1
|
Soares LOS, de Araujo GF, Gomes TB, Júnior SFS, Cuprys AK, Soares RM, Saggioro EM. Antioxidant system alterations and oxidative stress caused by polyfluoroalkyl substances (PFAS) in exposed biota: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179395. [PMID: 40245819 DOI: 10.1016/j.scitotenv.2025.179395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
Contamination of aquatic and terrestrial organisms by Perfluoroalkyl substances (PFAS), emerging contaminants, is widespread, as these compounds are present in water, soil, air, and food, owing to their environmental persistence. PFAS exposure induces biochemical process alterations associated with the disruption of the antioxidant defense system in several species. This review aims to discuss how PFAS-induced antioxidant system alterations lead to changes in biochemical processes in different organisms exposed to these pollutants. This disruption, then leads to an imbalance in antioxidant defense systems, contributing to the formation of reactive oxidative species (ROS), which, in turn, can be exacerbate oxidative stress, induce cellular damage, enhance lipid peroxidation, destabilize lysosomal membranes, and cause genotoxic effects, ultimately compromising DNA integrity. In acute tests, PFAS have led to mortality, growth inhibition, diminished behavioral and locomotor abilities, and reproductive impairment. PFAS-induced effects differ with varying species or types of substances, and further bioaccumulation through food chains exacerbates environmental contamination, carrying considerable risks. These findings demonstrate the complex and enduring impact of PFAS on environmental health, emphasizing the importance of this review in corroborating studies on sub-lethal toxicity in exposed organisms and how these effects reflect on the environment.
Collapse
Affiliation(s)
- Lorena Oliveira Souza Soares
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Gabriel Farias de Araujo
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Thais Braga Gomes
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Sidney Fernandes Sales Júnior
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Agnieszka Katarzyna Cuprys
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Raquel Moraes Soares
- Post-Graduate Program in Environmental Technology and Water Resources, Department of Civil and Environmental Engineering - FT, University of Brasília, Darcy Ribeiro Campus, Via L3 Norte, 70910-900 Brasília, DF, Brazil
| | - Enrico Mendes Saggioro
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Han P, Xue Y, Sun Z, Liu X, Miao L, Yuan M, Wang X. The toxicological effects of perfluorooctanoic acid (PFOA) exposure in large yellow croaker (Larimichthys crocea): exploring the relationship between liver damage and gut microbiota dysbiosis. ENVIRONMENTAL RESEARCH 2025; 278:121683. [PMID: 40280390 DOI: 10.1016/j.envres.2025.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic organofluorine compounds characterized by their persistence, toxicity, and bioaccumulative properties, rendering them substantial environmental contaminants. However, limited research has investigated the effects of a short-term low-concentration PFAS exposure on the hepatic and intestinal systems of marine fish. In this study, large yellow croaker was selected as the experimental subject to explore the toxic effects of exposure to 1000 ng/L PFOA after 3, 7, and 14 days, with a focus on liver and gut microbiota. The results demonstrated that a short-term exposure to PFOA induced significant histopathological damage in both liver and gut, with cumulative effects becoming more pronounced over time. Moreover, transcriptome analysis of the liver revealed that PFOA exposure significantly altered the expression of genes associated with lipid metabolism, inflammatory response, and cellular apoptosis. GO and KEGG functional enrichment analyses showed significant enrichment in the P53, NF-κB, MAPK, and PPAR signaling pathways. On the other hand, 16S rRNA gene sequencing demonstrated that PFOA exposure resulted in a decline in gut microbiota diversity, an increase in the abundance of potentially pathogenic bacteria (e.g. Proteobacteria), and a significant reduction in beneficial bacteria (Lactobacillus). These changes indicated gut microbiota dysbiosis. Correlation analysis between gut microbiota changes and potential liver damage indicators suggested an association between liver damage and gut microbiota dysbiosis. Furthermore, we propose a hypothetical model involving lipid accumulation-mediated mitochondrial oxidative stress and inflammation pathway activation, triggered by damage-associated molecular patterns (DAMPs) resulting from PFOA exposure. These findings offered valuable insights into the toxic effects of a short-term low-concentration PFOA on the hepatic and intestinal systems of large yellow croaker, and establish a connection between liver damage to gut microbiota dysbiosis after PFOA exposure.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Zhennan Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Liang Miao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Mingzhe Yuan
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
3
|
Guo W, Hao W, Xiao W. Emerging Perfluorinated Chemical GenX: Environmental and Biological Fates and Risks. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:338-351. [PMID: 40270535 PMCID: PMC12012656 DOI: 10.1021/envhealth.4c00164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 04/25/2025]
Abstract
Perfluorinated chemical GenX, formally known as hexafluoropropylene oxide dimer acid (HFPO-DA), has been applied as an alternative to the forever chemical perfluorooctanoic acid (PFOA). The applications of HFPO-DA have rapidly expanded from traditional nonstick coating industries into high-tech semiconductor manufacturing. Because of such facts in conjunction with its low biodegradation rate and high potential of long-distance atmospheric transport, the presence and accumulation of HFPO-DA have been ubiquitously detected in environmental media and biological species, including animals and human beings, posing alarming and urgent needs for the risk assessment of HFPO-DA. Building on the United States Environmental Protection Agency's evaluation of HFPO-DA in 2021, this review first summarizes the interaction of HFPO-DA with the environment, elaborates on its known toxicities and potential carcinogenicity, along with their possible mechanisms, and briefly addresses its current exposure assessment and risk management strategies. These lines of evidence support that the safety of HFPO-DA necessitates further investigation and monitoring, albeit being considered as a less toxic and low persistence substitute of traditional PFOA.
Collapse
Affiliation(s)
- Wanqian Guo
- Department
of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Weidong Hao
- Department
of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, School of Public Health, Peking
University, Beijing 100191, China
- Key
Laboratory of State Administration of Traditional Chinese Medicine
for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Wusheng Xiao
- Department
of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, School of Public Health, Peking
University, Beijing 100191, China
- Key
Laboratory of State Administration of Traditional Chinese Medicine
for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Environmental Medicine, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Li S, Liu J, An X, Tang C, Tang C, Zhang B, Chen C, Lin T, Jones KC, Zhao Z. Molecular characteristics of emerging perfluoroalkyl and polyfluoroalkyl substances (PFAS) and dissolved organic matter (DOM) in surface waters around fluorine-related industries in a Chinese Megacity. ENVIRONMENT INTERNATIONAL 2025; 198:109444. [PMID: 40220693 DOI: 10.1016/j.envint.2025.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Fluorine-related industrial discharges are the main source of per- and polyfluoroalkyl substances (PFAS) contamination in surrounding surface waters, but the long-term environmental impacts of their residual PFAS and the interactions between PFAS and dissolved organic matter (DOM) in field waters have rarely been discussed. In this study, the concentrations of 32 target PFAS were quantified, 50 PFAS were identified and semi-quantified by suspect and nontarget screening, and the molecular characteristics of DOM were analyzed in the surface water of Shanghai. Concentrations of ∑PFAS were 284 ∼ 3018 ng/L. Perfluorobutane sulfonate acid (PFBS) and perfluorooctanoic acid (PFOA) remained the predominant compounds at most sampling sites, but hexafluoropropylene oxide trimer acid (HFPO-TA) exhibited extremely high values at a few specific sites. Near a historical fluorotelomer manufacturer which was closed in 2017, ∑PFAS concentration was still at a high-level of 1800 ng/L. Thirteen nontarget and suspect PFAS including 7 iodinated perfluoroalkyl acids (IPFAAs) were identified in 100 % samples. A total of 8134 DOM molecular formulas were identified. For elemental composition, CHOS (24 %) has the highest percentage, while for molecular species, lignin (36 %) has the highest proportion of molecules. When the assignment of fluorine was included in the elemental analysis, the percentage of fluorine-containing substances reached to 55 %, suggesting the anthropogenic influences. Emerging PFAS, i.e., perfluoropentanoic acid (PFPeA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were negatively related to DOM concentration (p < 0.05) due to microorganism activities. This study revealed the persistent impact of fluorine-related industries and the environmental behavior of PFAS and DOM in aquatic environments, providing support for the systematic and comprehensive evaluation of surface water health.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; ANPEL-TRACE Standard Technical Services (Shanghai) CO., LTD., Yehe Road 59, Shanghai, 201609, China
| | - Xinyi An
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Caijun Tang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chongtai Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
5
|
Zhang J, Zhang S, Lu C, Wang X, Du Z, Wang J, Li B, Wang J, Zhu L. Comparison of the combined toxicity of PFOA and emerging alternatives: A comprehensive evaluation of oxidative damage, apoptosis and immunotoxicity in embryonic and adult zebrafish. WATER RESEARCH 2025; 273:123028. [PMID: 39721502 DOI: 10.1016/j.watres.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) are widely used substitutes to perfluorooctanoic acid (PFOA). Whether these substitutes are less toxic than PFOA remains unclear owing to differences in the experimental methods, test organisms, and other experimental conditions in previous studies. The present study selected 0.5 and 5 μg L-1 as the test concentrations and simultaneously compared the combined toxicity of the substitutes and PFOA in terms of oxidative damage, neurotoxicity, apoptosis, and immunotoxicity in two developmental stages of zebrafish (adult and embryos) under the same test conditions. The results indicated that in both adult and embryonic zebrafish, PFHxA, PFBA, and PFOA disrupt redox homeostasis, stimulate cell proliferation, and lead to carcinogenesis. The mechanisms by which PFHxA and PFOA induce neurotoxicity and immunotoxicity were similar. Molecular docking analysis showed that the substitutes and PFOA stably attached to proteins and changed their structure and function. The obtained integrated biomarker response index values indicated that the toxicity of PFHxA, PFBA, and PFOA in zebrafish increased with increasing concentrations; PFHxA was more toxic than PFOA. The present study clarified the ecotoxicity of PFHxA and PFBA in zebrafish and simultaneously compared the differences in toxicity between the substitutes and PFOA to zebrafish, providing a robust scientific basis for the clarification and selection of safe substitutes to PFOA.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Shuolin Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
6
|
Eom S, Kim T, Kim MK, Park J, Zoh KD. GenX degradation mechanism using 2-hydroxyphenyl acetic acid and cetyl trimethyl ammonium bromide under UV-LED irradiation through micelle formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124403. [PMID: 39914210 DOI: 10.1016/j.jenvman.2025.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
This study investigated the removal of hexafluoropropylene oxide dimer acid (GenX) using 2-hydroxyphenyl acetic acid (2-HPA) as a hydrated electron (eaq-) producer under UV-LED (265 nm) irradiation in the presence of cetyl trimethyl ammonium bromide (CTAB) as a cationic surfactant. The addition of CTAB above the critical micelle concentration of 0.62 mM at pH 7 resulted in an enhancement of GenX removal due to the formation of a micelle structure. The generation of hydrated electron (eaq-) by 2-HPA was confirmed through ESR analysis. At pH 7, 3.0 mM CTAB led to 86% GenX removal and 40% defluorination after 6 h. While the removal of GenX remained consistent at pH 5, 7, and 9, it declined at pH 11. GenX removal efficiency was affected by the presence of anionic eaq- scavengers such as NO2- and NO3-, with NO3- showing higher inhibition than NO2-. Identification by LC-MS/MS revealed PFPrA and TFA as the main transformation products (TPs), while seven additional TPs (TP 64, TP 146, TP 162, TP 186, TP 228, TP 282, and TP 312) were newly identified by non-target screening. The degradation pathway of GenX involves ether bond cleavage, decarboxylation-hydroxylation-elimination-hydrolysis (DHEH) chain shortening, and α-carbon H/F exchange, as determined through identified TPs and theoretical calculations. ECOSAR simulation indicated that most TPs exhibit lower ecotoxicity compared to GenX. This study firstly utilized UV-LED (265 nm) as a light source for degrading GenX by the reaction took in the micelle without high pH or anoxic conditions, as typically required in advanced reduction processes.
Collapse
Affiliation(s)
- Soyeon Eom
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Jeonghoon Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Wang X, Yang X, Lu C, Zhang J, Li B, Du Z, Wang J, Wang J, Juhasz A, Yang Y, Zhu L. Are HFPO-TA and HFPO-DA safe substitutes for PFOA? A comprehensive toxicity study using zebrafish (Danio rerio) embryos and adults. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136718. [PMID: 39637815 DOI: 10.1016/j.jhazmat.2024.136718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Due to the multiple biotoxicity caused by perfluorooctanoic acid (PFOA), the application and production of PFOA is regulated globally. PFOA substitutes including hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA) have been applied to industrial processes and subsequently detected in surface and groundwater, yet there is a lack of comprehensive assessment of their toxicity to aquatic organisms. Therefore, under the same time and same experimental conditions, the toxic effects and differences of PFOA, HFPO-TA, and HFPO-DA on zebrafish adults and embryos were assessed from oxidative damage, apoptosis, immune function impairment, and protein interactions. The HFPO-TA and HFPO-DA caused more severe oxidative damage than PFOA. While PFOA only disrupted immune function in adults, HFPO-TA and HFPO-DA affected immune homeostasis in both adults and embryos. Integrated biomarker response results showed that superoxide dismutase (SOD) activity and reactive oxygen species content could be used as early warning indicators of toxicity in adults and embryos, respectively. Molecular docking simulations identified HFPO-TA as having the lowest binding energy with SOD proteins, thereby exerting the greatest effect on SOD activity. Compared to PFOA, HFPO-TA and HFPO-DA exhibited a greater toxicological response and, therefore, may not be suitable substitutes for PFOA.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Xiao Yang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
8
|
Murase W, Kubota A, Hakota R, Yasuda A, Ikeda A, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Comparative study on gene expression profiles in the liver of male neonatal mice prenatally exposed to PFOA and its alternative HFPO-DA. Toxicology 2025; 511:154048. [PMID: 39778857 DOI: 10.1016/j.tox.2025.154048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA), which belongs to the class of perfluoroalkyl ether carboxylic acid (PFECA), is a new alternative to perfluorooctanoic acid (PFOA). However, whether HFPO-DA is a safer alternative to PFOA in neonates remains unclear. In this study, we evaluated neonatal hepatic toxicity on postnatal days 9-10 by orally exposing pregnant CD-1 mice to 0.3 or 3.0 mg/kg/day (low or high doses) of HFPO-DA or PFOA from gestation days 15-17. The results showed that exposure of pregnant mice to HFPO-DA and PFOA induced similar phenotypic effects, including significant decreases in neonatal body weight (BW) and significant increases in liver weight relative to BW in the high-dose. Notably, HFPO-DA exposure significantly decreased in neonatal BW in the low-dose group, whereas PFOA did not. Comprehensive gene expression analysis revealed significant alterations in 408 and 1402 differentially expressed genes (DEGs) in the liver of neonates from the low- and high-dose HFPO-DA groups, respectively, while PFOA significantly altered 0 and 292 DEGs in the corresponding groups. Gene set enrichment analysis indicated that the DEGs induced by HFPO-DA and PFOA were enriched in pathway related to "PPAR signaling", "fatty acid metabolism", and "biological oxidations". In addition, transactivation assays revealed that mouse (m)PPARα and mPPARγ activity of HFPO-DA exceeds that of PFOA and molecular docking simulations analysis predicted that the binding conformation differ between PFOA and HFPO-DA. Overall, our findings demonstrate that HFPO-DA consistently affected neonatal phenotypes, liver gene expression and the molecular initiating events involving PPARα/γ, at lower concentrations than PFOA.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
9
|
Tonelli F, Masiero C, Aresi C, Torriani C, Villani S, Premoli G, Rossi A, Forlino A. Bone cell differentiation and mineralization in wild-type and osteogenesis imperfecta zebrafish are compromised by per- and poly-fluoroalkyl substances (PFAS). Sci Rep 2025; 15:2295. [PMID: 39825095 PMCID: PMC11748624 DOI: 10.1038/s41598-025-85967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates. To this purpose Chi/+ and WT zebrafish expressing the green fluorescent protein under the early osteoblast marker osterix were exposed from 1 to 6 days post fertilization to 0.36, 1.5 and 3.0 mg/L PFOS, 0.005 and 0.5 mg/L PFOA and 0.01, 0.48 and 16.0 mg/L PFHxA, and their development and skeletal phenotype investigated. Morphometric measurements, confocal microscopy evaluation of operculum area delimited by the fluorescent preosteoblasts and mineral deposition analysis following alizarin red staining were employed. PFOS and the highest concentration of PFHxA significantly impaired standard length in both genotypes. Osteoblast differentiation was significantly compromised by PFOS and by PFOA only in Chi/+. Limited to WT exposed to PFOA a reduced mineralization was also observed. No effect was detected after PFHxA exposure. Apoptosis was only activated by PFOA, specifically in Chi/+ mutant operculum osteoblasts. Interestingly, an altered lipid distribution in both WT and mutant fish was revealed after exposure to both pollutants. In conclusion, our data demonstrate that PFAS impair operculum development mainly compromising cell differentiation in mutant fish whereas alter lipid hepatic distribution in both genotypes with a more severe effect on Chi/+ preosteoblast survival. These results represent a first warning sign of the negative impact of PFAS exposure in presence of genetically determined skeletal fragility.
Collapse
Affiliation(s)
- Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Camilla Torriani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100, Pavia, Italy
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100, Pavia, Italy
| | - Guido Premoli
- LabAnalysis Group, Casanova Lonati, 27041, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| |
Collapse
|
10
|
Zhu Y, Qu Z, Yang L, Jia Y, Zhang Y, Zhu L. Hexafluoropropylene Oxide Trimer Acid Is an Unsafe Substitute to Perfluorooctanoic Acid Due to Its Remarkable Liver Accumulation in Mice Disclosed by Comprehensive Toxicokinetic Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:245-255. [PMID: 39754569 DOI: 10.1021/acs.est.4c10349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA, C2F5(CF2OCF(CF3))2COOH) is widely used as an alternative to perfluorooctanoic acid (PFOA), but whether it is a safe alternative requires further evaluation. In this study, male mice were exposed to three dosages (0.56, 2.8, and 14 mg/kg) of HFPO-TA via single oral gavage or intravenous injection for 28 days. HFPO-TA was rapidly absorbed into the blood and tissues within 15 min postexposure, with a volume of distribution approximately 3 times higher than PFOA, indicating a greater propensity for tissue distribution. Notably, HFPO-TA was distinctly more accumulated in liver compared to plasma and other tissues and very poorly excreted, with only 2.23% in urine and 7.26% in feces on the 21st day after oral exposure. A physiologically based toxicokinetic model, extrapolated to long-term low-dose exposure, revealed a lower bile clearance rate (8-fold) and higher liver partition coefficient (7-fold) than PFOA, and a higher hepatic first-pass effect of HFPO-TA (5-fold) than PFOA, contributing to its remarkable liver accumulation (5-fold). Molecular docking analysis reveals strong binding affinity of HFPO-TA with typical enterohepatic circulation transport proteins due to its strong hydrophobicity, flexible chain structure, and formation of additional hydrogen bonds, favoring HFPO-TA accumulation in the liver. The results suggest that HFPO-TA may not be a safe substitute for legacy PFAS, and further human exposure risk assessments are warranted.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zhiqian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
11
|
Liu J, Qin Y, Lu G, Jiang R. Small-molecule intercalation induces defective generation of bromine-doped bismuth oxychloride to enhance photocatalytic degradation and detoxification of tetracycline. J Colloid Interface Sci 2025; 677:994-1004. [PMID: 39128293 DOI: 10.1016/j.jcis.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Photocatalysts are one of the effective methods to degrade antibiotic contamination, but the efficiency is low and the toxicity is not well recognized. Deep lattice doping to induce defect generation is an effective way to improve the performance of photocatalysts. Here, defect-rich bromine-doped BiOCl-XBr photocatalysts were constructed with the help of small molecules inserted into the interlayer. The photocatalytic degradation performance of BiOCl-XBr was significantly enhanced, and its degradation rate was up to about 12 times that of BiOCl monomer. The main reasons for the stronger photocatalytic performance of BiOCl-XBr include Br doping to enhance visible light absorption, surface defects, and Bi valence changes to improve charge transport. The degradation of tetracycline (TC) produced more toxic intermediates, and the biotoxicity experiments also confirmed that the toxicity showed a trend of increasing and then decreasing, indicating that the more toxic intermediates were also mineralized during the degradation process. However, the mortality and hatching rate of zebrafish in the exposed group after degradation recovered but changed their activity pattern under light and dark conditions. This further warns us to focus on the toxicity changes after antibiotic degradation. Finally, based on the free radical analysis, the mechanism of photocatalytic degradation and detoxification of TC by BiOCl-XBr was proposed.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yihao Qin
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
12
|
Wu L, Wang J, Ye H, Yao Y, Hu M, Cheng J, Kong L, Liu W, Ge F. Impacts of hexafluoropropylene oxide tetrameric acid (HFPO-TeA) on neurodevelopment and GABAergic signaling in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117424. [PMID: 39616666 DOI: 10.1016/j.ecoenv.2024.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025]
Abstract
Hexafluoropropylene oxide oligomer acids (HFPOs), an emerging environmental pollutant, are increasingly utilized in the manufacture of fluorinated synthetic materials as a substitute for traditional perfluorooctanoic acid (PFOA), resulting in a corresponding rise in detection rates in aquatic environments, which may present inherent safety hazards to ecosystems and public health. However, few data are available on the issue of their toxicity and mechanism. This study aimed to investigate the potential toxic effects of hexafluoroepoxypropane tetrameric acid (HFPO-TeA), a typical HFPO, on the early developmental stages of zebrafish larvae. It revealed that HFPO-TeA exposure resulted in significant detrimental effects, including adverse impacts on general morphological characteristics, such as eye area, heart rate, and swimming bladder, in zebrafish embryos and larvae. Targeted metabolomics and transcriptomics inquiries clarified that HFPO-TeA exposure reduced the levels of the neurotransmitter gamma-aminobutyric acid (GABA) and downregulated the expression of genes related to the GABA pathway. Simultaneously, transgenic zebrafish exhibited that exposure to HFPO-TeA impedes the growth of GABAergic neurons. Moreover, the molecular docking analysis indicated that GABAA receptors might be the potential targets of HFPO-TeA. Taken together, the current data highlights that the HFPO-TeA might not be safe alternatives to PFOA. This study presented a model for HFPO-TeA-induced neurotoxicity in developing zebrafish that can aid in ecological risk assessments.
Collapse
Affiliation(s)
- Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyang Yao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miaoyang Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cheng
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingcan Kong
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China.
| |
Collapse
|
13
|
Liu C, Ma XX, Wang SQ, Li Q, Cheng P, Hou W, Li YY, Li WL, Wang XH. Fractionation and tidal characteristics of per- and polyfluoroalkyl substances in the estuarine maximum turbidity zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177646. [PMID: 39566632 DOI: 10.1016/j.scitotenv.2024.177646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Complex tidal processes and suspended particulate matter (SPM) behavior influence the land-sea transport of terrestrial contaminants in estuaries. Contaminants are generally trapped within the estuarine maximum turbidity zone (MTZ), where SPM concentrations peak, misleading flux estimation. Here, we conducted high-resolution continuous sampling over two tidal cycles within the MTZ of a semidiurnal estuary. Tidal variations of per- and polyfluoroalkyl substances (PFAS), a class of persistent organic pollutants, were analyzed in dissolved water and size-fractionated SPM. Results showed that variations in dissolved PFAS may related to the mixing of upstream and downstream. The predominant size range for SPM was found in 1-31 μm (75 %, mainly 10-31 μm), but the PFAS tended to be sorbed by 0.22-1 μm (60 %) and > 31 μm (37 %) fractions. Except during periods of sediment resuspension when particulate PFAS concentration decreased, the PFAS concentration in the 1-31 μm increased during flood tides and decreased during ebb tides, which may not be related to organic carbon/elemental carbon levels. The hourly dynamic flux of dissolved-phase and particulate-phase PFAS transport to the sea in the MTZ was calculated by combining it with a hydrodynamic model. This study first highlights the size-fractionated PFAS transport under tidal influences and provides hourly flux estimation with a hydrodynamic model.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Xin-Xin Ma
- State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Si-Quan Wang
- College of Resources and Environment, Anhui Agricultural University, No.130, Changjiang West Road, Hefei 230036, Anhui, China
| | - Qin Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Peng Cheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of Ocean and Earth Sciences, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Wei Hou
- College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Yong-Yu Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China
| | - Xin-Hong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China.
| |
Collapse
|
14
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Dong S, Xu J, Meng X, Jiang X, Yang D, Zhao X, Li X, Ding G. Impact of hexafluoropropylene oxide trimer acid (HFPO-TA) on sex differentiation after exposures during different development stages of zebrafish (Danio rerio). Food Chem Toxicol 2024; 194:115108. [PMID: 39536898 DOI: 10.1016/j.fct.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has been widely used and ubiquitously detected in aquatic environments. However, its potential effects on sex differentiation of aquatic organisms are not well known. Therefore, in this study, zebrafish were exposed to HFPO-TA at different development stages (0-21, 21-42, and 42-63 dpf) to investigate the effects on sex differentiation and its underlying mechanisms. All three exposures to HFPO-TA resulted in the feminization of zebrafish, and the impact of Stage II was most significant. The transcription levels of key genes related to female differentiation (bpm15, cyp19a1a, esr1, vtg1, and sox9b) were up-regulated, while those of key genes related to male differentiation (dmrt1, gata4, amh, and sox9a) were down-regulated, which could lead to the feminization. In addition, it was found that the dysregulations of these genes were prolonged in adult zebrafish even through a long recovery, which could cause sex imbalance in populations. Therefore, HFPO-TA might not be a safe alternative to PFOA, and more evidences from multi- and transgenerational toxicology are warranted.
Collapse
Affiliation(s)
- Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiangyue Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
16
|
Yang D, Li F, Zhao X, Dong S, Song G, Wang H, Li X, Ding G. Hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts sex differentiation of zebrafish (Danio rerio) via an epigenetic mechanism of DNA methylation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107077. [PMID: 39236549 DOI: 10.1016/j.aquatox.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an alternative to perfluorooctanoic acid, has been shown to have estrogenic effects. However, its potential to disrupt fish sex differentiation during gonadal development remains unknown. Therefore, this study exposed zebrafish to HFPO-TA from approximately 2 hours post fertilization (hpf) to 60 days post fertilization (dpf) to investigate its effects on sex differentiation. Results indicated that HFPO-TA disrupted steroid hormone homeostasis, delayed gonadal development in both sexes, and resulted in a female-skewed sex ratio in zebrafish. HFPO-TA exposure up-regulated gene expressions of cyp19a1a, esr1, vtg1 and foxl2, while down-regulated those of amh, sox9a and dmrt1. These suggested that HFPO-TA dysregulated the expressions of key genes related to sex differentiation of zebrafish, promoted the production and activation of estrogen, and further induced the feminization. Interestingly, we observed promoter hypomethylation of cyp19a1a and promoter hypermethylation of amh in male zebrafish, which were negatively associated with their gene expressions. These suggested that HFPO-TA dysregulated these key genes through DNA methylation in their promoters. Therefore, the HFPO-TA disrupted the sex differentiation of zebrafish through an epigenetic mechanism involving DNA methylation, ultimately skewing the sex ratio towards females. Overall, this study demonstrated adverse effects of HFPO-TA on fish sex differentiation and provided novel insights into the underlying epigenetic mechanism.
Collapse
Affiliation(s)
- Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Fanghua Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
17
|
Lu T, Zheng W, Hu F, Lin X, Tao R, Li M, Guo LH. Disruption of zebrafish sex differentiation by emerging contaminants hexafluoropropylene oxides at environmental concentrations via antagonizing androgen receptor pathways. ENVIRONMENT INTERNATIONAL 2024; 190:108868. [PMID: 38976939 DOI: 10.1016/j.envint.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
As alternatives of perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimeric acid (HFPO-DA) and trimeric acid (HFPO-TA) have been detected increasingly in environmental media and even humans. They have been shown to exhibit reproductive toxicity to model species, but their effects on human remain unclear due to the knowledge gap in their mode of action. Herein, (anti-)androgenic effects of the two HFPOs and PFOA were investigated and underlying toxicological mechanism was explored by combining zebrafish test, cell assay and molecular docking simulation. Exposure of juvenile zebrafish to the chemicals during sex differentiation promoted feminization, with HFPO-TA acting at an environmental concentration of 1 μg/L. The chemicals inhibited proliferation of human prostate cells and transcriptional activity of human and zebrafish androgen receptors (AR), with HFPO-TA displaying the strongest potency. Molecular docking revealed that the chemicals bind to AR in a conformation similar to a known AR antagonist. Combined in vivo, in vitro and in silico results demonstrated that the chemicals disrupted sex differentiation likely by antagonizing AR-mediated pathways, and provided more evidence that HFPO-TA is not a safe alternative to PFOA.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wei Zheng
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Fanglin Hu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xicha Lin
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Ran Tao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
18
|
Degitz SJ, Degoey PP, Haselman JT, Olker JH, Stacy EH, Blanksma C, Meyer S, Mattingly KZ, Blackwell B, Opseth AS, Hornung MW. Evaluating potential developmental toxicity of perfluoroalkyl and polyfluoroalkyl substances in Xenopus laevis embryos and larvae. J Appl Toxicol 2024; 44:1040-1049. [PMID: 38531109 PMCID: PMC11402019 DOI: 10.1002/jat.4599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
As part of the US Environmental Protection Agency's perfluoroalkyl and polyfluoroalkyl substances (PFAS) Action Plan, the agency is committed to increasing our understanding of the potential ecological effects of PFAS. The objective of these studies was to examine the developmental toxicity of PFAS using the laboratory model amphibian species Xenopus laevis. We had two primary aims: (1) to understand the developmental toxicity of a structurally diverse set of PFAS compounds in developing embryos and (2) to characterize the potential impacts of perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide-dimer acid (HFPO-DA a.k.a. GenX), on growth and thyroid hormone-controlled metamorphosis. We employed a combination of static renewal and flow-through exposure designs. Embryos were exposed to 17 structurally diverse PFAS starting at the midblastula stage through the completion of organogenesis (96 h). To investigate impacts on PFOS, PFOA, PFHxS, and HFPO-DA on development and metamorphosis, larvae were exposed from premetamorphosis (Nieuwkoop Faber stage 51 or 54) through pro metamorphosis. Of the PFAS tested in embryos, only 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol) and perfluorohexanesulfonamide (FHxSA) exposure resulted in clear concentration-dependent developmental toxicity. For both of these PFAS, a significant increase in mortality was observed at 2.5 and 5 mg/L. For FC10-diol, 100% of the surviving embryos were malformed at 1.25 and 2.5 mg/L, while for FHxSA, a significant increase in malformations (100%) was observed at 2.5 and 5 mg/L. Developmental stage achieved was the most sensitive endpoint with significant effects observed at 1.25 and 0.625 mg/L for FC10-diol and FHxSA, respectively. In larval studies, we observed impacts on growth following exposure to PFHxS and PFOS at concentrations of 100 and 2.5 mg/L, respectively, while no impacts were observed in larvae when exposed to PFOA and HFPO-DA at concentration of 100 mg/L. Further, we did not observe impacts on thyroid endpoints in exposed larvae. These experiments have broadened our understanding of the impact of PFAS on anuran development.
Collapse
Affiliation(s)
- Sigmund J. Degitz
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| | - Philip P. Degoey
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| | - Jonathan T. Haselman
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| | - Jennifer H. Olker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| | - Emma H. Stacy
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| | - Chad Blanksma
- SpecPro Professional Services, c/o US EPA, Great Lakes Toxicology & Ecology Division, Duluth, MN, USA
| | - Scott Meyer
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
- Californa Department of Water Resources, West Sacramento, California
| | - Kali Z. Mattingly
- SpecPro Professional Services, c/o US EPA, Great Lakes Toxicology & Ecology Division, Duluth, MN, USA
| | - Brett Blackwell
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Anne S. Opseth
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| | - Michael W. Hornung
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, 55804
| |
Collapse
|
19
|
Zhao X, Wang B, Song X, He L, Zhang W, Qian Y, Mu X, Qiu J. Synergistic developmental effects of zebrafish exposed to combined perfluorooctanoic acid and atrazine. CHEMOSPHERE 2024; 358:142080. [PMID: 38642773 DOI: 10.1016/j.chemosphere.2024.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Perfluorooctanoic acid (PFOA) and atrazine are two endocrine disruptors that are widely found in waters. Negative effects of PFOA and atrazine have been studied individually, but few data have focused on their combined effects. Here, zebrafish embryos were used as model to investigate the combined toxicity of PFOA and atrazine. The acute toxicity of atrazine (11.9 mg/L) to zebrafish embryos was much higher than that of perfluorooctanoic acid (224.6 mg/L) as shown by the 120h-LC50 value. Developmental effects, including delayed yolk sac absorption, spinal curvature, and liver abnormalities, were observed in both one- and two-component exposures. Notably, the rate of embryonic malformations in the co-exposure group was more than twice as high as that of single component exposure in the concentration range of 1/8-1/2 EC50, which indicated a synergistic effect of the binary mixture. The synergistic effect of PFOA-atrazine was further validated by combinatorial index (CI) modeling. In addition, changes of amino acid metabolites, reactive oxygen species and superoxide dismutase indicated that oxidative stress might be the main pathway for enhanced toxicity under co-exposure condition. Overall, co-exposure of PFOA and atrazine resulted in stronger developmental effects and more complicated amino acid metabolic response toward zebrafish, compared with single component exposure.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Beinan Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiao Song
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Linjuan He
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
20
|
Xu B, Pu M, Jiang K, Qiu W, Xu EG, Wang J, Magnuson JT, Zheng C. Maternal or Paternal Antibiotics? Intergenerational Transmission and Reproductive Toxicity in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1287-1298. [PMID: 38113251 DOI: 10.1021/acs.est.3c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Despite the known direct toxicity of various antibiotics to aquatic organisms, the potential chronic impact through intergenerational transmission on reproduction remains elusive. Here, we exposed zebrafish to a mixture of 15 commonly consumed antibiotics at environmentally relevant concentrations (1 and 100 μg L-1) with a cross-mating design. A high accumulation of antibiotics was detected in the ovary (up to 904.58 ng g-1) and testis (up to 1704.49 ng g-1) of F0 fish. The transmission of antibiotics from the F0 generation to the subsequent generation (F1 offspring) was confirmed with a transmission rate (ki) ranging from 0.11 to 2.32. The maternal transfer of antibiotics was significantly higher, relative to paternal transfer, due to a greater role of transmission through ovarian enrichment and oviposition compared to testis enrichment. There were similar impairments in reproductive and developmental indexes on F1 eggs found following both female and male parental exposure. Almost all antibiotics were eliminated in F2 eggs in comparison to F1 eggs. However, there were still reproductive and developmental toxic responses observed in F2 fish, suggesting that antibiotic concentration levels were not the only criterion for evaluating the toxic effects for each generation. These findings unveil the intergenerational transmission mechanism of antibiotics in fish models and underscore their potential and lasting impact in aquatic environments.
Collapse
Affiliation(s)
- Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mengjie Pu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kaile Jiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Måltidets Hus - Richard Johnsens gate 4, Stavanger 4021, Norway
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, 568 Tongxin Road, Zhenhai District, Ningbo 315200, China
| |
Collapse
|
21
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Shao B, Li Y. Hexafluoropropylene oxide trimer acid exposure triggers necroptosis and inflammation through the Wnt/β-catenin/NF-κB axis in the liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167033. [PMID: 37709082 DOI: 10.1016/j.scitotenv.2023.167033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging alternative to perfluorooctanoic acid (PFOA), has recently been identified as a significant environmental pollutant. Nevertheless, there is a scarcity of studies regarding the hepatotoxic effects of HFPO-TA. Here, we investigated the types and potential mechanisms of liver damage caused by HFPO-TA. Initially, we validated that the introduction of HFPO-TA resulted in the Wnt/β-catenin signaling (W/β signaling) activation, as well as the induction of necroptosis and inflammation, both in the liver of mice and in HepG2 cells. Subsequently, we established that the W/β signaling mediated the necroptosis and inflammation observed in the liver and HepG2 cells exposed to HFPO-TA. Finally, we demonstrated that the phosphorylated form of NF-κB p65 (p-NF-κB p65) played a role in mediating the necroptosis and inflammation, and its activity could be regulated by the W/β signaling pathway in the liver of mice and HepG2 cells exposed to HFPO-TA. In conclusion, our investigation elucidates the role of HFPO-TA in inducing necroptosis and inflammation in the liver, which is facilitated through the activation of the W/β/NF-κB axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Chen L, Lin X, Shi S, Li M, Mortimer M, Fang W, Li F, Guo LH. Activation of estrogen-related receptor: An alternative mechanism of hexafluoropropylene oxide homologs estrogenic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166257. [PMID: 37574057 DOI: 10.1016/j.scitotenv.2023.166257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Xicha Lin
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Sha Shi
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Wendi Fang
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
23
|
Renyer A, Ravindra K, Wetmore BA, Ford JL, DeVito M, Hughes MF, Wehmas LC, MacMillan DK. Dose Response, Dosimetric, and Metabolic Evaluations of Replacement PFAS Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) Acid (HFPO-TeA). TOXICS 2023; 11:951. [PMID: 38133352 PMCID: PMC10747602 DOI: 10.3390/toxics11120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Few studies are available on the environmental and toxicological effects of perfluoroalkyl ether carboxylic acids (PFECAs), such as GenX, which are replacing legacy PFAS in manufacturing processes. To collect initial data on the toxicity and toxicokinetics of a longer-chain PFECA, male and female Sprague Dawley rats were exposed to perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) acid (HFPO-TeA) by oral gavage for five days over multiple dose levels (0.3-335.2 mg/kg/day). Clinically, we observed mortality at doses >17 mg/kg/day and body weight changes at doses ≤17 mg/kg/day. For the 17 mg/kg/day dose level, T3 and T4 thyroid hormone concentrations were significantly decreased (p < 0.05) from controls and HFPO-TeA plasma concentrations were significantly different between sexes. Non-targeted analysis of plasma and in vitro hepatocyte assay extractions revealed the presence of another GenX oligomer, perfluoro-(2,5-dimethyl-3,6-dioxanonanoic) acid (HFPO-TA). In vitro to in vivo extrapolation (IVIVE) parameterized with in vitro toxicokinetic data predicted steady-state blood concentrations that were within seven-fold of those observed in the in vivo study, demonstrating reasonable predictivity. The evidence of thyroid hormone dysregulation, sex-based differences in clinical results and dosimetry, and IVIVE predictions presented here suggest that the replacement PFECA HFPO-TeA induces a complex and toxic exposure response in rodents.
Collapse
Affiliation(s)
- Aero Renyer
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA;
| | - Krishna Ravindra
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN 37830, USA;
| | - Barbara A. Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Jermaine L. Ford
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Michael DeVito
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Michael F. Hughes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Leah C. Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Denise K. MacMillan
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| |
Collapse
|
24
|
Adedara IA, Abioye OO, Oyedele GT, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Perfluorooctanoic acid induces behavioral impairment and oxidative injury in Nauphoeta cinerea nymphs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110340-110351. [PMID: 37783994 DOI: 10.1007/s11356-023-30156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic contaminant with potential health threats to both animals and humans. However, the impact of PFOA on insects, which play significant roles in ecosystems, is understudied. We evaluated the toxicological impact of ecologically relevant concentrations of PFOA (0, 25, 50, 100, and 200 µg L-1) on Nauphoeta cinerea nymphs following exposure for 42 consecutive days. We analyzed the behavior of the insects with automated video-tracking software and processed the head, midgut, and fat body for biochemical assays. PFOA-exposed insects exhibited significant reductions in locomotory abilities and an increase in freezing time. Furthermore, PFOA exposure reduced acetylcholinesterase activity in the insect head. PFOA exposure increased the activities of superoxide dismutase, glutathione peroxidase, and catalase in the head and midgut, but decreased them in the fat body. PFOA also significantly increased glutathione-S transferase activity, while decreasing glutathione levels in the head, midgut, and fat body. Additionally, PFOA exposure increased reactive oxygen and nitrogen species, nitric oxide, lipid peroxidation, and protein carbonyl contents in the head, midgut, and fat body of the insects. In conclusion, our findings indicate that PFOA exposure poses an ecological risk to Nauphoeta cinerea.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwatoyin O Abioye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Chen L, Xie Y, Li M, Mortimer M, Li F, Guo LH. Toxicological Mechanisms of Emerging Per-/poly-fluoroalkyl Substances: Focusing on Transcriptional Activity and Gene Expression Disruption. Toxicology 2023:153566. [PMID: 37263573 DOI: 10.1016/j.tox.2023.153566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| |
Collapse
|
27
|
Babalola AA, Mohammed KA, Olaseni AA, Oyedele GT, Adedara IA, Rocha JBT, Farombi EO. Persistent oxidative injury and neurobehavioral impairment in adult male and female Nauphoeta cinerea exposed to perfluorooctanoic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104135. [PMID: 37116629 DOI: 10.1016/j.etap.2023.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to elucidate if the toxicity of perfluorooctanoic acid (PFOA), an emerging persistent organic contaminant, is reversible or not in adult male and female Nauphoeta cinerea. Both sexes of Nauphoeta cinerea were separately exposed to 0, 1 and 5 mg/L PFOA in drinking water for 21 consecutive days. PFOA-exposed Nauphoeta cinerea exhibited significant deficits in the locomotor and exploratory capabilities with concomitant increase in anxiogenic behaviors which persisted after cessation of PFOA exposure. Moreover, PFOA-induced decrease in acetylcholinesterase activity persisted after cessation of PFOA exposure in both insects' sexes. Catalase and superoxide dismutase activities were increased in the midgut but restored to control following cessation of PFOA exposure. The increased reactive oxygen and nitrogen species, nitric oxide and hydrogen peroxide levels persisted in the head whereas they were abated in the midgut after cessation of PFOA exposure. However, PFOA-induced persistent increase in lipid peroxidation and protein carbonyl levels in the head and midgut of insects. Collectively, PFOA exposure elicited persistent neurobehavioral and oxidative injury similarly in both sexes of adult Nauphoeta cinerea during this investigation.
Collapse
Affiliation(s)
- Adesina A Babalola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Khadija A Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeboye A Olaseni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
28
|
Solan ME, Koperski CP, Senthilkumar S, Lavado R. Short-chain per- and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines. ENVIRONMENTAL RESEARCH 2023; 223:115424. [PMID: 36740157 DOI: 10.1016/j.envres.2023.115424] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Long-chain per- and polyfluoralkyl substances (PFAS) are ubiquitous contaminants implicated in the induction of intracellular reactive oxygen species (ROS), compromising antioxidant defense mechanisms in vitro and in vivo. While a handful of studies have assessed oxidative stress effects by PFAS, few specifically address short-chain PFAS. We conducted an evaluation of oxidative stress biomarkers in vitro following exposures to low (1 nM) and high (1 μM) concentrations of five short-chain PFAS compounds: perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), [undecafluoro-2-methyl-3-oxahexanoic acid (HFPO-DA)], 6:2 fluorotelomer alcohol (6:2 FTOH) and perfluorohexanesulfonic acid (PFHxS). We conducted experiments in human kidney (HEK293-hTLR2), liver (HepaRG), microglia (HMC-3), and muscle (RMS-13) cell lines. Fluorescence microscopy measurements in HepaRG cells indicated ROS generation in cells exposed to PFBS and PFHxA for 24 h. Antioxidant enzyme activities were determined following 24 h short-chain PFAS exposures in HepaRG, HEK293-hTLR2, HMC-3, and RMS-13. Notably, exposure to PFBS for 24 h increased the activity of GPX in all four cell types at 1 μM and 1 nM in HepaRG and RMS-13 cells. Every short-chain PFAS evaluated, except for PFHxS, increased the activity of at least one antioxidant enzyme. To our knowledge, this is the first study of its kind to explore antioxidant defense alterations to microglia and muscle cell lines by PFAS. The findings of this study hold great potential to contribute to the limited understanding of short-chain PFAS mechanisms of toxicity and provide data necessary to inform the human health risk assessment process.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Camryn P Koperski
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
29
|
Yan Z, Chen Y, Zhang X, Lu G. The metabolites could not be ignored: A comparative study of the metabolite norfluoxetine with its parent fluoxetine on zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106467. [PMID: 36870174 DOI: 10.1016/j.aquatox.2023.106467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The ubiquitous pharmaceuticals in aquatic environments have attracted huge attention due to their significant risks to humans and ecosystems. However, even though the knowledge of the negative effects induced by the parent pharmaceuticals is quite extensive, little is known about their metabolites for a long time. This study provides systematical knowledge about the potential toxicity of metabolite norfluoxetine and its parent fluoxetine on zebrafish (Danio rerio) at the early life stage. The results showed that the metabolite norfluoxetine had similar acute toxicity in fish with the parent fluoxetine. For the altered fish development, there was no significant difference in most cases between the two pharmaceuticals. Compared to the control, the metabolite markedly inhibited the locomotor behavior under light-to-dark transitions, which was comparable to the parent. Norfluoxetine could easily accumulate but hardly eliminate from fish, relative to fluoxetine. In addition, the accumulated fluoxetine in zebrafish may rapidly metabolize to norfluoxetine and then be eliminated through different metabolic pathways. The functional genes related to serotonergic process (5-ht1aa, 5-ht2c, slc6a4b, and vmat), early growth (egr4), and circadian rhythm (per2) were downregulated by both the norfluoxetine and fluoxetine, indicative of the same mode-of-action of norfluoxetine with its parent in these functions. Meanwhile, the alterations caused by norfluoxetine were more pronounced than that of fluoxetine in the genes of 5-ht2c, slc6a4b, vmat, and per2. The molecular docking also confirmed that norfluoxetine could bind with serotonin transporter protein in the same as fluoxetine with a lower binding free energy. Overall, the metabolite norfluoxetine could induce similar and even more toxic effects on zebrafish with the same mode of action. The different and binding energy of the metabolite norfluoxetine and its parent fluoxetine on zebrafish may be responsible for the differentiated effects. It highlights the risks of the metabolite norfluoxetine in the aquatic environment could not be ignored.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiadong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
30
|
Liu S, Liu Z, Tan W, Johnson AC, Sweetman AJ, Sun X, Liu Y, Chen C, Guo H, Liu H, Wan X, Zhang L. Transport and transformation of perfluoroalkyl acids, isomer profiles, novel alternatives and unknown precursors from factories to dinner plates in China: New insights into crop bioaccumulation prediction and risk assessment. ENVIRONMENT INTERNATIONAL 2023; 172:107795. [PMID: 36764184 DOI: 10.1016/j.envint.2023.107795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are contaminants of global concern, and the inadvertent consumption of PFAA-contaminated crops may pose a threat to public health. Therefore, systematically studying their source tracing, bioaccumulation prediction and risk assessments in crops is an urgent priority. This study investigated the source apportionment and transport of PFAAs and novel fluorinated alternatives (collectively as per- and polyfluoroalkyl substances, PFASs) from factories to agricultural fields in a fluorochemical industrial region of China. Furthermore, bioaccumulation specificities and prediction of these chemicals in different vegetables were explored, followed by a comprehensive risk assessment from agricultural fields to dinner plates which considered precursor degradation. A positive matrix factorization model revealed that approximately 70 % of PFASs in agricultural soils were derived from fluorochemical manufacturing and metal processing. Alarming levels of ∑PFASs ranged 8.28-84.3 ng/g in soils and 163-7176 ng/g in vegetables. PFAS with short carbon chain or carboxylic acid group as well as branched isomers exhibited higher environmental transport potentials and bioaccumulation factors (BAFs) across a range of vegetables. The BAFs of different isomers of perfluorooctanoic acid (PFOA) decreased as the perfluoromethyl group moved further from the acid functional group. Hexafluoropropylene oxide dimer acid (GenX) showed relatively low BAFs, probably related to its ether bond with a high affinity to soil. Vegetables with fewer Casparian strips (e.g., carrot and radish), or more protein, possessed larger BAFs of PFASs. A bioaccumulation equation integrating critical parameters of PFASs, vegetables and soils, was built and corroborated with a good contamination prediction. After a total oxidizable precursors (TOP) assay, incremental perfluoroalkyl carboxylic acids (PFCAs) were massively found (325-5940 ng/g) in edible vegetable parts. Besides, precursor degradation and volatilization loss of PFASs was firstly confirmed during vegetable cooking. A risk assessment based on the TOP assay was developed to assist the protection of vegetable consumers.
Collapse
Affiliation(s)
- Shun Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Limei Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|