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.G.); (J.L.)
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| |
Collapse
|
2
|
Albaseer SS, Al-Hazmi HE, Kurniawan TA, Xu X, Abdulrahman SAM, Ezzati P, Habibzadeh S, Hollert H, Rabiee N, Lima EC, Badawi M, Saeb MR. Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173963. [PMID: 38901599 DOI: 10.1016/j.scitotenv.2024.173963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | | | - Xianbao Xu
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Eder C Lima
- Institute of Chemistry - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
3
|
Lin X, Hu J, Mo Z, Wang Z, Wang R, Liang J. pH-dependent mechanisms of sulfadiazine degradation by natural pyrite-driven heterogeneous Fenton-like reactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121607. [PMID: 38941847 DOI: 10.1016/j.jenvman.2024.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/08/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
The development of a natural pyrite/peroxymonosulfate (PMS) system for the removal of antibiotic contamination from water represented an economic and green sustainable strategy. Yet, a noteworthy knowledge gap remained considering the underlying reaction mechanism of the system, particularly in relation to its pH sensitivity. Herein, this paper investigated the impacts of critical reaction parameters and initial pH levels on the degradation of sulfadiazine (SDZ, 3 mg/L) in the pyrite/PMS system, and elucidated the pH dependence of the reaction mechanism. Results showed that under optimal conditions, SDZ could be completely degraded within 5 min at a broad pH range of 3.0-9.0, with a pseudo-first-order reaction rate of >1.0 min-1. The low or high PMS doses could lower degradation rates of SDZ through the decreased levels of active species, while the amount of pyrite was positively correlated with the removal rate of SDZ. The diminutive concentrations of anions exerted minor impacts on the decomposition of SDZ within the pyrite PMS system. Mechanistic results demonstrated that the augmentation of pH levels facilitated the transition from the non-radical to the radical pathway within the natural pyrite/PMS system, while concurrently amplifying the role of •OH in the degradation process of SDZ. This could be attributed to the change in interface electrostatic repulsion induced by pH fluctuations, as well as the mutual transformation between active species. The stable presence of the relative content of Fe(II) in the used pyrite was ensured owing to the reduced sulfur species acting as electron donors, providing the pyrite/PMS system excellent reusability. This paper sheds light on the mechanism regulation of efficient removal of organic pollutants through pyrite PMS systems, contributing to practical application.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jinwen Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhihua Mo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wang
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Ruyi Wang
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
4
|
Qutob M, Alshehri S, Shakeel F, Alam P, Rafatullah M. An insight into the role of experimental parameters in advanced oxidation process applied for pharmaceutical degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26452-26479. [PMID: 38546921 DOI: 10.1007/s11356-024-33040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 05/04/2024]
Abstract
The advanced oxidation process (AOP) is an efficient method to treat recalcitrance pollutants such as pharmaceutical compounds. The essential physicochemical factors in AOP experiments significantly influence the efficiency, speed, cost, and safety of byproducts of the treatment process. In this review, we collected recent articles that investigated the elimination of pharmaceutical compounds by various AOP systems in a water medium, and then we provide an overview of AOP systems, the formation mechanisms of active radicals or reactive oxygen species (ROS), and their detection methods. Then, we discussed the role of the main physicochemical parameters (pH, chemical interference, temperature, catalyst, pollutant concentration, and oxidant concentration) in a critical way. We gained insight into the most frequent scenarios for the proper and improper physicochemical parameters for the degradation of pharmaceutical compounds. Also, we mentioned the main factors that restrict the application of AOP systems in a commercial way. We demonstrated that a proper adjustment of AOP experimental parameters resulted in promoting the treatment performance, decreasing the treatment cost and the treatment operation time, increasing the safeness of the system products, and improving the reaction stoichiometric efficiency. The outcomes of this review will be beneficial for future AOP applicants to improve the pharmaceutical compound treatment by providing a deeper understanding of the role of the parameters. In addition, the proper application of physicochemical parameters in AOP systems acts to track the sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Xue X, Liao W, Liu D, Zhang X, Huang Y. MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: Role of surface hydroxyl and oxygen vacancies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|