1
|
Dutta B, Chatterjee D, Guha A, Ray RR. Green treatments for polyaromatic hydrocarbons in e-wastes. Biodegradation 2025; 36:48. [PMID: 40388048 DOI: 10.1007/s10532-025-10140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Rapid elevation of global population along with increased urbanization and industrialization afflict the water resources leading to the blooming of wastewater. Two or more aromatic rings fused with organic compound Polycyclic Aromatic Hydrocarbons (PAHs) emerged worldwide through anthropogenic processes, mainly due to the incomplete combustion of organic fuels. In accordance with the United States Environmental Protection Agency (USEPA), there are 16 PAHs that are deemed as primary pollutants. These are toxic to the living organisms due to their pervasive existence, rebelliousness, potential for bioaccumulation and carcinogenic venture. Several methods including fixation, incineration and oxidation are put forward to remove PAHs. Occasionally some fictional toxic products are produced by the incomplete removal of PAHs. Bioremediation is one of the ecological techniques to remove the PAHs. Microbial biodegradation is considered as an effective and inexpensive technique to remove PAHs along with other hydrocarbons and xenobiotic compounds and are accomplished by few PAHs degrading bacteria including Haemophilus spp., Mycobacterium spp., Paenibacillus spp., Pseudomonas aeruginosa, P. fluorescens, Rhodococcus spp. along with few biosurfactant-producing microbes. The novel biochemical events involved in hydrocarbon catabolism are microbial physical adaptation, their acquisition and uptake. The bioremediation efficacy can be further ameliorated through genetic modification of the microbes. This chapter will focus on the eco-friendly treatment for the PAHs remediation in in situ and ex situ. This chapter will explore the remediation of the PAH by-products through the multi-process conjunctional treatment processes under the green therapy.
Collapse
Affiliation(s)
- Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Debarati Chatterjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Arina Guha
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Gabur GD, Dumitrașcu AI, Teodosiu C, Cotea VV, Gabur I. Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides. TOXICS 2025; 13:408. [PMID: 40423487 DOI: 10.3390/toxics13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/10/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace-a winemaking by-product rich in bioactive compounds-has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications.
Collapse
Affiliation(s)
- Georgiana-Diana Gabur
- Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| | - Anamaria-Ioana Dumitrașcu
- Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania
| | - Valeriu V Cotea
- Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| | - Iulian Gabur
- Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| |
Collapse
|
3
|
Xing Y, Xie Y, Wang X. Enhancing soil health through balanced fertilization: a pathway to sustainable agriculture and food security. Front Microbiol 2025; 16:1536524. [PMID: 40356641 PMCID: PMC12067421 DOI: 10.3389/fmicb.2025.1536524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sustainable soil health management is pivotal for advancing agricultural productivity and ensuring global food security. This review comprehensively evaluates the effects of mineral-organic fertilizer ratios on soil microbial communities, enzymatic dynamics, functional gene abundance, and holistic soil health. By integrating bioinformatics, enzyme activity assays, and metagenomic analyses, we demonstrate that balanced fertilization significantly enhances microbial diversity, community stability, and functional resilience against environmental stressors. Specifically, the synergistic application of mineral and organic fertilizers elevates β-glucosidase and urease activities, accelerating organic matter decomposition and nutrient cycling while modulating microbial taxa critical for nutrient transformation and pathogen suppression. Notably, replacing 20-40% of mineral fertilizers with organic alternatives mitigates environmental risks such as greenhouse gas emissions and nutrient leaching while sustaining crop yields. This dual approach improves soil structure, boosts water and nutrient retention capacity, and increases microbial biomass by 20-30%, fostering long-term soil fertility. Field trials reveal yield increases of 25-40% in crops like rice and maize under combined fertilization, alongside enhanced soil organic carbon (110.6%) and nitrogen content (59.2%). The findings underscore the necessity of adopting region-specific, balanced fertilization strategies to optimize ecological sustainability and agricultural productivity. Future research should prioritize refining fertilization frameworks through interdisciplinary approaches, addressing soil-crop-climate interactions, and scaling these practices to diverse agroecosystems. By aligning agricultural policies with ecological principles, stakeholders can safeguard soil health-a cornerstone of environmental sustainability and human wellbeing-while securing resilient food systems for future generations.
Collapse
Affiliation(s)
| | | | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan'an University, Yan'an, China
| |
Collapse
|
4
|
She Y, Zhang Y, Zheng Q, Cai Z, Wang Y, Xue N. Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater. Microorganisms 2025; 13:1003. [PMID: 40431176 PMCID: PMC12114146 DOI: 10.3390/microorganisms13051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Recirculation in vanadium mining enhances resource efficiency but risks ammonia nitrogen (NH3-N) accumulation, severely compromising leaching yields. To address this bottleneck, we developed a bioaugmentation strategy using Pseudomonas sp. S.P-1 acclimated to vanadium stress. Under optimized conditions (sodium citrate as a carbon source, C/N = 5, 5% inoculum, and pH = 8), the strain achieved exceptional NH3-N (2000 mg·L-1) removal (>99.25% within 16 days; residual NH4+ < 15 mg·L-1), 12.7% higher than the original bacteria. Mechanistic studies revealed that vanadium exposure triggered dual adaptive responses: enhanced biosorption via the stimulated synthesis of extracellular polymeric substances (EPS) enriched with negatively charged functional groups (C=O, -COOH-, and C-N), improving NH4+ adsorption capacity, and metabolic activation via an elevated transmembrane electrochemical potential and an accelerated substrate uptake due to cell membrane permeability, while up-regulation of ammonia monooxygenase (AMO) activity (123.11%) facilitated efficient NH4+→NH2OH conversions. Crucially, this bio-process enabled simultaneous NH3-N degradation (89.2% efficiency) and vanadium recovery, demonstrating its dual role in pollution control and critical metal recycling. By integrating microbial resilience with circular economy principles, our strategy offers a scalable prototype for sustainable vanadium extraction, aligning with low-carbon metallurgy demands in clean energy transitions. This study investigated the ability of vanadium stress to enhance microbial ammonia nitrogen metabolism, and by acclimatizing S.P-1 to vanadium-containing solutions, we aimed to address the dual problems of NH3-N accumulation and vanadium toxicity in wastewater recirculation.
Collapse
Affiliation(s)
- Yihuan She
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.S.)
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan 430081, China
| | - Yimin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.S.)
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan 430081, China
| | - Qiushi Zheng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.S.)
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan 430081, China
| | - Zhenlei Cai
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.S.)
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan 430081, China
| | - Yue Wang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.S.)
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan 430081, China
| | - Nannan Xue
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.S.)
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan 430081, China
| |
Collapse
|
5
|
Umar AW, Naeem M, Hussain H, Ahmad N, Xu M. Starvation from within: How heavy metals compete with essential nutrients, disrupt metabolism, and impair plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112412. [PMID: 39920911 DOI: 10.1016/j.plantsci.2025.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Nutrient starvation is a critical consequence of heavy metal toxicity, severely impacting plant health and productivity. This issue arises from various sources, including industrial activities, mining, agricultural practices, and natural processes, leading to the accumulation of metals such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in soil and water. Heavy metal exposure disrupts key physiological processes, particularly nutrient uptake and transport, resulting in nutrient imbalances within the plant. Essential nutrients are often unavailable or improperly absorbed due to metal chelation and interference with transporter functions, exacerbating nutrient deficiencies. This nutrient starvation, coupled with oxidative stress induced by heavy metals, manifests in impaired photosynthesis, stunted growth, and reduced crop yields. This review presents important insights into the molecular mechanisms driving nutrient deprivation in plants exposed to heavy metals, emphasizing the roles of transporters, transcription factors, and signaling pathways. It also examines the physiological and biochemical effects, such as chlorosis, necrosis, and altered metabolic activities. Lastly, we explore strategies to mitigate heavy metal-induced nutrient starvation, including phytoremediation, soil amendments, genetic approaches, and microbial interventions, offering insights for enhancing plant resilience in contaminated soils.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hamad Hussain
- Department of Agriculture, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23390, Pakistan
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China; Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China.
| |
Collapse
|
6
|
Huang J, Zhao J, Xu J. Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions. Int J Biol Macromol 2025; 298:139773. [PMID: 39805447 DOI: 10.1016/j.ijbiomac.2025.139773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lignocellulosic waste is a prevalent byproduct of agricultural and forestry activities which is an excellent feedstock for the preparation of biochar. This research area is of interest to the scientific community due to its potential in environmental remediation. In this regard, this review examines the latest advancements in transforming lignocellulosic waste into biochar and explores recent innovations in enhancing its functionality for chromium ion removal. It gives analysis on current methods for biochar production from lignocellulosic materials such as pyrolysis. Additionally focusing on improvements in production efficiency, structural properties, and surface modifications. The review also highlights various functionalization techniques, such as chemical activation and impregnation with metal oxides, that were innovated to improve adsorptive nature of biochar for chromium ions. While progress has been made, achieving scalability in lignocellulosic biochar production presents challenges, such as the high energy demands of pyrolysis, inconsistencies in feedstock quality, and the need for cost-effective functionalization methods. By summarizing recent research and technological progress, this paper aims to offer a clear perspective on the effectiveness of biochar derived from lignocellulosic waste in addressing contamination. Additionally, it discusses the ongoing challenges and future research directions needed to optimize biochar applications in environmental cleanup.
Collapse
Affiliation(s)
- Jia Huang
- Department of Fine Arts and Design, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Junfen Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Xu
- Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China; Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China.
| |
Collapse
|
7
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Ren H, Xiang Y, Zhang A, Zhao H, Tian H, Guo X, Zheng Y, Zhang B. Optimization and Mechanism of Ca 2+ Biosorption by Virgibacillus pantothenticus Isolated from Gelatine Wastewater. Pol J Microbiol 2025; 74:19-32. [PMID: 40146791 PMCID: PMC11949390 DOI: 10.33073/pjm-2025-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/24/2024] [Indexed: 03/29/2025] Open
Abstract
Gelatine-processing wastewater contains much residual sludge due to its high calcium ion concentration and chemical oxygen demand. In this study, N3-4, a microbial strain with excellent calcium tolerance capacity, was screened and identified as Virgibacillus pantothenticus using morphological observation, physiological and biochemical testing, and 16S rRNA sequence analysis. Its growth characteristics were investigated, and the maximum adsorption of calcium reached 572.43 μg/g under the optimal conditions (contact time, 72.68 min; biomass dosage, 1.3 g/l; initial calcium concentration, 142.01 mg/l). Conditions were optimized using response surface methodology and structural characterization. The structure of the bacterial pellets was altered from flat to rough, accompanied by bulges and sediments after Ca2+ treatment, according to structural characterization. Energy-dispersive X-ray spectroscopy of the bacterial precipitates under calcium(II) treatment revealed the immobilization of Ca2+ species on the bacterial cell surface. The results indicate that -OH, -NH2, C≡C, C=O, -CH2, -C-O-, and -C-N groups play a significant role in calcium dispersion on the surface of V. pantothenticus.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Yumeng Xiang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Aili Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hongyuan Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, United States
| | - Bingyun Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| |
Collapse
|
9
|
Mathivanan K, Zhang R, Chandirika JU, Mathimani T, Wang C, Duan J. Bacterial biofilm-based bioleaching: Sustainable mitigation and potential management of e-waste pollution. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:221-236. [PMID: 39671748 DOI: 10.1016/j.wasman.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/10/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India.
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627 412, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| | - Can Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
10
|
Sieber A, Spiess S, Rassy WY, Schild D, Rieß T, Singh S, Jain R, Schönberger N, Lederer F, Kremser K, Guebitz GM. Fundamentals of bio-based technologies for selective metal recovery from bio-leachates and liquid waste streams. Front Bioeng Biotechnol 2025; 12:1528992. [PMID: 39850509 PMCID: PMC11755047 DOI: 10.3389/fbioe.2024.1528992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods. In contrast to previous reviews which have partially addressed this topic, a special focus will be given on how fundamental principles of bio-based recovery technologies can influence the selectivity and specificity of metal recovery. While conventional methods for metal recovery show benefits in terms of economic affordability, bio-based recovery technologies offer advantages in terms of efficiency and environmentally friendliness. Modifications and adaptations in the processes of biosorption, bioaccumulation and bioelectrochemical systems are highlighted, further emphasizing the application of metal-binding peptides and siderophores to increase selectivity in the recovery of metals. Single metal solutions or mixtures with a low complexity have been the focus of previous studies and reviews, but this does not reflect the nature of complex industrial effluents. Therefore, key challenges that arise when dealing with complex polymetallic solutions are addressed and the focus is set on optimizing bio-based technologies to recover metals efficiently and selectively from bio-leachates or liquid waste streams.
Collapse
Affiliation(s)
| | | | - Wadih Y. Rassy
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
- Faculty of Technical Chemistry, TU Wien, Vienna, Austria
| | - Dominik Schild
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Thomas Rieß
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Shalini Singh
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Nora Schönberger
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Klemens Kremser
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| |
Collapse
|
11
|
Fu K, Yang W, Fu S, Bian Y, Huo A, Guan T, Li X, Zhang R, Jing H. Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123777. [PMID: 39700917 DOI: 10.1016/j.jenvman.2024.123777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification. Stirring rate is a key factor affecting sludge granulation. As a parallel experiment of sludge granulation, two Sequencing Batch Reactors (SBRs) (R1 and R2) were operated simultaneously at different stirring rates. After 153 days, the particle size of the two reactors was analyzed, revealing that the proportion of particles larger than 200 μm was over 50%, and granular sludge was successfully formed in both reactors. Long-term operational results indicate that at a temperature of 16.5 ± 1 °C, varying initial pH levels (6.5, 6.7, 7.2, and 8.5) significantly affect the removal efficiency of chemical oxygen demand (COD). COD is rapidly adsorbed and removed within a short period. Among the tested initial pH values, a pH of 6.7 yielded the best total chemical oxygen demand (tCOD) removal efficiency, achieving up to 95%. Additionally, the study examined the effects of different carbon sources on denitrification, revealing that under carbon-rich conditions, the denitrification rate was highest, reaching 1.44 mg N/(g VSS·h). Compared to endogenous denitrification, the denitrification rate increased by 40%, and the nitrate (NO₃⁻-N) removal efficiency reached 100%.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Wenbing Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Sibo Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Aotong Huo
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Guan
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xueqin Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ruibao Zhang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hao Jing
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
12
|
Dai L, Li J, Zhang J, Li X, Liu T, Yu Q, Tao S, Zhou M, Hou H. Development and mechanistic study of phosphate tailings based soil heavy metal prophylactic agents with encapsulated structure for lead stabilization and phosphorus speciation in soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123578. [PMID: 39672046 DOI: 10.1016/j.jenvman.2024.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
The development of materials for the remediation of the environment from solid waste represents an effective utilization strategy. This study presents a novel phosphorus-based slow-release soil agent (SLPs) developed through acid activation of phosphorus tailings. SLPs aim to improve soil properties by gradually releasing phosphorus (P), reducing Pb mobility, and preventing heavy metal contamination. SLPs were synthesized by forming an encapsulated structure via calcification of sodium alginate with calcium (Ca2⁺) and magnesium (Mg2⁺) from the tailings, achieving controlled P release. In soil, SLPs increased P content from 0.23 mg/g to 2.53 mg/g and soil organic matter (SOM) from 8.6 g/kg to 40.19 g/kg, significantly enhancing humic acid, fulvic acid, and organic phosphorus (OP) levels. ESP treatment also shifted the soil P pool, increasing apatite inorganic phosphate (AP) from 0.04 mg/g to 0.16 mg/g, non-apatite inorganic phosphate (NAIP) from 0.12 mg/g to 1.48 mg/g, and OP from 0.05 mg/g to 0.67 mg/g, with OP reaching a peak proportion of 28.55%, up from 23.48% in controls. Correlation analysis and microbial pathway data indicate that OP and microbial communities contribute to Pb stabilization in ESP-treated soil, raising soil Pb stabilization capacity from 7.6 to 8.4 mg/g to 36.2 mg/g. This study highlights a sustainable path for phosphorus tailing use, providing theoretical support for SLP development and emphasizing the role of OP in Pb stabilization.
Collapse
Affiliation(s)
- Luming Dai
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing, 526200, Guangdong, China.
| | - Jiaxing Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xuli Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tong Liu
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qinqin Yu
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shaoyang Tao
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing, 526200, Guangdong, China.
| |
Collapse
|
13
|
Parades-Aguilar J, Agustin-Salazar S, Cerruti P, Ambrogi V, Calderon K, Gamez-Meza N, Medina-Juarez LA. Agro-industrial wastes and their application perspectives in metal decontamination using biocomposites and bacterial biomass: a review. World J Microbiol Biotechnol 2024; 41:16. [PMID: 39710797 DOI: 10.1007/s11274-024-04227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Contamination of water bodies is a significant global issue that results from the deliberate release of pollutants into the environment, especially from mining and metal processing industries. The main pollutants generated by these industries are metallic wastes, particularly metals, which can cause adverse effects on the environment and human health. Therefore, it is crucial to develop effective and sustainable approaches to prevent their discharge into the environment. Biofiltration is a technique used to remediate contaminated fluids using biological processes. Microorganisms and agro-industrial wastes have been used successfully as biosorbents. Hence, this review emphasizes the innovative use of agro-industrial waste reinforced with microbial biomass as bioadsorbents, highlighting their dual capacity for metal removal through various bioremediation mechanisms. The mechanisms at play in these biocomposite materials, which offer enhanced sustainability, are also analyzed. This study contributes to the advancement of knowledge by suggesting new strategies for integrating reinforced materials in biosorption processes, thus providing a novel perspective on the potential of lignocellulosic-based systems to improve decontamination efforts. On the other hand, it shows some studies where the optimization and scaling-up of biosorption processes are reported. Additionally, the implementation of multisystem approaches, leveraging multiple bioremediation techniques simultaneously, can further enhance the efficiency and sustainability of metal removal in contaminated environments.
Collapse
Affiliation(s)
- Jonathan Parades-Aguilar
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, Pozzuoli (Na), 80078, Italy.
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, Pozzuoli (Na), 80078, Italy
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Kadiya Calderon
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Nohemi Gamez-Meza
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Luis Angel Medina-Juarez
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| |
Collapse
|
14
|
Sugitha S, Vishnu Priya P, Kavya Kanishka T, Duraimurugan A, Suganthi M, Ashok Kumar K, Jayanthi M, Durgadevi R, Ramprasath C, Abirami G. Mycoremediation of heavy metals by Curvularia lunata from Buckingham Canal, Neelankarai, Chennai. World J Microbiol Biotechnol 2024; 41:1. [PMID: 39690253 DOI: 10.1007/s11274-024-04218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The spread and mobilization of toxic heavy metals in the environment have increased to a harmful level in recent years as a result of the fast industrialization occurring all over the world to meet the demands of a rising population. This research aims to analyze and evaluate the mycoremediation abilities of fungal strains that exhibit tolerance to heavy metals, gathered from water samples at Buckingham Canal, Neelankarai, Chennai. Water samples were examined for heavy metal analysis, and the highest toxic heavy metals, Zn, Pb, Mn, Cu, and Cr, were recorded. Three fungal strains were isolated and named EBPL1000, EBPL1001, and EBPL1002 were selected by primary screening (100 ppm) for further studies. Out of three fungal isolates, EBPL1000 grew in all five heavy metal concentrations and showed 2100 ppm as the highest Maximum Tolerance Concentration toward Lead, 2000 ppm tolerance in Zinc and Manganese, 1700 ppm in Chromium, and 1500 ppm in copper, respectively. The fungal isolate EBPL1000 was identified as Curvularia lunata with 100% percentage identity and query coverage. The Biosorption result reveals that lead is the highest biosorbed heavy metal with 79.99% at 100 ppm concentration while copper is the lowest biosorbed with 24.11% heavy metal at 500 ppm concentration. The uptake of Manganese by Curvularia lunata biomass was the highest (5.64 mg/g) of all heavy metal's uptake at 100 ppm concentration. The lowest uptake of heavy metals was copper (0.43 mg/g) at 500 ppm concentration, and the growth profile study under heavy metals stress conditions shows the order of Pb > Mn > Zn > Cr > Cu at 60 h of time intervals at 100 ppm concentration. In addition to the research, FTIR analysis and Molecular Docking studies provide credence to the idea that Curvularia lunata has high biosorption potential and uptake or removal of toxic heavy metals at low cost and in an eco-friendly way from the contaminated environment.
Collapse
Affiliation(s)
- S Sugitha
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - P Vishnu Priya
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - Tadela Kavya Kanishka
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - A Duraimurugan
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - M Suganthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - K Ashok Kumar
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - M Jayanthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - R Durgadevi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - C Ramprasath
- Eukpro Biotech Private Limited, Chrompet, Chennai, Tamil Nadu, India
| | - G Abirami
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India.
| |
Collapse
|
15
|
Dai L, Li J, Zhang J, Li X, Liu T, Yu Q, Tao S, Zhou M, Hou H. The Pb capture mechanism of soil prophylactic agents prepared from phosphorus tailings and the influence of phosphorus speciation on its slow-release mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176996. [PMID: 39454789 DOI: 10.1016/j.scitotenv.2024.176996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This research activated phosphorus tailings to prepare a high‑phosphorus core (HPC) for multi-species composite slow-release heavy metal soil prophylactic agents (MCP), aiming to extend the slow-release period of MCP and enhance the efficiency of Pb stabilization. During the preparation of HPC, the proportion of non-apatitic inorganic phosphorus (NAIP) and apatite phosphorus (AP) continuously decreased with increasing polymerization temperature. At 400 °C, polyphosphates (PP) began to form, reaching 74.26 % at 600 °C. Initially, the rapidly soluble NAIP remained the major component of HPC, but the proportion of AP increased with higher polymerization temperatures, reaching 40.8 % at 600 °C. After 120 days of cultivation with four MCPs (MCP 300-21, MCP 400-12, MCP 500-14, MCP 600-14), the total soil phosphorus (TSP), soil organic matter (SOM), and Pb stabilization capacity of the cultivated soil showed significant improvements, reaching maximum values of 2.39 mg/g, 38.16 mg/g, and 45.4 mg/g, respectively, which are 9.9, 4.4, and 5.9 times higher than those of the CK soil. KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction analysis indicated that MCPs contribute directly or indirectly to the forms and chemical stability of Pb by stimulating soil physiological and biochemical processes. This research proposes a novel approach for using phosphates in soil heavy metal management strategies and provides new insights into the mechanisms of heavy metal stabilization in soil using environmental functional materials.
Collapse
Affiliation(s)
- Luming Dai
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| | - Jiaxing Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Xuli Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tong Liu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Qinqin Yu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Shaoyang Tao
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| |
Collapse
|
16
|
Hu S, Wang H, Li X, He W, Ma J, Xu Y, Xu Y, Ming W. Recent advances in bioleaching and biosorption of metals from waste printed circuit boards: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123008. [PMID: 39488183 DOI: 10.1016/j.jenvman.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Electronic waste, commonly known as "e-waste", refers to electrical or electronic equipment that has been discarded. E-waste, especially waste-printed circuit boards (WPCBs), must be handled carefully; as they can cause serious environmental pollution and threaten the health of local residents. The most abundant metal in WPCBs is copper, in addition to gold, aluminum, nickel, and lead, with grades that are tens or even hundreds of times higher than those of natural deposits. Due to the superiority of biorecovery methods in terms of their environmental friendliness, low capital investment and low operating costs, this study focuses on recent advances in the bioleaching and biosorption of metals from WPCBs. First, the principles, methods, and efficiency of bioleaching are reviewed in detail, particularly acidolysis, redoxolysis, and complexolysis. Additionally, six major factors (microbes, pH, temperature, nutrients, aeration, and substrate) affecting bioleaching are analyzed. The principles, kinetics, and isotherms of biosorption are then reviewed, and the factors influencing biosorption, including temperature and pH, are elaborated on. Hybrid recovery with biorecovery is explored, as these integrated strategies are conducive to achieving selective and efficient metal recovery. Finally, we discuss the advantages and disadvantages of the bioleaching and biosorption processes for metal recovery from WPCBs, particularly in terms of recovery efficiency, recovery time, and cost. Furthermore, future developments in biorecovery are also examined, along with useful ideas on how to accomplish energy-efficient metal recovery from WPCBs in the future.
Collapse
Affiliation(s)
- Shunchang Hu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Hongyan Wang
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China; Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan, 523808, China.
| | - Xiaoke Li
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Wenbin He
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Jun Ma
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yingjie Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yapeng Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
17
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Zhang J, Noor ZZ, Baharuddin NH, Setu SA, Hamzah MAAM, Zakaria ZA. Uptake of lead, cadmium and copper by heavy metal-resistant Pseudomonas aeruginosa strain DR7 isolated from soil. World J Microbiol Biotechnol 2024; 40:387. [PMID: 39567441 DOI: 10.1007/s11274-024-04194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L-1 and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R2 all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nurul Huda Baharuddin
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Siti Aminah Setu
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Mohd Amir Asyraf Mohd Hamzah
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zainul Akmar Zakaria
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
19
|
Pandey K, Saharan BS, Kumar R, Jabborova D, Duhan JS. Modern-Day Green Strategies for the Removal of Chromium from Wastewater. J Xenobiot 2024; 14:1670-1696. [PMID: 39584954 PMCID: PMC11587030 DOI: 10.3390/jox14040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.
Collapse
Affiliation(s)
- Komal Pandey
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
| | - Baljeet Singh Saharan
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
- Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India
- USDA-ARS Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA 99164-6430, USA
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Qibray 111 208, Uzbekistan;
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| |
Collapse
|
20
|
Zarei R, Sabokbar A, Rahimian Zarif B, Bayat M, Haghnazari N. Efficient biosorption of Zn(II), Cd(II), and Pb(II) by Aspergillus brasiliensis in industrial wastewater coupled with electrochemical monitoring via sensor enhanced with modified silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63847-63862. [PMID: 39508941 DOI: 10.1007/s11356-024-35471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
This work investigates the use of Aspergillus brasiliensis, this particular species of Aspergillus, as a biosorbent for the first time. It is employed to biosorption Zn(II), Cd(II), and Pb(II) and combines the biosorption experiments with electrochemical measurements for in situ analysis. For the experiments, a batch system was employed with the dead biomass. In order to determine the biosorption capacity, the impact of several operational parameters was examined, including pH, temperature, agitation speed, contact time, and initial metal concentration, and the optimum values were 5, 30 °C, 150 rpm, 2 h, and 150 ppm, respectively. Using 0.2 g biomass in 100 mL solution, the maximal uptake of Zn(II), Cd(II), and Pb(II) at ideal conditions was determined to be 33.67, 24.51, and 36.76, respectively. The Langmuir and Freundlich isotherm model was studied for the biosorption process. An electrochemical sensor using nanomaterials is designed and constructed to monitor the concentration of these metals. The silver nanoparticles functionalized with thiosemicarbazide and 6-mercaptohexanoic acid (mercaptohexanoylhydrazinecarbothioamide-coated silver nanoparticles, MHHC-AgNPs) linked to the carboxylated multi-walled carbon nanotubes (MWCNTs) were utilized for glassy carbon electrode modification (MHHC-AgNPs/MWCNTs/GCE). The concentration range of Zn(II) is 0.7-173 µg/L, Cd(II) is 1.18-293 µg/L, and Pb(II) is 2.17-540 µg/L. The detection limits for Zn(II), Cd(II), and Pb(II) are 0.036 µg/L, 0.15 µg/L, and 0.16 µg/L, respectively. Under optimized conditions, these results were obtained using the differential pulse anodic stripping voltammetry method (DPASV). The successful detection of Zn(II), Cd(II), and Pb(II) was achieved by effectively preventing interference from other common ions. It was effectively employed for measuring ions in industrial wastewater, and the results obtained aligned with those acquired from an atomic absorption spectrometer (AAS). Thus, Aspergillus brasiliensis species, along with this electrochemical sensor, can be used to remediate and monitor environmental pollution, Zn(II), Cd(II), and Pb(II), successfully.
Collapse
Affiliation(s)
- Reza Zarei
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | | | - Mansour Bayat
- Department of Medical & Veterinary Specialized Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Haghnazari
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
21
|
Kong D, Xu L, Dai M, Ye Z, Ma B, Tan X. Deciphering the functional assembly of microbial communities driven by heavy metals in the tidal soils of Hangzhou Bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124671. [PMID: 39116926 DOI: 10.1016/j.envpol.2024.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Understanding the interaction between heavy metals and soil microbiomes is essential for maintaining ecosystem health and functionality in the face of persistent human-induced challenges. This study investigated the complex relationships between heavy metal contamination and the functional characteristics of soil microbial communities in the tidal soils of Hangzhou Bay, a region experiencing substantial environmental pressure due to its proximity to densely populated and industrialized regions. The north-shore sampling site showed moderate contaminations (mg/kg) of total arsenic (16.61 ± 1.13), cadmium (0.3 ± 0.05), copper (31.28 ± 1.23), nickel (37.44 ± 2.74), lead (34.29 ± 5.99), and zinc (120.8 ± 5.96), which are 1.29-2.94 times higher than the geochemical background values in Hangzhou Bay and adjacent areas. In contrast, the south-shore sampling site showed slightly higher levels of total arsenic (13.76 ± 1.35) and cadmium (0.13 ± 0.02) than the background values. Utilizing metagenomic sequencing, we decoded microbial functional genes essential for nitrogen, phosphorus, sulfur, and methane biogeochemical cycles. Although soil available nickel content was relatively low at 1 mg/kg, it exhibited strong associations with diverse microbial genes and biogeochemical pathways. Four key genes-hxlB, glpX, opd, and phny-emerged as pivotal players in the interactions with available nickel, suggesting the adaptability of microbial metabolic responses to heavy metal. Additionally, microbial genera such as Gemmatimonas and Ilumatobacter, which harbored diverse functional genes, demonstrated potential interactions with soil nickel. These findings highlight the importance of understanding heavy metal-soil microbiome dynamics for effective environmental management strategies in the tidal soils of Hangzhou Bay, with the goal of preserving ecosystem health and functionality amidst ongoing anthropogenic challenges.
Collapse
Affiliation(s)
- Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Linya Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Nantong Cultivated Land Quality Protection Station, Nantong, Jiangsu, 226001, China
| | - Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
22
|
Rob MM, Akhter D, Islam T, Bhattacharjya DK, Shoaib Khan MS, Islam F, Chen J. Copper stress in rice: Perception, signaling, bioremediation and future prospects. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154314. [PMID: 39033671 DOI: 10.1016/j.jplph.2024.154314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Copper (Cu) is an indispensable micronutrient for plants, animals, and microorganisms and plays a vital role in different physiological processes. However, excessive Cu accumulation in agricultural soil, often through anthropogenic action, poses a potential risk to plant health and crop productivity. This review article provided a comprehensive overview of the available information regarding Cu dynamics in agricultural soils, major sources of Cu contamination, factors influencing its mobility and bioavailability, and mechanisms of Cu uptake and translocation in rice plants. This review examined the impact of Cu toxicity on the germination, growth, and photosynthesis of rice plants. It also highlighted molecular mechanisms underlying Cu stress signaling and the plant defense strategy, involving chelation, compartmentalization, and antioxidant responses. This review also identified significant areas that need further research, such as Cu uptake mechanism in rice, Cu signaling process, and the assessment of Cu-polluted paddy soil and rice toxicity under diverse environmental conditions. The development of rice varieties with reduced Cu accumulation through comprehensive breeding programs is also necessary. Regulatory measures, fungicide management, plant selection, soil and environmental investigation are recommended to prevent Cu buildup in agricultural lands to achieve sustainable agricultural goals.
Collapse
Affiliation(s)
- Md Mahfuzur Rob
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhe, 3100, Bangladesh
| | - Delara Akhter
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tariqul Islam
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Debu Kumar Bhattacharjya
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Sherebangla Nagar, Dhaka, 1207, Bangladesh
| | | | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Zheng L, Cai X, Tang J, Qin H, Li J. Bioelectrochemical technologies for soil and sediment remediation: Recent advances and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122602. [PMID: 39316876 DOI: 10.1016/j.jenvman.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Soil and sediment serve as the ultimate repositories of pollutants, presenting a significant environmental concern on a global scale. However, there is no effective measure due to the low mobility, high resistance and high cost of contaminated soil or sediment. The bioelectrochemical systems (BESs) combine microbial and electrochemical technology to achieve efficient and rapid degradation of pollutants by enriching electroactive microbial membranes with electrodes. Specifically, BESs offer an ideal solution for in-situ remediation, eliminating the secondary pollution and high energy consumption issues associated with traditional technologies. However, in soil or sediment bioelectrochemical systems (SBESs), further summarization and improvement are required to address the influencing factors during the process of pollutant remediation, given the fragility of complex geographical and natural environments. This paper provides a comprehensive overview and analysis of the removal mechanisms of organic pollutants, heavy metals and emerging contaminants within contaminated soil or sediment, elucidating the influential factors and strategies aimed at enhancing pollutant removal processes within SBESs. The current emerging problems and limitations of microbial electrochemical remediation technology are summarized, and it is suggested that future development should focus on microorganisms, reactors and practical applications.
Collapse
Affiliation(s)
- Linlan Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
24
|
Kou B, Huo L, Cao M, Ke Y, Wang L, Tan W, Yuan Y, Zhu X. Insights into the critical roles of water-soluble organic matter and humic acid within kitchen compost in influencing cadmium bioavailability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122769. [PMID: 39369524 DOI: 10.1016/j.jenvman.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Compost has demonstrated potential as a cadmium (Cd) remediation agent, while it still remains unclear about the core components in driving the bioactive transformation of Cd. To address this issue, this study isolated three components-kitchen compost powder (KC), humic acid (HA), and water-soluble organic matter (DOM)-from kitchen compost to regulate soil properties, bacterial community structures and functions, and Cd migration risks. The results revealed that the addition of 20% KC and HA reduced the bioavailability factor of Cd by 47.20% and 16.74%, respectively, with HA contributing 35.47% of the total reduction achieved with KC. Conversely, the application of DOM increased the Cd risk through a reduction in soil pH and an increase in the abundance of Cd-activating bacteria, which adversely affected the stability of Cd complexes. However, the porous structure and organic matter in KC and HA provided adsorption sites for Cd passivation and promoted the growth of Cd-fixing bacteria. This study effectively identifies both the positive and negative effects of key compost components on Cd migration and provides scientific guidance for applying kitchen compost in soil management.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
25
|
Solár J, Haas M, Pánik P, Oxikbayev B, Abduakassov A. Variability of trace elements in bodies of scrapers (Ephemeroptera) and predators (Plecoptera) from mountain rivers of Dzungarian Alatau (Kazakhstan) and Western Carpathians (Slovakia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64199-64209. [PMID: 39528895 PMCID: PMC11602859 DOI: 10.1007/s11356-024-35527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Bioaccumulation of trace elements in aquatic environments can be influenced by local environmental conditions such as temperature fluctuations, pH levels, sediment composition, dissolved organic matter content, and the presence of other chemical substances. We analyzed the differences in trace elements accumulation (S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Rb, Sr, Mo, Ba, and Pb) between two trophic guilds-scrapers (Ephemeroptera) and predators (Plecoptera)-of freshwater benthic macroinvertebrates collected from mountain streams in Kazakhstan and Slovakia. Trace elements in dried insect bodies were analyzed using an X-ray spectrometer, and physicochemical parameters of stream water were investigated at each sampling site. Our results showed significant differences in Fe, Ti, and Sr levels in predators from Kazakhstan and Cu levels in predators from Slovakia. Despite some trace elements showing higher concentrations in one group over another, the overall differences between regions were more pronounced. Principal component analysis (PCA) revealed that the primary factors influencing trace elements variability were associated with environmental conditions such as temperature, oxygen levels, and total dissolved solids (TDS). PCA components indicated a higher load of trace elements in the warmer, less oxygenated streams, particularly in Kazakhstan. These findings suggest that both biotic (feeding strategies) and abiotic (geographical and environmental conditions) factors significantly influence trace elements dynamics in freshwater ecosystems.
Collapse
Affiliation(s)
- Jaroslav Solár
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, Tatranská Javorina, 059 56, Slovakia.
| | - Martina Haas
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, Tatranská Javorina, 059 56, Slovakia
| | - Patrik Pánik
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, Tatranská Javorina, 059 56, Slovakia
| | - Berikzhan Oxikbayev
- Zhetysu State University named after Ilyas Zhansugurov, Zhansugurov st. 187 A, 040009, Taldykorgan, Kazakhstan
| | - Aibek Abduakassov
- Zhetysu State University named after Ilyas Zhansugurov, Zhansugurov st. 187 A, 040009, Taldykorgan, Kazakhstan
| |
Collapse
|
26
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024; 282:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
27
|
Zhang R, Xu L, Tian D, Du L, Yang F. Coal mining activities driving the changes in bacterial community. Sci Rep 2024; 14:25615. [PMID: 39463387 PMCID: PMC11514224 DOI: 10.1038/s41598-024-75590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
The mechanism of the difference in bacterial community composition caused by environmental factors in the underground coal mine is unclear. In order to reveal the influence of coal mining activities on the characteristics of bacterial community structure in coal seam, 16S rRNA gene amplicon sequencing technology was used to determine the species abundance, biodiversity, and gene abundance of bacterial community in a coal mine in Shanxi Province, and the environmental factors such as metal elements, non-metal elements, pH value, and gas concentration of coal samples were determined. The results showed that environmental factors and bacterial communities had obvious regional characteristics. Mining activities greatly affected the α diversity of bacterial communities, mining working face > main airway > roadway roof > unexposed coal seam > tunneling roadway. The bacterial community composition of each sample point is also very different. The main airway, roadway roof, and unexposed coal seam are dominated by Actinobacteria while the mining working face and tunneling roadway are dominated by Proteobacteria. Among the gene abundances of metabolic pathways in each site, Citrate cycle had the greatest difference, followed by glycine, serine and threonine metabolism, and oxidative phosphorylation and methane metabolism had little difference. RDA analysis showed that the environmental factors affecting the bacterial community were mainly cadmium, oxygen, hydrogen, and gas content. CCA analysis divided the bacterial community into three categories. Degradation functional bacteria are located in mining working face, bacteria that tolerate poor environments are located in main airway and tunneling roadway, and human pathogens are mostly located in roadway roof and unexposed coal seam. The research results would provide support for realizing green and safe mining in coal mines.
Collapse
Affiliation(s)
- Runjie Zhang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lianman Xu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Da Tian
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Linlin Du
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Fengshuo Yang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
28
|
Lin M, Vargas B, Yedra L, van Gog H, van Huis MA, Mendes RG, Llorca J, Estruch-Blasco M, Pernia Leal M, Pajuelo E, Estradé S, Peiró F, Rodríguez L, Figuerola A. Unraveling the Formation of Ternary AgCuSe Crystalline Nanophases and Their Potential as Antibacterial Agents. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10154-10166. [PMID: 39464291 PMCID: PMC11500304 DOI: 10.1021/acs.chemmater.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
AgCuSe nanoparticles could contribute to the growth of strongly light-absorbing thin films and solids with fast ion mobility, among other potential properties. Nevertheless, few methods have been developed so far for the synthesis of AgCuSe nanoparticles, and those reported deliver nanostructures with relatively large sizes and broad size and shape distributions. In this work, a colloidal cation exchange method is established for the easy synthesis of AgCuSe NPs with ca. 8 nm diameters and narrow size dispersion. Notably, in this lower size range the conucleation and growth of two stoichiometric ternary compounds are generally observed, namely the well-known eucairite AgCuSe compound and the novel fischesserite-like Ag3CuSe2 phase, the latter being less thermodynamically stable as predicted computationally and assessed experimentally. An optimal range of Cu/Ag precursor molar ratio has been identified to ensure the growth of ternary nanoparticles and, more specifically, that of the metastable Ag3CuSe2 nanophase isolated for the first occasion. The attained size range for the material paves the way for utilizing AgCuSe nanoparticles in new ways within the field of biomedicine: the results obtained here confirm the antibacterial activity of the new Ag x Cu y Se z nanoparticles against Gram-positive bacteria, with significantly low values of the minimal inhibitory concentration.
Collapse
Affiliation(s)
- Mengxi Lin
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Beatriz Vargas
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Lluís Yedra
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Heleen van Gog
- Nanostructured
Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Marijn A. van Huis
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Rafael G. Mendes
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering and Center
for Research in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Manel Estruch-Blasco
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/Profesor García González,
2, 41012 Sevilla, Spain
| | - Manuel Pernia Leal
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/Profesor García González,
2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Sònia Estradé
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Francesca Peiró
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Laura Rodríguez
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Albert Figuerola
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
30
|
Kumar A, Mukherjee G, Ahuja V, Gupta S, Tarighat MA, Abdi G. Biosorption and transformation of cadmium and lead by Staphylococcus epidermidis AS-1 isolated from industrial effluent. BMC Microbiol 2024; 24:420. [PMID: 39433992 PMCID: PMC11492502 DOI: 10.1186/s12866-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Rapid utilization of natural resources and other anthropogenic activities intruded heavy metals into the food chain and raised alarming concern for all life forms. The available methods proved insufficient in handling waste and pollutants due to the high cost and generation of toxic residues. Bioremediation strategies have offered sustainable solutions for toxic pollutants. In the current study, cadmium and lead (Cd and Pb respectively) tolerant strains have been isolated from industrial effluent and characterized for tolerance towards target pollutants. The strain was identified by 16s rRNA gene and further used for metal removal from the industrial effluents. RESULTS Bacterial isolates were obtained from industrial discharge and evaluated for their tolerance towards Cd and Pb. AS-1 bacterial isolate exhibited maximum tolerance towards both the metals and hence was selected for further study. The isolate was identified as Staphylococcus epidermidis. ICP-MS and energy dispersive X-ray (EDX) analysis of biomass revealed that a significant proportion of cadmium (90.89%) and lead (94.87%) available in effluent were sequestered within bacterial biomass. Characteristic peaks at 2Ɵ (31.8637 and 45.6247 for cadmium) and (21.0397, 27.0127, 46.0537, 54.2707 and 75.6547 for lead) confirmed the crystalline nature of the sequestered metals. The selected strain was characterized on biochemical and molecular basis and was found to be Staphylococcus epidermidis. Based on 16 S rDNA sequence analysis, a phylogenetic dendrogram was created for the maximum likelihood of the bacterial strain. The sequence was deposited in the NCBI repository (accession number PP587422). CONCLUSION The work has shown the possible way out of heavy metal pollution sustainably. To the best of the author's knowledge, this is the first report on the sequestration and reduction of cadmium and lead by a nonpathogenic strain of Staphylococcus epidermidis AS-1 that may be useful for alleviating heavy metal contamination.
Collapse
Affiliation(s)
- Abhijit Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Vishal Ahuja
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib, 140406, Punjab, India.
| | - Maryam Abbasi Tarighat
- Department of chemistry, Faculty of Nano and Bio Science and Technology,, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
31
|
Arriagada-Escamilla C, Alvarado R, Ortiz J, Campos-Vargas R, Cornejo P. Alginate-Bentonite Encapsulation of Extremophillic Bacterial Consortia Enhances Chenopodium quinoa Tolerance to Metal Stress. Microorganisms 2024; 12:2066. [PMID: 39458375 PMCID: PMC11509983 DOI: 10.3390/microorganisms12102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the encapsulation in alginate/bentonite beads of two metal(loid)-resistant bacterial consortia (consortium A: Pseudomonas sp. and Bacillus sp.; consortium B: Pseudomonas sp. and Bacillus sp.) from the Atacama Desert (northern Chile) and Antarctica, and their influence on physiological traits of Chenopodium quinoa growing in metal(loid)-contaminated soils. The metal(loid) sorption capacity of the consortia was determined. Bacteria were encapsulated using ionic gelation and were inoculated in soil of C. quinoa. The morphological variables, photosynthetic pigments, and lipid peroxidation in plants were evaluated. Consortium A showed a significantly higher biosorption capacity than consortium B, especially for As and Cu. The highest viability of consortia was achieved with matrices A1 (3% alginate and 2% bentonite) and A3 (3% alginate, 2% bentonite and 2.5% LB medium) at a drying temperature of 25 °C and storage at 4 °C. After 12 months, the highest viability was detected using matrix A1 with a concentration of 106 CFU g-1. Further, a greenhouse experiment using these consortia in C. quinoa plants showed that, 90 days after inoculation, the morphological traits of both consortia improved. Chemical analysis of metal(loid) contents in the leaves indicated that consortium B reduced the absorption of Cu to 32.1 mg kg-1 and that of Mn to 171.9 mg kg-1. Encapsulation resulted in a significant increase in bacterial survival. This highlights the benefits of using encapsulated microbial consortia from extreme environments, stimulating the growth of C. quinoa, especially in soils with metal(loid) levels that can be a serious constraint for plant growth.
Collapse
Affiliation(s)
- Cesar Arriagada-Escamilla
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
| | - Roxana Alvarado
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javier Ortiz
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Reinaldo Campos-Vargas
- Center for Postharvest Studies, Faculty of Agricultural Sciences, Universidad de Chile, Santiago 8820808, Chile;
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Pontificia Universidad Católica de Valparaíso, La Palma, Quillota 2260000, Chile;
| |
Collapse
|
32
|
Ma WJ, Ma ZS, Zhang HM. Inhibition of zinc ions in sulfur-driven autotrophic denitrification process: What is the behavior of extracellular polymeric substances? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174269. [PMID: 38936729 DOI: 10.1016/j.scitotenv.2024.174269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Sulfur-driven autotrophic denitrification (SAD) process is a cost-effective and sustainable method for nitrogen removal from wastewater. However, a higher concentration of zinc ions (Zn(II)) flowing into wastewater treatment plants poses a potential threat to the SAD process. This study examined that a half maximal inhibitory concentration (IC50) of Zn(II) was 7 mg·L-1 in the SAD process. Additionally, the addition of 20 mg·L-1 Zn(II) resulted in a severe accumulation of nitrite to 150.20 ± 6.00 mg·L-1 when the initial concentration of nitrate was 500 mg·L-1. Moreover, the activities of nitrate reductase, nitrite reductase, dehydrogenase and electron transport system were significantly inhibited under Zn(II) stress. The addition of Zn(II) inhibited EPS secretion and worsened electrochemical properties. The result was attributed to the spontaneous binding between EPS and Zn(II), with a ΔG of -17.50 KJ·mol-1 and a binding constant of 1.77 × 104 M-1, respectively. Meanwhile, the protein, fulvic acid, and humic-like substances occurred static quenching after Zn(II) addition, with -OH and -C=O groups providing binding sites. The binding sequence was fulvic acid→protein→humic acid and -OH → -C=O. Zn(II) also reduced the content of α-helix, which was unfavorable for electron transfer. Additionally, the Zn(II) loosened protein structure, resulting in a 50 % decrease in α-helix/(β-sheet+random coil). This study reveals the effect of Zn(II) on the SAD process and enhances our understanding of EPS behavior under metal ions stress.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Zi-Shang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
33
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
34
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Xu H, Zou Z, Jin Y, Kuzyakov Y, Huang X, Wu X, Zhu F. Assembly processes and co-occurrence of bacterial communities in tree rhizosphere under Pb-Zn contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135135. [PMID: 38986409 DOI: 10.1016/j.jhazmat.2024.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Rhizosphere bacteria are critical for supporting plant performance in stressful environments. Understanding the assembly and co-occurrence of rhizosphere bacterial communities contributes significantly to both plant growth and heavy metal accumulation. In this study, Ligustrum lucidum and Melia azedarach were planted in soils with simulated varying levels of Pb-Zn contamination. The Rhizosphere bacterial communities were investigated by using 16S rRNA gene sequencing. The impacts of Pb-Zn contamination on the diversity and structure of the rhizosphere bacterial community were found to be greater than those of both tree species. The variation in bacterial community structure in both trees was mainly driven by the combinations of Pb-Zn and soil properties. Deterministic processes (non-planted, 82 %; L. lucidum, 73 %; M. azedarach, 55 %) proved to be the most important assembly processes for soil bacterial communities, but both trees increased the importance of stochastic processes (18 %, 27 %, 45 %). The rhizosphere co-occurrence networks exhibited greater stability compared to the non-planted soil networks. Rare taxa played a dominant role in maintaining the stability of rhizosphere networks, as most of the keystone taxa within rhizosphere networks belonged to rare taxa. Dissimilarities in the structure and network complexity of rhizosphere bacterial communities were significantly associated with differences in tree biomass and metal accumulation. These variations in response varied between both trees, with L. lucidum exhibiting greater potential for phytoremediation in its rhizosphere compared to M. azedarach. Our results offer valuable insights for designing effective microbe-assisted phytoremediation systems.
Collapse
Affiliation(s)
- Hongyang Xu
- College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Ziying Zou
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuke Jin
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410125, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany; Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Xinhao Huang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410125, China
| | - Xiaohong Wu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Zhu
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
36
|
Qu J, Peng W, Wang M, Cui K, Zhang J, Bi F, Zhang G, Hu Q, Wang Y, Zhang Y. Metal-doped biochar for selective recovery and reuse of phosphate from water: Modification design, removal mechanism, and reutilization strategy. BIORESOURCE TECHNOLOGY 2024; 407:131075. [PMID: 38996847 DOI: 10.1016/j.biortech.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) plays a crucial role in plant growth, which can provide nutrients for plants. Nonetheless, excessive phosphate can cause eutrophication of water, deterioration of aquatic environment, and even harm for human health. Therefore, adopting feasible adsorption technology to remove phosphate from water is necessary. Biochar (BC) has received wide attention for its low cost and environment-friendly properties. However, undeveloped pore structure and limited surface groups of primary BC result in poor uptake performance. Consequently, this work introduced the synthesis of pristine BC, parameters influencing phosphate removal, and corresponding mechanisms. Moreover, multifarious metal-doped BCs were summarized with related design principles. Meanwhile, mechanisms of selective phosphate adsorption by metal-doped BC were investigated deeply, and the recovery of phosphate from water, and the utilization of phosphate-loaded adsorbents in soil were critically presented. Finally, challenges and prospects for widespread applications of selective phosphate adsorption were proposed in the future.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ke Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingdong Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
37
|
Dai L, Li J, Zhang J, Zeng Q, Liu T, Yu Q, Tao S, Zhou M, Hou H. Phosphorus-based soil prophylactics for managing Pb contamination in soil: Slow-release kinetics and microbiological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173647. [PMID: 38823702 DOI: 10.1016/j.scitotenv.2024.173647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Soil remediation poses significant challenges due to its spatial heterogeneity, surpassing the complexities of atmospheric and water remediation. This study introduces an innovative approach to prevent soil heavy metal pollution by developing three phosphorus slow-release heavy metal soil prophylactic agents (SLPs) - Sap-11, Sap-12, and Sap-21. At a liquid-to-solid ratio of 1:20, the three types of SLPs achieve phosphorus sustained slow release amounts of 1.586 g/L, 4.259 g/L, and 1.444 g/L within 30 days, respectively. Over a cultivation period of 120 days, after amendment with the three SLPs, the surface soil demonstrates stabilization capacities for Pb of 29.56 mg/g, 46.24 mg/g, and 25.77 mg/g, respectively, representing enhancements of 283.64 %, 500.12 %, and 250.74 % compared to the control. Firstly, the direct contribution of P (up to 3.778 mg/g) released from SLPs chemically binding with Pb, and secondly, a significant proportion of the indirect contribution originating from the microbial activity and soil organic matter. In summary, SLP emerges as an effective strategy for soil heavy metal management, stabilizing heavy metals by stimulating the soil's inherent physiological and biochemical reactions. This approach provides a practical solution for the application of P-containing materials and introduces novel perspectives for soil heavy metal management strategies.
Collapse
Affiliation(s)
- Luming Dai
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| | - Jiaxing Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Qingyuan Zeng
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Tong Liu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Qinqin Yu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Shaoyang Tao
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| |
Collapse
|
38
|
Ahmady-Asbchin S, Akbari Nasab M, Gerente C. Heavy metals biosorption in unary, binary, and ternary systems onto bacteria in a moving bed biofilm reactor. Sci Rep 2024; 14:19168. [PMID: 39160249 PMCID: PMC11333594 DOI: 10.1038/s41598-024-70402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Toxic and heavy metals cause direct and indirect damage to the environment and ultimately to humans. This study involved the isolation of indigenous bacteria from heavy metal-contaminated environments that have the ability to bioabsorb heavy metals such as cadmium, nickel, and lead. The bioabsorption process was optimized by varying parameters such as temperature, metal concentration, number of bacteria, pH, and more. The bacterial isolates were investigated in terms of morphology, biochemistry, and phylogeny, with 12 strains chosen in the initial stage and one strain chosen in the final stage. It should be remembered that the metal uptake capacity of all isolates was approximately calculated. A box and reactor were designed to house these optimized microorganisms. Based on biochemical, morphological, and molecular results, the isolated strain was found to be closely related to the Bacillus genus. In the first five steps of testing, the ideal pH for removing lead alone, lead with cadmium, lead with nickel, and lead ternary (with cadmium and nickel) by Bacillus bacteria was found to be 7, 6, 5.5, and 6.5, respectively. The absorption efficiencies for single lead (unary), lead together with nickel, cadmium (binary), and ternary (lead with cadmium and nickel) were found to be 0.36, 0.25, 0.22, and 0.21 mmol/g, respectively. The ideal temperature for lead removal was around 30 °C. The adsorption isotherm for each lead metal in different states was found to be similar to the Langmuir isotherm, indicating that the surface absorption process is a single-layer process. The kinetics of the process follow the second-order kinetic model. The amount of Bacillus bacteria biomass obtained during this process was approximately 1.5 g per liter.
Collapse
Affiliation(s)
- Salman Ahmady-Asbchin
- Department of Microbiology, Faculty of Science, University of Mazandaran, Babolsar, Iran.
| | - Mohammad Akbari Nasab
- Department of Marine and Environmental, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran
| | - Claire Gerente
- Laboratoire GEPEA, UMR CNRS 6144, IMT Atlantique, 4 Rue Alfred Kastler, CS 20722, 44307, Nantes Cedex 03, France
| |
Collapse
|
39
|
Omoregie AI, Ong DEL, Alhassan M, Basri HF, Muda K, Ojuri OO, Ouahbi T. Two decades of research trends in microbial-induced carbonate precipitation for heavy metal removal: a bibliometric review and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52658-52687. [PMID: 39180660 DOI: 10.1007/s11356-024-34722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Amidst the increasing significance of innovative solutions for bioremediation of heavy metal removal, this paper offers a thorough bibliometric analysis of microbial-induced carbonate precipitation (MICP) for heavy metal removal, as a promising technology to tackle this urgent environmental issue. This study focused on articles published from 1999 to 2022 in the Scopus database. It assesses trends, participation, and key players within the MICP for heavy metal sequestration. Among the 930 identified articles, 74 countries participated in the field, with China being the most productive. Varenyam Achal, the Chinese Academy of Sciences, and Chemosphere are leaders in the research landscape. Using VOSviewer and R-Studio, keyword hotspots like "MICP", "urease", and "heavy metals" underscore the interdisciplinary nature of MICP research and its focus on addressing a wide array of environmental and soil-related challenges. VOSviewer emphasises essential terms like "calcium carbonate crystal", while R-Studio highlights ongoing themes such as "soil" and "organic" aspects. These analyses further showcase the interdisciplinary nature of MICP research, addressing a wide range of environmental challenges and indicating evolving trends in the field. This review also discusses the literature concerning the potential of MICP to immobilise contaminants, the evolution of the research outcome in the last two decades, MICP treatment techniques for heavy metal removal, and critical challenges when scaling from laboratory to field. Readers will find this analysis beneficial in gaining valuable insights into the evolving field and providing a solid foundation for future research and practical implementation.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, School of Built Environment, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia
| | - Dominic Ek Leong Ong
- School of Engineering and Built Environment, Griffith University, 170 Kessels Rd Nathan, South East Queensland, QLD, 4111, Australia
| | - Mansur Alhassan
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hazlami Fikri Basri
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST), Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Tariq Ouahbi
- LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université, 53 Rue de Prony, 76058, Le Havre Cedex, France
| |
Collapse
|
40
|
Vishwakarma MC, Joshi HK, Tiwari P, Bhandari NS, Joshi SK. Thermodynamic, kinetic, and equilibrium studies of Cu(II), Cd(II), Ni(II), and Pb(II) ion biosorption onto treated Ageratum conyzoid biomass. Int J Biol Macromol 2024; 274:133001. [PMID: 38897497 DOI: 10.1016/j.ijbiomac.2024.133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
The issue of environmental contamination, particularly caused by the existence of heavy metal particles, is a major and widely recognized subject that receives substantial global attention. The remediation of Cu(II), Cd(II), Ni(II), and Pb(II) ionic metal particles from synthetic wastewater using chemically treated plant leaves of Ageratum conyzoides (TAC) as a biosorbent was investigated. The biosorption process was implemented utilizing a batch system, wherein several operational parameters were considered, including temperature, pH, agitation time, biosorbent dosage, and initial concentration of the metal ion. Langmuir, Freundlich, Temkin, and D-R isotherm models were used to evaluate equilibrium data. The analyzed parameter exhibits characteristics that were best fitted with the Langmuir isotherm. The observed biosorption capacities (qm) of Cu(II), Pb(II), Ni(II), and Cd(II) ions on the TAC were measured as 51.573, 30.49, 33.53, and 35.91 mg/g, respectively, at a temperature of 22 °C. The affinity sequence of these metal ions follows the order Cu(II) > Pb(II) > Ni(II) > Cd(II). The measured values for the biosorption free energy change (ΔG) of Cu(II), Pb(II), Cd(II), and Ni(II) metal ions ranged from -1.017 to -4.723, -1.368 to -3.612, -2.785 to -5.21, and -1.047 to -5.135 kJ/mol, respectively. The enthalpy (ΔH) for Cu(II), Pb(II), Cd(II), and Ni(II) were determined to be +19.33, +6.82, +14.83, and +38.07 kJ/mol, respectively. Similarly, the corresponding entropy changes (ΔS) for the same series of metal ions were recorded as +0.075, +0.064, +0.063, and +0.135 kJ/mol.K. The pseudo-second-order kinetic models yielded superior outcomes in comparison to the pseudo-first-order kinetic models. The findings of the experiment indicated that the TAC demonstrates favorable efficacy in extracting all four metal ions. Hence, the utilization of biomass derived from Ageratum conyzoides leaves has proven to be a viable and economically feasible approach for biosorption of all four metals.
Collapse
Affiliation(s)
- Mahesh Chandra Vishwakarma
- Department of Chemistry, Govt. Post Graduate College Bageshwar, Soban Singh Jeena University, Uttarakhand, India.
| | - Hemant Kumar Joshi
- Department of Chemistry, Nanhi Pari Seemant Engineering Institute, Pithoragarh, Uttarakhand, India
| | - Priyanka Tiwari
- Department of Chemistry MB Post Graduate College Haldwani, Kumaun University, Uttarakhand, India
| | - Narendra Singh Bhandari
- Department of Chemistry, SSJ Campus Almora, Soban Singh Jeena University, Uttarakhand, India
| | - Sushil Kumar Joshi
- Department of Chemistry, SSJ Campus Almora, Soban Singh Jeena University, Uttarakhand, India
| |
Collapse
|
41
|
Zhang J, Xia R, Tao Z. Transcriptome sequencing analysis of gene expression in phosphate-solubilizing bacterium 'N3' and grafted watermelon plants coping with toxicity induced by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50513-50528. [PMID: 39096459 DOI: 10.1007/s11356-024-34601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Cadmium (Cd) is a harmful metal in soil, and reducing Cd accumulation in plants has become a vital prerequisite for maintaining food safety. Phosphate-solubilizing bacteria (PSB) can not only improve plant growth but also inhibit the transportation of metals to roots. However, data on gene expression in PSB Burkholderia sp. strain 'N3' and grafted watermelon plants dealing with Cd remain to be elucidated. In this study, core genes and metabolic pathways of strain 'N3' and grafted plants were analyzed by Illumina sequencing. Results showed that 356 and 2527 genes were upregulated in 'N3' and grafted watermelon plants, respectively, whereas 514 and 1540 genes were downregulated in 'N3' and grafted watermelon plants, respectively. Gene ontology enrichment analysis showed that signal transduction, inorganic ion transport, cell motility, amino acid transport, and metabolism pathways were marked in 'N3'. However, pathways such as secondary metabolite biosynthesis, oxidation-reduction process, electron transfer activity, and channel regulator activity were marked in the grafted plants. Six genes related to pentose phosphate, glycolysis, and gluconeogenesis metabolism were upregulated in the grafted plants. This study paves the way for developing potential strategies to improve plant growth under Cd toxicity.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei, 230031, Anhui Province, China.
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Hefei, 230031, Anhui Province, China.
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, 230031, Anhui Province, China.
| | - Rui Xia
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei, 230031, Anhui Province, China
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Shanxi Research Institute For Clean Energy, Tsinghua University, Beijing Hydecom Technology Co., Ltd, Biejing, China
| | - Zhen Tao
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei, 230031, Anhui Province, China
| |
Collapse
|
42
|
Kan D, Tian M, Ruan Y, Han H. Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:1989. [PMID: 39065516 PMCID: PMC11280808 DOI: 10.3390/plants13141989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1-64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat.
Collapse
Affiliation(s)
- Delong Kan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (D.K.); (M.T.)
| | - Minyu Tian
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (D.K.); (M.T.)
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (D.K.); (M.T.)
| | - Hui Han
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
43
|
Prabhu N, Sabour AAA, Rengarajan S, Gajendiran K, Natarajan D. Analysis of the remediation competence of Aspergillus flavus biomass in wastewater of the dyeing industry: An in-vitro study. ENVIRONMENTAL RESEARCH 2024; 252:118705. [PMID: 38548251 DOI: 10.1016/j.envres.2024.118705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
The dyeing industry effluent causes severe environmental pollution and threatens the native flora and fauna. The current study aimed to analyze the physicochemical parameters of dyeing industry wastewater collected in different sites (K1, E2, S3, T4, and V5), as well as the metal tolerance and decolourisation ability of Aspergillus flavus. Furthermore, the optimal biomass quantity and temperatures required for efficient bioremediation were investigated. Approximately five dyeing industry wastewater samples (K1, E2, S3, T4, and V5) were collected from various sampling stations, and the majority of the physical and chemical characteristics were discovered to be above the permissible limits. A. flavus demonstrated outstanding metal resistance to As, Cu, Cr, Zn, Hg, Pb, Ni, and Cd on Potato Dextrose Agar (PDA) plates at concentrations of up to 500 g mL-1. At 4 g L-1 concentrations, A. flavus biomass decolorized up to 11.2-46.5%. Furthermore, 35°C was found to be the optimal temperature for efficient decolourisation of A. flavus biomass. The toxicity of 35°C-treated wastewater on V. mungo and prawn larvae was significantly reduced. These findings indicate that the biomass of A. flavus can be used to decolorize dyeing industry wastewater.
Collapse
Affiliation(s)
- N Prabhu
- Department of Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602 105, Tamil Nadu, India
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sumathy Rengarajan
- Department of Biotechnology, Valliammal College for Women, E-9, Anna Nagar East, Chennai, 600102, India
| | - K Gajendiran
- PG and Research Department of Microbiology, M.G.R. College, Hosur, 635 130, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Lab, Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
44
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
45
|
Zhang H, Wang H, Tan A, Zhang L, Yao H, You X, Chen Z. Inoculation of chromium-tolerant bacterium LBA108 to enhance resistance in radish ( Raphanus sativus L.) and combined remediation of chromium-contaminated soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1064-1076. [PMID: 38721825 DOI: 10.1039/d3em00556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cr(VI) has been a carcinogen for organisms and a hazard to human health throughout the food chain. To explore a cost-effective and efficient method for removing Cr(VI), a Cr-resistant strain named LBA108 was isolated from the soil of a molybdenum-lead mining area. It was identified as Microbacterium through biochemical tests and 16S rDNA sequence analysis. Following 48 hours of incubation in LB culture medium containing 60 mg L-1 Cr(VI), the LBA108 strain exhibited reduction and adsorption rates for Cr(VI) at 96.64% and 15.86%, respectively. The removal mechanism was subsequently confirmed through Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. In an experimental setup, radish seedlings were cultivated as test crops under varying levels of Cr stress (ranging from 0 to 7 mg L-1) in a hydroponic experiment. With the inoculation of the LBA108 strain, the fresh weight of radish seedlings increased by 2.05 times and plant length increased by 34.5% under 7 mg L-1 Cr stress. In addition, the plant produced more antioxidant enzymes/enhanced antioxidant enzyme activities such as superoxide dismutase and catalase to prevent oxidative stress. Under Cr stress (6 mg L-1), the accumulation of Cr in rhizomes of radish seedlings increased compared to the control group by 91.44%, while the absorption of Cr by leaves decreased by 52.10%. These findings suggest that the LBA108 strain possesses bioremediation capabilities as a microbial-phytoremediation option for Cr-contaminated soil.
Collapse
Affiliation(s)
- Hehe Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Aobo Tan
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Longfei Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Hanyue Yao
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiaoyan You
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
46
|
Niu SQ, Song HR, Zhang X, Bao XW, Li T, He LY, Li Y, Li Y, Zhang DX, Bai J, Liu SJ, Guo JL. The Cd resistant mechanism of Proteus mirabilis Ch8 through immobilizing and detoxifying. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116432. [PMID: 38728947 DOI: 10.1016/j.ecoenv.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Collapse
Affiliation(s)
- Shu-Qi Niu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Hao-Ran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xiu-Wen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ting Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dai-Xi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Si-Jing Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China.
| |
Collapse
|
47
|
Li X, Wang Q, Liu F, Lu Y, Zhou X. Quantifying the bioaccumulation and trophic transfer processes of heavy metals based on the food web: A case study from freshwater wetland in northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172290. [PMID: 38599391 DOI: 10.1016/j.scitotenv.2024.172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The contamination of wetlands by heavy metals, exacerbated by agricultural activities, presents a threat to both organisms and humans. Heavy metals may undergo trophic transfer through the food web. However, the methods for quantifying the bioaccumulation and trophic transfer processes of heavy metals based on the food web remains unclear. In this study, we employed stable isotope technology to construct a quantitative oriental white stork's typical food web model under a more accurate scaled Δ15N framework. On this basis, the concentrations for heavy metal (Cu, Zn, Hg, Pb) were analyzed, we innovatively visualized the trophic transfer process of heavy metals across 13 nodes and 45 links and quantified the transfer flux based on the diet proportions and heavy metal concentrations of species, taking into account biomagnification effects and potential risks. Our findings revealed that as for Cu and Pb, the transfer flux level was consistent with diet proportion across most links. While Hg and Zn transfer flux level exceeded the corresponding diet proportion in the majority of links. In summary, Hg exhibited a significant biomagnification, whereas Cu, Zn, Pb experienced biodilution. The fish dietary health risk assessment for fish consumers showed that Hg, Pb posed certain risks. This research marks a significant step forward in the quantitative assessment of multi-link networks involving heavy metals within the food web.
Collapse
Affiliation(s)
- Xingchun Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| | - Qiang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province 130102, China
| | - Fangzheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| | - Yifei Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| | - Xuehong Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|
48
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
49
|
Martinez-Alesón García P, García-Balboa C, López-Rodas V, Costas E, Baselga-Cervera B. Settling selection of Chlamydomonas reinhardtii for samarium uptake. JOURNAL OF PHYCOLOGY 2024; 60:755-767. [PMID: 38738959 DOI: 10.1111/jpy.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
Samarium (Sm) is a rare-earth element recently included in the list of critical elements due to its vital role in emerging new technologies. With an increasing demand for Sm, microbial bioremediation may provide a cost-effective and a more ecologically responsible alternative to remove and recover Sm. We capitalized on a previously selected Chlamydomonas reinhardtii strain tolerant to Sm (1.33 × 10-4 M) and acidic pH and carried out settling selection to increase the Sm uptake performance. We observed a rapid response to selection in terms of cellular phenotype. Cellular size decreased and circularity increased in a stepwise manner with every cycle of selection. After four cycles of selection, the derived CSm4 strain was significantly smaller and was capable of sequestrating 41% more Sm per cell (1.7 × 10-05 ± 1.7 × 10-06 ng) and twice as much Sm in terms of wet biomass (4.0 ± 0.4 mg Sm · g-1) compared to the ancestral candidate strain. The majority (~70%) of the Sm was bioaccumulated intracellularly, near acidocalcisomes or autophagic vacuoles as per TEM-EDX microanalyses. However, Sm analyses suggest a stronger response toward bioabsorption resulting from settling selection. Despite working with Sm and pH-tolerant strains, we observed an effect on fitness and photosynthesis inhibition when the strains were grown with Sm. Our results clearly show that phenotypic selection, such as settling selection, can significantly enhance Sm uptake. Laboratory selection of microalgae for rare-earth metal bioaccumulation and sorption can be a promising biotechnological approach.
Collapse
Affiliation(s)
- Paloma Martinez-Alesón García
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, University San Pablo CEU, Madrid, Spain
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Camino García-Balboa
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Victoria López-Rodas
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Eduardo Costas
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Baselga-Cervera
- Ecology, Evolution and Behavior Department, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
50
|
Sharma S, Sharma M, Kumar R, Akhtar MS, Umar A, Alkhanjaf AAM, Baskoutas S. Recent advances and mechanisms of microbial bioremediation of nickel from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40224-40244. [PMID: 37930578 DOI: 10.1007/s11356-023-30556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The global concern over emerging pollutants, characterized by their low concentrations and high toxicity, necessitates effective remediation strategies. Among these pollutants, pharmaceutical and personal care products, pesticides, surfactants, and persistent organic pollutants have gained significant attention. These contaminants are extensively distributed within aquatic ecosystems, posing threats to both human and aquatic physiological systems. Nickel, a valuable metal renowned for its corrosion-resistant properties, is widely utilized in various industrial processes, leading to the generation of nickel-containing waste streams, including batteries, catalysts, wastewater, and electrolyte bleed-off. Contamination of soil, water, or air by these waste materials can have adverse effects on the environment and human health. This review article focuses on the recent advancements in environmental and economic implications associated with the removal of nickel from diverse waste sources. Physicochemical technologies employed for treating different nickel-containing effluents and wastewater are discussed, alongside bioremediation techniques and the underlying mechanisms by which microorganisms facilitate nickel removal. The recovery of nickel from waste materials holds paramount importance not only from an economic standpoint but also to mitigate environmental impacts.
Collapse
Affiliation(s)
- Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India.
| | - Mohammad Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|