1
|
Ye J, Zhang Y, Gao Y, Li C, Zou B, Cheng R, Chi B, Xue X, Domingo-Félez C. Impacts of environmentally persistent free radicals on the denitrification toxicity of photoaged tire wear particles in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138623. [PMID: 40381342 DOI: 10.1016/j.jhazmat.2025.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The widespread detection of tire wear particles (TWPs) in estuaries has raised concerns about their potential environmental hazards. However, knowledge of photoaging-induced environmentally persistent free radicals (EPFRs) formation on TWPs in estuarine environments and their impact on sediment denitrification remains limited. This study investigated the formation of EPFRs on TWP during photoaging in estuarine environments and evaluated their effects on sediment denitrification and nitrous oxide (N2O) accumulation. Sixty days of illumination increased EPFR concentration on TWPs by 373 %, with the generated EPFRs persisting in sediments for over 20 days. Exposure to pristine TWP (PTWP) reduced denitrification rates by 10.3 ± 5.6 % and increased N2O accumulation by 18.3 ± 4.5 %. Further exposure to photoaged TWP (ATWP) under 10-60 days of illumination expanded denitrification suppression and N2O accumulation to 28.1 ± 7.1-42.5 ± 6.6 % and 18.8 ± 4.3-31.7 ± 4.6 %, respectively. EPFRs exacerbated the accumulation of reactive nitrogen species in sediment and compromised the antioxidant systems. Structural equation modeling confirmed that EPFRs indirectly suppressed denitrification rates by directly impairing microbial processes involved in carbon metabolism and electron transfer. This study is the first to report that the formation of EPFRs enhances the negative effects of ATWP on the sediment's nitrogen cycle, offering valuable insights for assessing the ecological risks associated with TWP.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Yuhan Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Gao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Chen Li
- Wenzhou Environmental Technology Co., Ltd, Wenzhou 325088, China
| | - Baoping Zou
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Ruotong Cheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Baoyan Chi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangdong Xue
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
2
|
Vlachos D, Voutsa D. Adsorption of emerging micropollutants on tire wear particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179068. [PMID: 40068416 DOI: 10.1016/j.scitotenv.2025.179068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The aim of this study was to investigate the sorption behavior of tire wear particles (TWP), that represent a significant fraction of microplastics (MP) in aquatic environment. Two emerging micropollutants frequently detected in aquatic environment, bisphenol A and 1H-benzotriazole, were used as model compounds. Batch adsorption experiments were conducted to study kinetics and thermodynamic equilibrium as well as the effect of pH and ionic strength. Moreover, the impact of three aging processes, photoaging, chemical aging and biological aging on sorption behavior of TWPs was also studied. For comparison, similar experiments were conducted using polyethylene (PE), a microplastic consistently detected in aquatic environment. TWP exhibited higher adsorption tendency for BPA compared to BT. Photoaging of TWP enhanced the adsorption of target compounds. Bioaging and chemically aging significantly reduced the adsorption of BPA. Salinity affects negatively the adsorption of both compounds. TWP exhibited sorption behavior for BPA and BT comparable to polyethylene suggesting similar environmental risk as carriers of these micropollutants.
Collapse
Affiliation(s)
- Dimitrios Vlachos
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece.
| |
Collapse
|
3
|
Li K, Chen Z, Hao W, Ye Z. Differential inhibition of tire wear particles on sludge dewatering by aging modes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136214. [PMID: 39432931 DOI: 10.1016/j.jhazmat.2024.136214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
The study assessed the acute toxicities of tire wear particles (TWPs) on activated sludge, comparing cryogenically ground TWPs (C-TWPs) with photo-aged (PA-TWPs), ozone-aged (OA-TWPs), and Fenton-aged (FA-TWPs) variants over 96 h. At 0.1 mg/L, TWPs showed no significant effects on sludge respiration or purification. However, at 50 mg/L, significant impacts on respiration, decontamination capacity, and microbial community structure were observed, particularly in aged TWPs. Specifically, aged TWPs, especially FA-TWPs, are prone to inducing necrosis by generating non-cellular reactive oxygen species (ROS) catalyzed by persistent free radicals, leading to an increase in lactate dehydrogenase release ranging from 215 % to 284 %. Conversely, C-TWPs tend to trigger apoptosis via intracellular ROS accumulation, leading to a 358 % increase in intracellular ROS. Aged TWPs exhibited higher affinities for proteins and polysaccharides, while C-TWPs preferred phospholipids. All TWPs adversely affected sludge dewatering, with strong correlations found between specific resistance to filtration (SRF) and total protein (r = 0.981, p < 0.001) and between bound water and early cell apoptosis (r = 0.961, p < 0.01). Additionally, a correlation between SRF and cellular necrosis (r = 0.956, p < 0.01) was noted, linked to increased protein and extracellular polymeric substance levels. These results emphasize substantial influence of aged TWPs on sludge dewatering efficiency via diverse bacterial cell death mechanisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China.
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| |
Collapse
|
4
|
Yang Y, Liu J, Lu H, Hou J, Fan X, Liu Q, Zhao M, Ren L, You G. Effects of tire wear particle on growth, extracellular polymeric substance production and oxidation stress of algae Chlorella vulgaris: Performance and mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107118. [PMID: 39406008 DOI: 10.1016/j.aquatox.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/12/2024]
Abstract
Tire wear particles (TWP) represent a distinctive form of microplastics (MPs) that are widely distributed in aquatic ecosystems. However, the toxicity of various types of TWP on phytoplankton remain to be further explored. Thus, three different TWPs originating from replaced bicycle, car, and electro-mobile tire (marked as BTWP, CTWP, and ETWP) were selected and their long-term biological influences on Chlorella vulgaris were investigated. Results demonstrated TWPs showed a concentration-dependent growth promotion of Chlorella vulgaris, with a maximum promotion rate reached to 40.51 % (10 mg/L, 10 d), 23.5 % (80 mg/L, 12 d), and 28.7 % (20 mg/L, 12 d) in the presence of BTWP, CTWP and ETWP, respectively. Meanwhile, TWPs could stimulate the secretion of EPS and induce oxidative stress. EPS analysis revealed the increase of polysaccharides could protect the cell from the direct contact with TWP particles. Moreover, the increased concentration of EPS also helps to induce the settlement of TWP and reduce the leachate release. The release of TWP into the environment could act as an accelerator for the growth of Chlorella vulgaris, which might further change the normal physicochemical behaviors of algae colony in aquatic system. Our findings provide new insights into the toxicity mechanism of TWPs on freshwater algae and valuable data on environmental risk assessment of TWPs.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiaqiang Liu
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Haoran Lu
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiulei Fan
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China
| | - Qiang Liu
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China
| | - Minglei Zhao
- Jiangsu Huichuang Environmental Testing Company Ltd., Xuzhou 221001, China
| | - Lingxiao Ren
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Li K, Hao W, Chen Z, Ye Z. Acute inhibitory effects of tire wear particles on the removal of biological phosphorus:The critical role of aging in improving environmentally persistent free radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124638. [PMID: 39089474 DOI: 10.1016/j.envpol.2024.124638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
A comparative study explored how photoaging, ozonation aging, and Fenton aging affect tire wear particles (TWPs) and their phosphorus (P) removal in activated sludge. Aging altered TWPs' properties, increasing surface roughness, porosity, and generating more small particles, especially environmental persistent free radicals (EPFRs) in ozonation and Fenton aging. Post-aging TWPs (50 mg/L) inhibited sludge P removal significantly (p < 0.05), with rates of 44.3% and 59.6% for ozonation and Fenton aging, respectively. In addition, the metabolites involved in P cycling (poly-β-hydroxyalkanoates: PHA and glycogen) and essential enzymes (Exopolyphosphatase: PPX and Polyphosphate kinase: PPK) were significantly inhibited (p < 0.05). Moreover, TWPs led to a decrease in microbial cells within the sludge and altered the community structure, a situation exacerbated by the aging of TWPs. P-removing bacteria decreased (e.g., Burkholderia, Candidatus), while extracellular polymeric substance-secreting bacteria increased (e.g., Pseudomonas, Novosphingobium). Pearson correlation analysis highlighted EPFRs' role in TWPs' acute toxicity to microbial cells, yet, emphasizing particle size's impact on the sludge system's purification and community structure.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
6
|
Li K, Hao W, Chen Z, Ye Z, Zhao T. Responses of colonization and development of periphytic biofilms to three typical tire wear particles with or without incubation-aging in migrating aqueous phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173716. [PMID: 38851346 DOI: 10.1016/j.scitotenv.2024.173716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Understanding the behavior of tire wear particles (TWPs) and their impact on aquatic environments after aging is essential. This study explored the characteristics of TWPs generated using different methods (rolling friction, sliding friction, and cryogenic milling) and their transformation after exposure to environmental conditions mimicking runoff and sewage, focusing on their effects on river water and periphytic biofilms. Laboratory experiments indicate that at low exposure levels (0.1 mg/L), TWPs promoted biofilm growth, likely due to zinc release acting as a nutrient and the aggregation of particles serving as biofilm scaffolds. However, at higher concentrations (100 mg/L), TWPs inhibited biofilm development. This inhibition is linked to toxic byproducts like N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone and environmentally persistent free radicals, which reduce biofilm biomass, alter algal diversity, and decrease the production of essential biofilm components such as proteins and polysaccharides, consistent with the inhibitory behavior of TWPs on bis-(3'-5')-cyclic diguanosine monophosphate and quorum sensing signals, including acyl-homoserine lactone and autoinducer-2. Aging processes, particularly after simulated sewage treatment, further affect ecological impacts of TWPs, reducing the benefits observed at low concentrations and intensifying the negative effects at high concentrations. Contribution of here lies in systematically revealing the impact of TWPs on the development of aquatic biofilms, emphasizing the logical relationship between their aging characteristics, environmental behavior, and ecological risks. It assesses not only the release effects of typical additives and conventional size effects but also highlights the emerging photochemical toxicity (persistent free radicals), thus providing valuable insights into the aquatic ecological risk assessment of TWPs.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Tianyi Zhao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
7
|
Gu Y, Jiang Y, Chen X, Li L, Chen H, Chen J, Wang C, Yu J, Chen C, Li H. Generation of environmentally persistent free radicals on photoaged tire wear particles and their neurotoxic effects on neurotransmission in Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 186:108640. [PMID: 38608385 DOI: 10.1016/j.envint.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Tire wear particles (TWP) are a prevalent form of microplastics (MPs) extensively distributed in the environment, raising concerns about their environmental behaviors and risks. However, knowledge regarding the properties and toxicity of these particles at environmentally relevant concentrations, specifically regarding the role of environmentally persistent free radicals (EPFRs) generated during TWP photoaging, remains limited. In this study, the evolution of EPFRs on TWP under different photoaging times and their adverse effects on Caenorhabditis elegans were systematically investigated. The photoaging process primarily resulted in the formation of EPFRs and reactive oxygen species (O2•-, ⋅OH, and 1O2), altering the physicochemical properties of TWP. The exposure of nematodes to 100 μg/L of TWP-50 (TWP with a photoaging time of 50 d) led to a significant decrease in locomotory behaviors (e.g., head thrashes, body bends, and wavelength) and neurotransmitter contents (e.g., dopamine, glutamate, and serotonin). Similarly, the expression of neurotransmission-related genes was reduced in nematodes exposed to TWP-50. Furthermore, the addition of free-radical inhibitors significantly suppressed TWP-induced neurotoxicity. Notably, correlation analysis revealed a significantly negative correlation between EPFRs levels and the locomotory behaviors and neurotransmitter contents of nematodes. Thus, it was concluded that EPFRs on photoaged TWP induce neurotoxicity by affecting neurotransmission. These findings elucidate the toxicity effects and mechanisms of EPFRs, emphasizing the importance of considering their contributions when evaluating the environmental risks associated with TWP.
Collapse
Affiliation(s)
- Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinyu Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Li K, Hao W, Liu C, Chen Z, Ye Z. Ecotoxicity of tire wear particles to antioxidant enzyme system and metabolic functional activity of river biofilms: The strengthening role after incubation-aging in migrating water phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169849. [PMID: 38185180 DOI: 10.1016/j.scitotenv.2023.169849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Tire wear particles (TWPs) are commonly studied for their exudation toxicity, yet a critical knowledge gap exists regarding the source nature and migration of these particulate pollutants, hindering comprehensive environmental risk assessments. This study explores the pristine properties of three typical TWPs (rolling friction (R-TWPs), sliding friction (S-TWPs), and cryogenically milled tire treads (C-TWPs)) and their aging characteristics after incubation in runoff (primary aging) and sewage (further aging). Our investigation aims to unveil the intrinsic mechanisms of TWPs ecotoxicity towards freshwater biofilms. Results reveal that the generation modes significantly impact pristine physicochemical properties, including surface structure, particle size, and EPFR abundance. These factors, in turn, influence acute ecotoxicity, as evidenced by cell mortality, antioxidant enzyme activity responses, and metabolic changes in freshwater biofilms. The ecological toxicity ranking of pristine exposure groups is S-TWPs, R-TWPs, and C-TWPs, attributed to variations in surface properties and particle size. Following incubation and aging, especially in sewage, differences in physicochemical properties among TWPs types diminish. Alarmingly, ecotoxicity intensifies and becomes consistent across TWPs types, driven by the screening of small particles during water incubation aging and the formation of EPFRs on TWPs surfaces stimulated by photosensitive organic matter or groups. This study underscores the aquatic ecological risks associated with TWP surface properties, highlighting the significant influence of environmental aging conditions on these risks.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Chi Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
9
|
Cao H, Ding P, Li X, Huang C, Li X, Chen X, Zhang L, Qi J. Environmentally persistent free radicals on photoaged microplastics from disposable plastic cups induce the oxidative stress-associated toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132990. [PMID: 37976855 DOI: 10.1016/j.jhazmat.2023.132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that exerting multiple toxicological effects. Most studies have focused primarily on the models of unaged MPs and lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging MPs from disposable plastic cups (DPC-MPs) have not been well studied. Here, the formation of EPFRs on photoaged DPC-MPs and their toxic effects in nematodes were investigated. UV irradiation generated EPFRs, which influenced the characterization of DPC-MPs. Exposure to photoaged DPC-MPs at environmentally relevant concentrations (100-1000 μg/L) reduced the locomotion behavior, body length, and brood size. The Reactive oxygen species (ROS) production, lipofuscin accumulation, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were increased along with the downregulation of the expression levels of associated genes, such as clk-1, clt-1, and gst-4,in nematodes. Moreover, the toxicity and oxidative stress response of nematodes were significantly inhibited due to N-acetyl-l-cysteine (NAC). Pearson's correlation analysis revealed that the oxidative stress was significantly associated with adverse physiological effects. Therefore, EPFRs on photoaged DPC-MPs cause toxicity in nematodes, and oxidative stress is important for regulating toxicity. This study offers novel insights into the potential risks of DPC-MPs under UV irradiation, highlighting the need to consider the role of EPFRs in toxicity assessments of DPC-MPs.
Collapse
Affiliation(s)
- Hanling Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
10
|
Li K, Hao W, Liu C. Risk implications induced by behaviors of artificial and pavement-generated TWPs in river water: Role of particle-self properties and incubation aging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123277. [PMID: 38163629 DOI: 10.1016/j.envpol.2023.123277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Here, we investigated the pristine properties of three typical tire wear particles (TWPs) and their aging properties after incubation in runoff (primary aging) and sewage (further aging), and captured the differences in the behavioral characteristics of nine TWPs in river water, with a view to paving the way for revealing the intrinsic mechanism of the hydroecological effects of TWPs. Our results highlight that the generation modes of three pristine tire wear particles (TWPs), stemming from typical tire and road wear processes-specifically, rolling friction (R-TWPs) and sliding friction (S-TWPs), alongside cryogenically milled tire treads (C-TWPs)-significantly impact their pristine physicochemical properties. This impact encompasses surface structure, particle size (D [4,3]: 8.5-121.3 μm), surface potential (-10.4 ∼ -1.8 mV), contact angle (95.2-129.8°), density (1.09-1.75 kg/m3), etc., consequently, these differences significantly influence their migration capability and sorption capacity during the incubation and aging in runoff and sewage. Interestingly, after incubation and aging in the migrating aqueous phase, particularly with additional aging in sewage, not only do distinctions in the aforementioned physicochemical properties (namely, particle size (5.6-6.6 μm), surface potential (-18.4 ∼ -18.1 mV), contact angle (124.5-125.4°), density (1.05-1.16 kg/m3)) among various types of TWPs diminish, but the environmental behaviors (encompassing, desorption capacity, aggregation kinetics, photochemical activity-formation of persistent free radicals, and exudation-derivative (6PPD-Quinone) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine: 6PPD) exhibited by this array of TWPs demonstrate a remarkable coherence within the downstream river water. Concerningly, the aforementioned features of aquatic system behaviors appear to be predisposed towards exacerbating the heightened toxicity of TWPs, for example, the leaching concentration of 6PPD-Q increased by two to three times after aging, aligning with established precedents regarding the toxicological causes associated with the quinone derivatives of antioxidants in rubber contaminants.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Chi Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
11
|
Ni X, Song J, Lu D, Tong H, Zhou H, Liu Y, Zhan J, Yi X. Effect of bioturbation of the mitten crab on distribution of tire wear particles and their combined effect on sediment ecosystem. CHEMOSPHERE 2024; 346:140603. [PMID: 37918532 DOI: 10.1016/j.chemosphere.2023.140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Tire wear particles (TWPs) are a major source of environmental microplastic pollution which gradually settle and accumulate in sediments after entering the aquatic environment, which can affect the behaviors of benthic organisms. Bioturbation of benthic species could affect the fate, impacts and potential risks of TWPs by altering the properties and structure of sediments. Therefore, in this study, the effect of TWPs on the burrowing activity of Chinese mitten crab (Eriocheir sinensis) was investigated. In addition, the effects of crab bioturbation on the distribution of TWPs and their additives were studied. The combined effects of TWPs and crab bioturbation on the microbial communities in the sediments were also explored. The results of this study showed that both TWPs and the leachate significantly inhibited the burrowing activity of crabs. TWPs in the surface layer of sediments were re-distributed by crab bioturbation and enriched mainly in the sediments near the burrow walls. Meanwhile, the heavy metals (i.e., Zn, Ca, Mg, Ba and Al) used as additives during the tire production in the burrow walls significantly increased as the accumulation of TWPs near burrow walls. In this study, TWP exposure decreased the bacterial diversity and abundance, as well as the functional genes related to carbon and nitrogen cycling process, but crab bioturbation increased them in the sediments of burrow walls by constructing a unique habitat. However, after TWPs entering into burrows, they were significantly decreased in the sediments near the burrow walls like the effects of TWPs, suggesting the negative effects of TWPs could play a dominant role in this combined system. Overall, this study is important for evaluating the distribution and effects of TWP pollution in the sediment ecosystem under biological factors such as bioturbation.
Collapse
Affiliation(s)
- Xiaoming Ni
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Jinbo Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Qinzhou, Guangxi, China
| | - Huiyan Tong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China.
| |
Collapse
|
12
|
Li K, Yu J, Kong D, Chen X, Peng Y, Wang L. Differential cytotoxicity to human cells in vitro of tire wear particles emitted from typical road friction patterns: The dominant role of environmental persistent free radicals. CHEMOSPHERE 2023; 343:140256. [PMID: 37742763 DOI: 10.1016/j.chemosphere.2023.140256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Tire wear particles (TWPs) have been recognized as one of the major sources of microplastics (MPs), however, effects of initial properties and photochemical behavior of TWPs on cytotoxicity to human cells in vitro have not been reported. Therefore, here, three TWPs generated from typical wear of tires and pavements (i.e., rolling friction (R-TWPs) and sliding friction (S-TWPs)) and cryogenically milled tire tread (C-TWPs), respectively, and their photoaging counterparts were used to study the reasons for their differential cytotoxicity to 16HBE cells in vitro. Results showed in addition to changes of surface structure and morphology, different preparation methods could also induce formation of different concentration levels of environmental persistent free radicals (EPFRs) (from 1.24 to 3.06 × 1017 spins/g with g-factors ranging 2.00307-2.00310) on surfaces of TWPs, which contained 7.3%-65.8% of reactive EPFRs (r-EPFRs). Meanwhile, photoaging for 90 d could strengthen formation of EPFRs (from 4.03 to 4.61 × 1017 spins/g) with containing 74.7%-78.1% r-EPFRs on surfaces of TWPs and improve their g-factor indexes (ranging 2.00309-2.00313). At 100 μg mL-1 level, compared to C-TWPs, both R-TWPs and S-TWPs (whether photoaging or not) carried higher intensity EPFRs could significantly inhibit 16HBE cells proliferation activity, cause more cells oxidative stress and induce more cell apoptosis/necrosis and secretion of inflammatory factor (P < 0.05). However, regardless of how TWPs were prepared, photoaged or not, exposure at a concentration of 1 μg mL-1 appeared to be non-acute cytotoxic. Correlation analysis suggested dominant toxicity of TWPs was attributed to the formation of r-EPFRs on their surfaces, which could promote accumulation of excess reactive oxygen species in cells and the massive deposition of intracellular particles. This study provides direct evidence of TWPs cytotoxicity, and underlining the need for a better understanding of the influences of initial properties and photochemical characteristics on risk assessment of TWPs released into the environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Deyue Kong
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xingyue Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yonghong Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liangliang Wang
- School of Applied Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
13
|
Li K, Kong D, Xiu X, Hao W, Xu D. Toxic effects of environmentally persistent free radicals (EPFRs) on the surface of tire wear particles on freshwater biofilms: The alleviating role after sewage-incubation-aging. CHEMOSPHERE 2023; 342:140179. [PMID: 37714474 DOI: 10.1016/j.chemosphere.2023.140179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The aquatic ecological risks posed by the surface-active components of tire wear particles (TWPs) are not fully understood. This study aimed to determine the acute (24 h exposure) aquatic toxicity effects of TWPs on freshwater biofilms in terms of total organic carbon (TOC), chlorophyll-a (Chl-a) abundance, quantum yield (ФM), and adenosine triphosphate (ATP). Three types of TWP were tested: TWPs produced via the typical wear of tires and roads (i.e., rolling friction (R-TWPs) and sliding friction (S-TWPs)) and cryogenically milled tire treads (C-TWPs). The results showed that the surface structural properties of the three TWPs differed significantly in morphology, bare composition, functional groups, and surface-active components (environmental persistent free radicals). The exposure of biofilms to the TWPs increased TOC and ATP at low concentrations (1 mg L-1) but inhibited them at high concentrations (50 mg L-1). All TWP types inhibited biofilm photosynthesis (reduced Chl-a and ФM) and altered the community structure of algae to varying degrees; in addition, the toxicity mechanisms of the TWPs contributed to the accumulation of reactive oxygen species and cell membrane (or cell-wall) fragmentation, leading to lactate dehydrogenase release. S-TWPs were the most toxic because their surface carried the highest environmental persistent free radicals. R-TWPs were the second most toxic, which was attributed to their smaller particle size. The toxicity of all TWPs was tested after sewage incubation aging. The results showed that the toxicity of all TWPs reduced as the sewage covered their surface components and active sites. This process also reduced the differences in toxicity among the TWPs. This study filled a research gap in our understanding of aquatic toxicity caused by the surface structural properties of tire microplastics and has implications for the study of microplastic biotoxicity mechanisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Deyue Kong
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Defu Xu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| |
Collapse
|
14
|
Li K, Su H, Xiu X, Liu C, Hao W. Tire wear particles in different water environments: occurrence, behavior, and biological effects-a review and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90574-90594. [PMID: 37481496 DOI: 10.1007/s11356-023-28899-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
As an important source of microplastics, the water ecological risk of tire wear particles (TWPs) has attracted widespread attention worldwide. However, the occurrence and behavior of TWPs and their biological effects in water environments have not been clearly analyzed. For example, most contemporary studies have focused on the evaluation of the aquatic toxicity of TWPs leachate, and little attention has been paid to the behavior process and potential risks of its surface properties in water environments. In addition, most studies rely on preparing TWPs under laboratory conditions or purchasing commercial TWPs for studying their water environmental behavior or exposure. These obviously cannot meet the requirements of accurate assessment of water ecological risks of TWPs. As thus, in addition to describing the occurrence, distribution, and (aging) transformation of TWPs in different water environments, we further tried to explain the potential water environment behavior process and multiple pathways leading to potential adverse impacts of TWPs on aquatic organisms from the perspectives of particle self-toxicity and release toxicity, as well as synergistic effects of TWPs and other substances are also discussed. The existing data, such as studies on the self-characteristics of TWPs, environmental factors, and subjects, are insufficient to comprehensively evaluate the recent changes in essential water ecosystem services and multifunctions caused by TWPs, implying that the impact of TWPs on water environmental health needs to be further evaluated, and the corresponding countermeasures should be recommended. In this context, the current review provides an outlook on future research on TWPs in aquatic environments.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, China.
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chi Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, China
| |
Collapse
|
15
|
Soni A, Das PK, Yusuf M, Ridha S, Kamyab H, Alam MA, Masood F, Chelliapan S, Ubaidullah M, Pandit B, Prakash C. Synergy of silica sand and waste plastics as thermoplastic composites on abrasive wear characteristics under conditions of different loads and sliding speeds. CHEMOSPHERE 2023; 323:138233. [PMID: 36863626 DOI: 10.1016/j.chemosphere.2023.138233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The diverse nature of polymers with attractive properties has replaced the conventional materials with polymeric composites. The present study was sought to evaluate the wear performance of thermoplastic-based composites under the conditions of different loads and sliding speeds. In the present study, nine different composites were developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) with partial sand replacements i.e., 0, 30, 40, and 50 wt%. The abrasive wear was evaluated as per the ASTM G65 standard test for abrasive wear through a dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N) and sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The optimum density and compressive strength were obtained to be 2.0555 g/cm3 and 46.20 N/mm2, respectively for the composites HDPE60 and HDPE50 respectively. The minimum value of abrasive wear were found to 0.02498, 0.03430, 0.03095, 0.09020 and 0.03267 (cm3) under the considered loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), respectively. Moreover, the composites LDPE50, LDPE100, LDPE100, LDPE50PET20 and LDPE60 showed a minimum abrasive wear of 0.03267, 0.05949, 0.05949, 0.03095 and 0.10292 at the sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s), respectively. The wear response varied non-linearly with the conditions of loads and sliding speeds. Micro-cutting, plastic deformations, fiber peelings, etc. were included as the possible wear mechanism. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors through the morphological analyses of the worn-out surfaces were provided.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Mohammad Yusuf
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - Syahrir Ridha
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Mohammad Azad Alam
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Faisal Masood
- Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de La Universidad 30, 28911, Leganés, Madrid, Spain
| | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
16
|
Chen H, Jiang Y, Gu Y, Ding P, Wang C, Pan R, Shi C, Zeng L, Chen X, Li H. The generation of environmentally persistent free radicals on photoaged microbeads from cosmetics enhances the toxicity via oxidative stress. ENVIRONMENT INTERNATIONAL 2023; 174:107875. [PMID: 36933305 DOI: 10.1016/j.envint.2023.107875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Microbeads used in personal care products have been one of the important sources of microplastics (MPs), and little has been reported on their environmental behaviors and health risks. The characteristics of environmentally persistent free radicals (EPFRs) and the toxicity assessment of MPs (environmentally relevant concentrations) from cosmetics during photoaging remains largely unknown. In this study, the formation of EPFRs on polyethylene (PE) microbeads from facial scrubs under light irradiation and their toxicity were investigated using C. elegans as a model organism. The results suggested that light irradiation induced the generation of EPFRs, which accelerates the aging process and alters the physicochemical properties of PE microbeads. Acute exposure to PE (1 mg/L) at photoaged times of 45-60 d significantly decreased the physiological indicators (e.g., head thrashes, body bends, and brood size). The oxidative stress response and stress-related gene expression were also enhanced in nematodes. The addition of N-acetyl-l-cysteine induced significant inhibition of toxicity and oxidative stress in nematodes exposed to 45-60 d of photoaged PE. The Pearson correlation results showed that the concentration of EPFRs was significantly correlated with physiological indicators, oxidative stress, and related-genes expression in nematodes. The data confirmed that the generation of EPFRs combined with heavy metals and organics contributed to toxicity induced by photoaged PE, and oxidative stress might be involved in regulating adverse effects in C. elegans. The study provides new insight into the potential risks of microbeads released into the environment during photoaging. The findings also highlight the necessity for considering the role of EPFRs formation in evaluating the impacts of microbeads.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|