1
|
Cheng F, Wang J. Regulation of reactive species during ionizing radiation by peroxydisulfate for enhanced degradation of typical pollutants in coking wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124581. [PMID: 39033843 DOI: 10.1016/j.envpol.2024.124581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This study focused on exploring the effect of peroxydisulfate (PDS) on the regulation of reactive species during water radiolysis process and its potential application for degrading organic pollutants. The results indicated that PDS was successfully activated by ionizing radiation for efficient removal of three typical phenolic compounds over a wide pH range (3.0∼12.0) at absorbed dose of 5 kGy. Chemical probe methods provided the evidence that the addition of PDS could introduce the sulfate radicals (SO4•-) and enhance the production of hydroxyl radicals (•OH). According to the quenching tests, •OH and SO4•- were the dominant reactive species responsible for the degradation of 4-NP, while hydrated electron (eaq-) played a minor role. The regulatory effect of PDS on active species in the ionizing radiation process could divided by (i) PDS could be directly activated by ionizing radiation to produce •OH and SO4•- via energy transfer pathway; (ii) PDS could boost the conversion of eaq- to SO4•- via electron transfer pathway. Furthermore, we assessed the applicability of the IR and IR/PDS systems in treating mixed solutions containing various pollutants and actual coking wastewater.
Collapse
Affiliation(s)
- Feng Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; CAEA Center of Excellence on Nuclear Technology Applications for Electron Beam on Environmental Application, Beijing, Tsinghua University, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; CAEA Center of Excellence on Nuclear Technology Applications for Electron Beam on Environmental Application, Beijing, Tsinghua University, 100084, China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Chen L, Tu M, Mao C, Wang J, Shao H, Wang H, Gu J, Xu G. Electron beam synergetic removal of microplastics and hexavalent chromium: Synergetic removal process and mechanism. CHEMOSPHERE 2024; 364:143093. [PMID: 39173834 DOI: 10.1016/j.chemosphere.2024.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, PR China.
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
3
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
4
|
Chen L, Shao H, Ren Y, Mao C, Chen K, Wang H, Jing S, Xu C, Xu G. Investigation of the adsorption behavior and adsorption mechanism of pollutants onto electron beam-aged microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170298. [PMID: 38272098 DOI: 10.1016/j.scitotenv.2024.170298] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed worldwide. Extensive research has been conducted to address the issue of microplastic pollution; however, effective methods for microplastic treatment are still lacking. This study innovatively utilizes electron beam technology to age and degrade microplastics. Compared to other treatment methods, electron beam technology can effectively promote the aging and degradation of microplastics. The Oxygen - carbon ratio of aged microplastics reached 0.071, with a mass loss of 48 % and a carbonyl index value of 0.69, making it the most effective method for short-term aging treatment in current research efforts. Theoretical calculations and experimental results demonstrate that a large number of oxygen-containing functional groups are generated on the surface of microplastics after electron beam irradiation, changing their adsorption performance for pollutants. Theoretical calculations show that an increase in oxygen-containing functional groups on the surface leads to a gradual decrease in hydrophobic pollutant adsorption capacity while increasing hydrophilic pollutant adsorption capacity for aged microplastics. Experimental studies were conducted to investigate the adsorption behavior and process of typical pollutants by aged microplastics which conform to pseudo-second-order kinetics and Henry model during the adsorption process, and the adsorption results are consistent with theoretical calculations. The results show that the degradation of microplastics is mainly due to hydroxyl radicals generated by electron beam irradiation, which can break the carbon chain of microplastics and gradually degrade them into small molecular esters and alcohols. Furthermore, studies have shown that microplastics can desorb pollutants in pure water and simulated gastric fluid. Overall, electron beam irradiation is currently the most effective method for degrading microplastics. These results also clearly elucidate the characteristics and mechanisms of the interaction between aged microplastics and organic pollutants, providing further insights for assessing microplastic pollution in real-world environments.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Kang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Hongyong Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| | - Shuting Jing
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengwei Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| |
Collapse
|
5
|
Chen L, Shao H, Mao C, Ren Y, Zhao T, Tu M, Wang H, Xu G. Degradation of hexavalent chromium and naphthalene by electron beam irradiation: Degradation efficiency, mechanisms, and degradation pathway. CHEMOSPHERE 2023:138992. [PMID: 37271473 DOI: 10.1016/j.chemosphere.2023.138992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in industrial wastewater have attracted much attention due to their damage to the environment and the human body. Studies have shown that there may be interactions between PAHs and HMs, leading to enhanced toxicity of both pollutants. It has been shown that traditional methods are difficult to treat a combination of PAHs and HMs simultaneously. This paper presented an innovative method for treating PAHs and HMs compound pollutants by electron beam irradiation and achieved the removal of the compound pollutants using a single means. Experiments showed that the absorbed dose at 15 kGy could achieve 100% degradation of NAP and 90% reduction of Cr (Ⅵ). This article investigated the effects of electron beam removal of PAHs and HMs complex contaminants in various water environmental matrices. The experimental results showed that the degradation of NAP followed the pseudo-first-order dynamics, and the degradation of NAP was more favorable under neutral conditions. Inorganic ions and water quality had little effect on NAP degradation. For electron beam reduction of Cr (Ⅵ), alkaline conditions were more conducive to reducing Cr (Ⅵ). Especially, adding K2S2O8 or HCOOH achieved 99% reduction of Cr (Ⅵ). Experiments showed that •OH achieve the degradation of NAP, and eaq- achieve the reduction of Cr (Ⅵ). The results showed that the degradation of NAP was mainly achieved by benzene ring opening, carboxylation and aldehyde, which proved that the degradation of NAP was mainly caused by •OH attack. The toxicity analysis results showed that the electron beam could significantly reduce the toxicity of NAP, and the toxicity of the final product was much lower than NAP, realizing the harmless treatment of NAP. The experimental results showed that electron beam irradiation has faster degradation rates and higher degradation efficiency for NAP and Cr (Ⅵ) compared to other reported treatment methods.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Tingting Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Hongyong Wang
- Shanghai University, Shanghai Institute Applied Radiation, 20 Chengzhong Road, Shanghai, 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
6
|
Degradation of benzothiazole by the UV/persulfate process: Degradation kinetics, mechanism and toxicity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|