1
|
Zhaxylykova D, Alibekov A, Lee W. Seasonal variation and removal of microplastics in a central Asian urban wastewater treatment plant. MARINE POLLUTION BULLETIN 2024; 205:116597. [PMID: 38896961 DOI: 10.1016/j.marpolbul.2024.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
This paper investigated the MP presence and removal in the urban WWTP in Astana, the capital city of Kazakhstan. MP concentrations in the 100-5000 μm size were analyzed across treatment stages with a modified treatment process scheme, and their removal efficiencies were evaluated. The WWTP effluent displayed a low MP concentration (4.06 ± 3.06 MP/L to 5.44 ± 3.51 MP/L), but considering the daily wastewater discharge (253,900,000 L/day), it can significantly contribute to the MP pollution of aquatic systems. Seasonal variation was observed in the influent, with higher abundance during summer, while no significant trend was observed in the effluent. The WWTP achieved an 88.6-93.0 % removal efficiency, with mechanical treatment and granular filtration being the most effective, followed by biological treatment and UV disinfection. Fragments were the most abundant among the observed shapes (53.9-59.9 %) and black MPs dominated (44.7-67.5 %). Polyethylene (PE) emerged as the most prevalent polymer type among the MPs analyzed (31.6-35.7 %).
Collapse
Affiliation(s)
- Dana Zhaxylykova
- Department of Civil and Environmental Engineering, School of Digital Sciences and Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Alisher Alibekov
- Department of Civil and Environmental Engineering, School of Digital Sciences and Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Woojin Lee
- Department of Civil and Environmental Engineering, School of Digital Sciences and Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan; Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan.
| |
Collapse
|
2
|
Bhat SA, Han ZM, Dewi SK, Wei Y, Li F. Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:189. [PMID: 38695970 DOI: 10.1007/s10653-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 06/17/2024]
Abstract
The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.
Collapse
Affiliation(s)
- Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Zaw Min Han
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shiamita Kusuma Dewi
- United Graduated School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
3
|
Li X, Liu L, Zhang X, Yang X, Niu S, Zheng Z, Dong B, Hur J, Dai X. Aging and mitigation of microplastics during sewage sludge treatments: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171338. [PMID: 38428608 DOI: 10.1016/j.scitotenv.2024.171338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Lulu Liu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - XingFeng Yang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Zhiyong Zheng
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Lei X, Cui G, Sun H, Hou S, Deng H, Li B, Yang Z, Xu Q, Huo X, Cai J. How do earthworms affect the pathway of sludge bio-stabilization via vermicomposting? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170411. [PMID: 38280597 DOI: 10.1016/j.scitotenv.2024.170411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The synergy effects between earthworms and microorganisms promote nitrogen mineralization and enhance stabilization of organic matters in a vermicomposting system. However, the stabilization pathways of vermicomposting in the system remain unknown. The aim of this study was to investigate the effect of earthworms on the stabilization pathway and associated microbial population of waste activated sludge recycled by vermicomposting. The treatment of sludge with and without earthworms was conducted at 20 °C for 60 days. The trends in organic matter (OM), dissolved organic carbon (DOC), NH4+-N, electrical conductivity (EC), microbial biomass carbon (MBC), and dehydrogenase activity (DHA) were similar in both systems over time. At the end of the treatment, OM and DOC were significantly lower (p < 0.05), and EC, NH4+-N, and NO3--N were significantly higher (p < 0.05) in the vermicomposting group than in the control. Based on the statistical results of principal component analysis (PCA), it was proposed that the stabilization pathway in both treatment systems required a sequence of reactions characterized by the degradation of organic matter, accumulation of dissolved organic carbon, ammonification, and nitrification. Vermicomposting led to greater abundance and diversity (Shannon index) of 16S rDNA microbial species, but more even distribution in microbial community composition (Simpson index) than the control. However, the opposite performance for 18S rDNA microbes was observed. Vermicomposting enhanced the abundance of microorganisms involved in organic matter degradation and nitrification, facilitating the conversion of organic matter and favoring the nitrification. In short, the pathway of sludge bio-stabilization is not altered regardless of the addition of earthworms or not, which enables us to better understand vermicomposting process of sludge.
Collapse
Affiliation(s)
- Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Guangyu Cui
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hongxin Sun
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Suxia Hou
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Hongying Deng
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Bo Li
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Zhengzheng Yang
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Qiushi Xu
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Xueyu Huo
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Jiaxuan Cai
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| |
Collapse
|
5
|
Li K, Xiu X, Hao W. Microplastics in soils: Production, behavior process, impact on soil organisms, and related toxicity mechanisms. CHEMOSPHERE 2024; 350:141060. [PMID: 38159733 DOI: 10.1016/j.chemosphere.2023.141060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years, microplastics (MPs) pollution has become a hot ecological issue of global concern and MP pollution in soil is becoming increasingly serious. Studies have shown that MPs have adverse effects on soil biology and ecological functions. Although MPs are evident in soils, identifying their source, abundance, and types is difficult because of the complexity and variability of soil components. In addition, the effects of MPs on soil physicochemical properties (PCP), including direct effects such as direct interaction with soil particles and indirect effects such as the impact on soil organisms, have not been reported in a differentiated manner. Furthermore, at present, the soil ecological effects of MPs are mostly based on biological toxicity reports of their exudate or size effects, whereas the impact of their surface-specific properties (such as environmentally persistent free radicals, surface functional groups, charge, and curvature) on soil ecological functions is not fully understood. Considering this, this paper reviews the latest research findings on the production and behavioral processes of MPs in soil, the effects on soil PCP, the impacts on different soil organisms, and the related toxic mechanisms. The above discussion will enhance further understanding of the behavioral characteristics and risks of MPs in soil ecosystems and provide some theoretical basis for further clarification of the molecular mechanisms of the effects of MPs on soil organisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
6
|
Zhao H, Zhou Y, Lu Z, Ren X, Barcelo D, Zhang Z, Wang Q. Microplastic pollution in organic farming development cannot be ignored in China: Perspective of commercial organic fertilizer. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132478. [PMID: 37688868 DOI: 10.1016/j.jhazmat.2023.132478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Commercial organic fertilizer, an essential fertilizer for developing organic farming in China, has been identified as a potentially important source of microplastics (MPs) on farmland. However, little is known about the occurrence of MPs in commercial organic fertilizers and their potential ecological risks nationwide. Here, stereoscopy and laser-infrared imaging spectrometry were used to comprehensively investigate the abundance, size, type and morphology of MPs in commercial organic fertilizers collected from mainland China, assess the ecological risks, and predict MP contamination. Commercial organic fertilizers contained many MPs (8.88 ×103 to 2.88 ×105 items/kg), especially rich in small-size MPs (<100 µm), accounting for 76.53%. The highest MP pollution load value was observed in fertilizers collected from East China. Chlorinated polyethylene, polyurethane, polyethylene and polypropylene were the dominant MPs with the shape of film and fragment, concentrated in small sizes (<100 µm). The risk index (H-index) of the MPs was used to quantify the ecological risk of the MPs in the different samples, and most of the fertilizers were at level Ⅲ with high risk. Predictably, 2.32 × 1013 - 2.81 × 1016 MPs will accumulate in orchard soils after five years of fertilization, especially in South, Southwest and East China. This study provides primary scientific data on MP pollution in commercial fertilizer and the health development of organic farming.
Collapse
Affiliation(s)
- Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
Sun X, Anoopkumar AN, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Degradation mechanism of microplastics and potential risks during sewage sludge co-composting: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122113. [PMID: 37379875 DOI: 10.1016/j.envpol.2023.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) as a kind of emerging contaminants, widely exists in various kinds of medium, sewage sludge (SS) is no exception. In the sewage treatment process, a large number of microplastics will be deposited in SS. More seriously, microplastics in sewage sludge can migrate to other environmental media and threaten human health. Therefore, it is necessary to remove MPs from SS. Among the various restorations, aerobic composting is emerging as a green microplastic removal method. There are more and more reports of using aerobic compost to degrade microplastics. However, there are few reports on the degradation mechanism of MPs in aerobic composting, hindering the innovation of aerobic composting methods. Therefore, in this paper, the degradation mechanism of MPs in SS is discussed based on the environmental factors such as physical, chemical and biological factors in the composting process. In addition, this paper expounds the MPs in potential hazards, and combined with the problems in the present study were studied the outlook.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
8
|
Chen Y, Li J, Zhao T, Zhang Y, Zhang L, Xu L. The temporal profile of GH 1 gene abundance and the shift in GH 1 cellulase-producing microbial communities during vermicomposting of corn stover and cow dung. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84035-84045. [PMID: 37354300 DOI: 10.1007/s11356-023-28341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Vermicomposting is a promising method for corn stover management to achieve bioresource recovery and environmental protection. Most β-glucosidases, which limit the cellulose degradation rate during vermicomposting of corn stover, belong to glycoside hydrolase family 1 (GH1). This study was conducted with different earthworm densities to quantify the GH1 gene abundance and investigate the evolution of GH1 cellulase-producing microbial communities using qPCR and pyrosequencing. The results showed that β-glucosidase activity, GH1 gene abundance, TOC, and microbial communities carrying the GH1 gene were affected by processing time and earthworm density. After introducing earthworms, β-glucosidase activity increased to 1.90-2.13 U/g from 0.54 U/g. The GH1 gene abundance of treatments with earthworms (5.82E+09-6.70E+09 copies/g) was significantly higher than that of treatments without earthworms (2.48E+09 copies/g) on Day 45. Earthworms increased the richness of microbial communities. The relative abundances of Sphingobium and Dyadobacter, which are dominant genera harboring the GH1 gene, were increased by earthworms to peak values of 23.90% and 11.20%, respectively. Correlation analysis showed that Sphingobium, Dyadobacter, Trichoderma, and Starkeya were positively associated with β-glucosidases. This work sheds new light on the mechanism of cellulose degradation during vermicomposting at the molecular level.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Jiaolin Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Tingting Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Mississippi, MS, 39567, USA
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Zhang Y, He R, Zhao J, Zhang X, Bildyukevich AV. Effect of aged biochar after microbial fermentation on antibiotics removal: Key roles of microplastics and environmentally persistent free radicals. BIORESOURCE TECHNOLOGY 2023; 374:128779. [PMID: 36828217 DOI: 10.1016/j.biortech.2023.128779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
For the first time, biochar was prepared by changing the polystyrene (PS) content in sludge, and the efficiency of antibiotics removal by biochar was evaluated after fermentation aging. Fermentation aging affects the efficiency of antibiotics removal by reducing the specific surface area and active sites of biochar. The antibiotics removal efficiency of different types of biochar after aging decreased by 5.95%-13.59%. Owing to the biotoxicity of biochar, the relative abundance of most communities decreased during fermentation, whereas Anaerolineae still increased (14.29% to 33.05% or 33.02%). However, controlled experiments confirmed that biochar was much less toxic to Scenedesmus obliquus than to antibiotics, with concentrations of 11.09 × 105 cells/mL and 0.188 × 105 cells/mL, respectively. With the positive effect of environmentally persistent free radicals (EPFRs) considered, increasing the PS content in sludge facilitated the removal of antibiotics by biochar. This study assesses the stability of biochar in removing antibiotics after long-term microbial aging.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Xiaozhuan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Alexandr V Bildyukevich
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 220072, Minsk, Surganov str. 13, Belarus
| |
Collapse
|