1
|
Wang H, Shu Y, Kuang Z, Han Z, Wu J, Huang X, Song X, Yang J, Fan Z. Bioaccumulation and potential human health risks of PAHs in marine food webs: A trophic transfer perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136946. [PMID: 39718080 DOI: 10.1016/j.jhazmat.2024.136946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in aquatic environments that can accumulate in marine organisms and pose potential health risks to humans through trophic transfer in the food webs. However, the accumulation and health risks of PAHs in organisms at different trophic levels remain unclear. This study investigated the accumulation and trophic transfer of PAHs in 40 marine organisms from Beibu Gulf (China), and assessed their health risks. Utilizing the trophic level spectrum constructed with stable isotope methods, the organisms were categorized into three trophic levels: Omnivorous (15.00 %), low-level carnivorous (67.50 %), and mid-level carnivorous (17.50 %). The contamination levels of total PAHs in these organisms ranged from "mild pollution" to "moderate pollution", with all organisms exhibiting significant PAH accumulation (Bioconcentration factor value > 2000). Total PAH concentrations increased with higher trophic levels, following the trend of mid-level carnivores > low-level carnivores > omnivores. Notably, only three PAH compounds (Nap, Fla and Phe) showed biomagnification effects, while the others exhibited trophic dilution. Carcinogenic risk assessment indicated an "Unacceptable risk" level for all populations, with the highest risk due to consumption of mid-level carnivorous. These findings offer new insights into the accumulation and health risks of PAHs from a trophic transfer perspective.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Yilan Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zexing Kuang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zilin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaheng Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jing Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Huang XL, Xu ZH, Qiu JB, Ou XL, Yu S, Zhang HY, Huang D, Wu SW, Huang YT, Zou LG, Yang WD, Li HY, Ou LJ, Li DW. Understanding the Molecular Mechanisms of Pyrene in Governing the Critical Metabolic Circuits of Alexandrium pacificum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1112-1120. [PMID: 39782680 DOI: 10.1021/acs.est.4c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on Alexandrium pacificum, a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, A. pacificum effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater. Furthermore, the study noted a significant reduction in the synthesis of GTX4, GTX1, NEO, and GTX3 toxins in A. pacificum cells exposed to 50 and 200 μg/L of pyrene. Concurrently, exposure to pyrene resulted in marked declines in the growth and photosynthetic efficiency of A. pacificum. Proteomics analysis results showed an upregulation of proteins related to endocytosis, such as HSPA and Arf, while proteins associated with paralytic shellfish toxin (PST) synthesis, specifically SxtU and SxtH, showed a downregulation trend. In summary, the findings of this study preliminarily elucidate the molecular mechanisms underlying A. pacificum's response to pyrene, reveal the impact of pyrene on PST synthesis, and suggest that A. pacificum holds significant potential for pyrene biodegradation.
Collapse
Affiliation(s)
- Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhen-Hao Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiang-Bing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao-Li Ou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuang Yu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao-Yun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin-Jian Ou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Chai Y, Wang X, Wang H, Zhang Y, Dai Z, Yang J. Tire wear particle leachate exhibits trophic and multi-generational amplification: Potential threat to population viability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136497. [PMID: 39541880 DOI: 10.1016/j.jhazmat.2024.136497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The toxic additives leached from tire wear particles (TWPs) in road runoff can directly poison aquatic organism through high-dose exposure in sporadic hotspots. Given the ubiquity of road runoff carrying TWPs, it is necessary to assess whether there are lagging effects from low-dose exposure, as the toxicity of TWPs leachate can be transferred and amplified across multi-generations and different trophic levels: microalgae, zooplankton and larval fish. In this study, Chlorella pyrenoidesa exposed to different concentrations of TWPs leachate were fed to rotifer Brachionus calyciflorus, which were subsequently used as the initial feeding for fry of Cyprinus carpio. Below 1000 mg/L, the growth of microalgae was not influenced by TWPs leachate. Rotifer fed with contaminated microalgae for a single generation exhibited hormesis in their reproduction. After multigenerational feeding, the microalgae from 500 mg/L treatment were sufficient to suppress reproduction of rotifer since the third generation. For the secondary consumer carp fry, survival, growth, and feeding rate were significantly inhibited at first generation when consuming the rotifers fed with microalgae exposed to 250 mg/L TWPs leachate. So, evidence was presented for the generational and trophic amplification of toxicity in TWPs leachate within the food chain. A seemingly innocuous low dose can exhibit evident ecotoxicity after trophic and generational transfer, which could decline population viability of the aquatic organisms in the future.
Collapse
Affiliation(s)
- Yanchao Chai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xin Wang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Haiqing Wang
- School of Marine Biology and Fisheries, Hainan University, 58 People Road, Haikou 570228, China.
| | - Yu Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhongqi Dai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiaxin Yang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
4
|
Menezes N, Nascimento MM, Cruz I, Martinez ST, da Rocha GO, Souza Filho JR, Leão ZMNA, de Andrade JB. Polycyclic aromatic hydrocarbons in coral reefs from Southwestern Atlantic: A seascape approach using tissue and skeleton of the coral Montastraea cavernosa (Cnidaria; Scleractinia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175913. [PMID: 39226965 DOI: 10.1016/j.scitotenv.2024.175913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Coastal marine ecosystems, such as coral reefs, are severely threatened by climate changes, overexploitation, and marine pollution. Particularly, environmental pollution caused by petroleum-derived substances is poorly studied in coral reefs in tropical developing countries, with a total absence of data about these contaminants in some regions. In this work, we determined the levels of conventional and unconventional PAHs in the tissue and skeleton of the coral Montastraea cavernosa in a seascape scale of the Southwest Atlantic. We sampled in 12 coral reefs adjacent to the coast along approximately 200 km. We found 14 PAHs, 2 Oxy-PAHs, and 15 Nitro-PAHs in the samples, and among them, benzo[a]pyrene, chrysene, benzo[a]anthracene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and dibenz[a,h]anthracene, which are mutagenic, teratogenic and carcinogenic substances. Skeletons presented predominantly lower quantities of ∑PAHs than the respective tissue, except for the skeletons from one reef severely impacted by oil spills. The ∑PAHs levels were lower in a bay near an urbanized region than in open sea reefs. Diagnostic ratios indicate mixogenic sources, with the predominance of petrogenic origin. Our study provides the first occurrence of PAHs, Nitro-PAHs, and Oxy-PAHs distribution in corals from the Southwest Atlantic Ocean, and we expect that these data will help to evaluate any future impacts and management of this ecosystem.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil.
| | - Madson Moreira Nascimento
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Laboratory of Biological Oceanography, Department of Oceanography, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | | | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - José R Souza Filho
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Catu, Departamento de Ciências Humanas, Rua Barão de Camaçari, n° 118, Barão de Camaçari, 48110-000 Catu, Bahia, Brazil
| | - Zelinda M N A Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil
| |
Collapse
|
5
|
Albarico FPJB, Chen CF, Lim YC, Wang MH, Chen CW, Dong CD. Seasonal dynamics of polycyclic aromatic hydrocarbons in microplankton from Kaohsiung Harbor (Taiwan Strait, northeastern South China Sea). MARINE POLLUTION BULLETIN 2024; 206:116759. [PMID: 39079475 DOI: 10.1016/j.marpolbul.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The impact of polycyclic aromatic hydrocarbons (PAHs) on the marine food web is crucially understudied in the primary trophic system. We evaluated the seasonal dynamics of PAHs in microplankton in a polluted environment (Taiwan), northeastern South China Sea. Replicate size-fractionated microplankton (55-1000 μm) were freeze-dried, and PAHs were extracted with a 1:1 v/v ratio of acetone: n-hexane, then analyzed using GC-MS. Total PAHs ranged between 68 and 2548 ng/g dw in microplankton, greatest during spring (130-2548 ng/g), followed by autumn (135-772 ng/g) and summer (44-423 ng/g). Spatial distribution varied through seasons but was higher in the southern part (S6 > S4 > S5 > S2 > S3 > S1 > S7), dominated by higher-ring PAHs from mixed pyrogenic and petrogenic sources. PAHs are significantly correlated with environmental factors, especially in colder seasons and lower salinity areas. Suspended matter and plankton influenced PAH transport and partitioning seasonally. Plankton's PAHs seasonal changes and environmental influences are revealed in an anthropic environment.
Collapse
Affiliation(s)
- Frank Paolo Jay B Albarico
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
6
|
Qiu YW, Li J, Zhao MX, Yu KF, Zhang G. The emerging and legacy persistent organic contaminants in corals of the South China Sea. CHEMOSPHERE 2024; 359:142324. [PMID: 38740339 DOI: 10.1016/j.chemosphere.2024.142324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.
Collapse
Affiliation(s)
- Yao-Wen Qiu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mei-Xia Zhao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke-Fu Yu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
7
|
Cao X, Wang L, Lin J, Wu G, Tang K, Tang J, Yan Z, An M, Liu Z, Zhou Z. Differential bioaccumulation and tolerances of massive and branching scleractinian corals to polycyclic aromatic hydrocarbons in situ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172920. [PMID: 38701933 DOI: 10.1016/j.scitotenv.2024.172920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.
Collapse
Affiliation(s)
- Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Jiamin Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guowen Wu
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Kai Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhicong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Sokołowski A, Mordec M, Caban M, Øverjordet IB, Wielogórska E, Włodarska-Kowalczuk M, Balazy P, Chełchowski M, Lepoint G. Bioaccumulation of pharmaceuticals and stimulants in macrobenthic food web in the European Arctic as determined using stable isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168557. [PMID: 37979847 DOI: 10.1016/j.scitotenv.2023.168557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.3 ng g-1 dw) followed by paracetamol (PCT) (51.3 ng g-1 dw) and nicotine (NIC) (37.8 ng g-1 dw). The biomagnification potential was assessed for six target compounds of 13 analytes detected that were quantified with a frequency > 50 % in biological samples. The trophic magnification factor (TMF) ranged between 0.3 and 2.8, and was significant for NIC and CIP. TMF < 1.0 for NIC (0.3; confidence interval, CI 0.1-0.5) indicated that the compound does not accumulate with trophic position. The dilution of pharmaceutical residues in the food web may result from limited intake with dietary route, poor assimilation efficiency and high biotransformation rates in benthic invertebrates. TMF for CIP (2.8, CI 1.2-6.4) suggests trophic magnification, a phenomenon observed previously for several antibiotics in freshwater food webs. Trophic transfer therefore plays a role in controlling concentration of CIP in the Arctic benthic communities and should be considered in environmental risk assessment. Biomagnification potential of diclofenac (DIC; 0.9, CI 0.5-1.7), carbamazepine (CBZ; 0.4, CI 0.1-2.1), caffeine (CAF; 0.9, CI 0.5-1.9) and PCT (1.3, CI 0.7-2.7) was not evident due to large 95 % confidence of their TMFs. This study provides the first evidence of drug bioaccumulation in the Arctic food web and indicates that behaviour of pharmaceuticals varies among target compounds.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marlena Mordec
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | | | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Maciej Chełchowski
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Gilles Lepoint
- Université de Liège, UR FOCUS, Laboratory of Trophic and Isotope Ecology (LETIS), allée du six Août 11, 4000 Liège 1, Belgium
| |
Collapse
|
9
|
Zeng Y, Li J, Zhao Y, Yang W. Community ecological response to polycyclic aromatic hydrocarbons in Baiyangdian Lake based on an ecological model. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:34-46. [PMID: 38182933 PMCID: PMC10830818 DOI: 10.1007/s10646-023-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| | - Jiaxin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Albarico FPJB, Lim YC, Chen CF, Wang MH, Chen CW, Dong CD. Polycyclic aromatic hydrocarbons in 55-120 μm phytoplankton. MARINE POLLUTION BULLETIN 2024; 198:115860. [PMID: 38039576 DOI: 10.1016/j.marpolbul.2023.115860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
A baseline study was undertaken on polycyclic aromatic hydrocarbons (PAHs) in phytoplankton. Plankton samples from six stations (duplicates) in Kaohsiung Harbor (KH), Taiwan along with a phytoplankton control sample afar from the harbor, were collected. We applied size-fractionation to isolate phytoplankton (55-120 μm), followed by sedimentation and centrifugation to remove abiogenic particulates. The phytoplankton was freeze-dried, extracted with acetone: n-hexane (1:1, v/v), and analyzed using GC-MS. ΣPAHs in phytoplankton ranged between 5204 and 28,903 ng/g dry weight (mean: 12,150 ng/g). The ΣPAHs in KH were >7 times than the control site (C1: 3972 ng/g). Cluster analysis showed spatial gradients (northern < southern KH). Accumulated PAHs in phytoplankton were from petrogenic (fishing ports and ships) and pyrogenic (river outflows), dominated by lower-ring PAHs, likely due to their higher bioavailability in the dissolved phase. We present a practical phytoplankton isolation technique for more accurate phytoplankton PAH concentrations with insights into their distribution and sources.
Collapse
Affiliation(s)
- Frank Paolo Jay B Albarico
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
11
|
Han M, Yu K, Zhang R, Chen B, Li H, Zhang ZE, Li J, Zhang G. Sources of the Elevating Polycyclic Aromatic Hydrocarbon Pollution in the Western South China Sea and Its Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20750-20760. [PMID: 37909879 DOI: 10.1021/acs.est.3c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The environmental implications of polycyclic aromatic hydrocarbons (PAHs) caused by the vigorous development of offshore oil exploitation and shipping on the marine ecosystem are unclear. In this study, the PAH concentrations were systematically characterized in multiple environmental media (i.e., atmosphere, rainwater, seawater, and deep-sea sediments) in the western South China Sea (WSCS) for the first time to determine whether PAH pollution increased. The average ∑15PAHs (total concentration of 15 US EPA priority controlled PAHs excluding naphthalene) in the water of WSCS has increased and is higher than the majority of the oceans worldwide due to the synergistic influence of offshore oil extraction, shipping, and river input. The systematic model comparison confirms that the Ksoot-air model can more accurately reflect the gas-particle partitioning of PAHs in the atmosphere of the WSCS. We also found that the vertical migration of the elevating PAHs is accelerated by particulate matter, driving the migration of atmospheric PAHs to the ocean through dry and wet deposition, with 16% being contributed by the particle phase. The particulate matter sinking alters the PAH distribution in the water column and generates variation in source apportionment, while the contribution of PAHs loaded on them (>20%) to the total PAH reserves cannot be ignored as before. Hence, the ecological threat of PAHs increases by the oil drilling and shipping industry, and the driving force of particulate matter deserves continuous attention.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zheng-En Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Liu B, Gao L, Ding L, Lv L, Yu Y. Trophodynamics and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in marine food web from Laizhou Bay, China. MARINE POLLUTION BULLETIN 2023; 194:115307. [PMID: 37478788 DOI: 10.1016/j.marpolbul.2023.115307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Here, we collected 16 species (n = 298) from Laizhou Bay, China to investigate the trophodynamics, bioaccumulation and cancer risks of polycyclic aromatic hydrocarbons (PAHs). Results demonstrated that naphthalene was the most abundant PAH, followed by phenanthrene and fluorene in the marine organisms. The sum of 16 PAHs concentrations (Ʃ16PAHs) ranked with algae (19,435 ng·g-1 lipid weight, lw) > benthonic animals (6599 ng·g-1 lw) > fish (1760 ng·g-1 lw). Combustion and oil spill are two primary sources, contributing 60.3 % and 39.7 % of Ʃ16PAHs, respectively. High values of log BAF were found for 4-6 rings PAHs. Algae and benthonic animals showed a high ability to accumulate 2-4 rings PAHs and 5-6 rings PAHs, respectively. A biodilution pattern for PAHs was found in the marine food web. The carcinogenic risks of some benthos and fish were higher than 1 × 10-6, threatening resident health by consumption of these seafoods.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
13
|
Sun N, Liu J, Qi BW, Lu LL, Du HL, Li S, Li CQ, Jiang SW, Wang ZJ, Yang AP, Zhu GL, Wang TY, Wang SM, Fu Q. Effect of humic acid-modified attapulgite on polycyclic aromatic hydrocarbon adsorption and release from paddy soil into the overlying water in a rice-crab coculture paddy ecosystem and the underlying process. CHEMOSPHERE 2023; 329:138555. [PMID: 37019394 DOI: 10.1016/j.chemosphere.2023.138555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Phenanthrene (Phe), a typical polycyclic aromatic hydrocarbon (PAH) pollutant, poses an enormous safety risk to rice-crab coculture (RC) paddy ecosystems. In this study, humic acid-modified purified attapulgite (HA-ATP) with a composite structure was successfully fabricated to adsorb PAHs released from paddy soil to overlying water in RC paddy ecosystems in Northeast China. The maximum crab bioturbation intensities for dissolved Phe and particulate Phe were 64.83nullng/L·(cm2·d) and 214.29nullng/L·(cm2·d), respectively. The highest concentration of dissolved Phe released from paddy soil to overlying water due to crab bioturbation reached 80.89nullng/L, while the corresponding concentration of particulate Phe reached 267.36nullng/L. The dissolved organic carbon (DOC) and total suspended solid (TSS) concentrations in overlying water increased correspondingly and were strongly correlated with dissolved Phe and particulate Phe concentrations, respectively (P < 0.05). When 6% HA-ATP was added to the surface layer of paddy soil, the efficiency of the adsorption of Phe release was 24.00%-36.38% for particulate Phe and 89.99%-91.91% for dissolved Phe. Because HA-ATP has a large adsorption pore size (11.33 nm) and surface area (82.41nullm2/g) as well as many HA functional groups, it provided multiple hydrophobic adsorption sites for dissolved Phe, which was conducive to competitive adsorption with DOC in the overlying water. In contrast to that adsorbed by DOC, the average proportion of dissolved Phe adsorbed by HA-ATP reached 90.55%, which reduced the dissolved Phe concentration in the overlying water. Furthermore, even though the particulate Phe was resuspended by crab bioturbation, HA-ATP immobilized particulate Phe due to its capacity to inhibit desorption, which achieved the goal of reducing the Phe concentration in the overlying water. This result was confirmed by research on the adsorption-desorption characteristics of HA-ATP. This research provides an environmentally friendly in situ remediation method for reducing agricultural environmental risks and improving rice crop quality.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Northeast Agricultural University/Heilongjiang Academy of Environmental Sciences Joint Postdoctoral Mobile Station, 150030, China
| | - Jin Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bo-Wei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Li Lu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Hui-Ling Du
- Heilongjiang Academy of Environmental Sciences, Harbin, 150056, China
| | - Shuang Li
- Heilongjiang Academy of Environmental Sciences, Harbin, 150056, China
| | - Chang-Qing Li
- Heilongjiang Zhongke Engineering Management Consulting Co. Ltd, Harbin, 150000, China
| | - Si-Wen Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zi-Jian Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - An-Pei Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Guang-Lei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Yi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Si-Ming Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Pei Y, Chen S, Diao X, Wang X, Zhou H, Li Y, Li Z. Deciphering the disturbance mechanism of BaP on the symbiosis of Montipora digitata via 4D-Proteomics approach. CHEMOSPHERE 2023; 312:137223. [PMID: 36372339 DOI: 10.1016/j.chemosphere.2022.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The coral holobiont is mainly composed of coral polyps, zooxanthellae, and coral symbiotic microorganisms, which form the basis of coral reef ecosystems. In recent years, the severe degradation of coral reefs caused by climate warming and environmental pollution has aroused widespread concern. Benzo(a)pyrene (BaP) is a widely distributed pollutant in the environment. However, the underlying mechanisms of coral symbiosis destruction due to the stress of BaP are not well understood. In this study, diaPASEF proteomics and 16S rRNA amplicon pyrosequencing technology were used to reveal the effects of 50 μg/L BaP on Montipora digitate. Data analysis was performed from the perspective of the main symbionts of M. digitata (coral polyps, zooxanthellae, and coral symbiotic microorganisms). The results showed that BaP impaired cellular antioxidant capacity by disrupting the GSH/GSSG cycle, and sustained stress causes severe impairment of energy metabolism and protein degradation in coral polyps. In zooxanthellae, BaP downregulated the protein expression of SOD2 and mtHSP70, which then resulted in oxidative free radical accumulation and apoptosis. For coral symbiotic microorganisms, BaP altered the community structure of microorganisms and decreased immunity. Coral symbiotic microorganisms adapted to the stress of BaP by adjusting energy metabolism and enhancing extracellular electron transfer. BaP adversely affected the three main symbionts of M. digitata via different mechanisms. Decreased antioxidant capacity is a common cause of damages to coral polyps and zooxanthellae, whereas coral symbiotic microorganisms are able to appropriately adapt to oxidative stress. This study assessed the effects of BaP on corals from a symbiotic perspective, which is more comprehensive and reliable. At the same time, data from the study supports new directions for coral research and coral reef protection.
Collapse
Affiliation(s)
- Yuebin Pei
- School of Life Sciences, Hainan University, Haikou, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Shuai Chen
- School of Life Sciences, Hainan University, Haikou, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China
| | - Xiaobing Wang
- School of Life Sciences, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Hailong Zhou
- School of Life Sciences, Hainan University, Haikou, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China.
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Zhiyong Li
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Quantification of Higher Molecular Weight Polycyclic Aromatic Hydrocarbons in Water Samples by Modified Magnetic Nanoparticle and Gas Chromatography–Mass Spectrometry. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|