1
|
Bekhit M, Fathy ES, Sharaf A. Effect of gamma irradiation on properties of the synthesized PANI-Cu nanoparticles assimilated into PS polymer for electromagnetic interference shielding application. Sci Rep 2024; 14:16403. [PMID: 39013967 PMCID: PMC11252287 DOI: 10.1038/s41598-024-66356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Conductive polymer nanocomposites for electromagnetic interference (EMI) shielding are important materials that can be combat the increasingly dangerous radiation pollution arising from electronic equipment and our surrounding environment. In this work, we have synthesized polyaniline-copper nanoparticles (PANI-Cu NPs) by the copper salt based oxidative polymerization method at room temperature and then added with different concentration (0, 1, 3 and 5 wt%) in polystyrene polymer forming PS/ PANI-Cu nanocomposites films by means of the traditional solution casting technique. The formed PANI-Cu NPs were investigated by UV/Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and SEM/EDX elemental mapping techniques. On the other hand, the prepared PS/PANI-Cu nanocomposites films were evaluated by UV and SEM, the mechanical properties of the nanocomposites films were evaluated and showed an improvement by added PANI-Cu NPs up to 3 wt% and 50 kGy gamma exposure dose. The PS/PANI-Cu nanocomposites films were examined as electromagnetic interference shielding material. Electromagnetic shielding effectiveness of the produced nanocomposites were tested in the X-band of the radio frequency range namely from 8 to 12 GHz using the vector network analyzer (VNA) and a proper wave guide. All samples were studied before and after 50 kGy gamma-ray irradiation under the same condition of pressure and temperature. The results showed that the nanocomposites have improved shielding properties.
Collapse
Affiliation(s)
- Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - E S Fathy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - A Sharaf
- Radiation Engineering Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
2
|
Ullah R, Shah LA, Khan MT. Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices. Int J Biol Macromol 2024; 260:129376. [PMID: 38262825 DOI: 10.1016/j.ijbiomac.2024.129376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Currently, hydrogel-based flexible devices become hot areas for scientists in the field of electronic devices, artificial intelligence, human motion detection, and electronic skin. These devices show responses to external stimuli (mechanical signals) and convert them into electrical signals (resistance, current, and voltage). However, the applications of the hydrogel-based sensor are hampered due to low mechanical properties, high time response, low fatigue resistance, low self-healing nature, and low sensing range. Herein, a strain sensing conductive hydrogel constructed from the CNCs (cellulose nanocrystal) reinforced, in which acrylamide and butyl acrylate work as hydrophilic and hydrophobic monomers respectively. The incorporation of CNCs in the polymeric system has a direct effect on their mechanical properties. The hydrogel having a high amount of CNCs (C4), its fracture stress and fracture strain reached 371.2 kPa and 2108 % respectively as well as self-healing of C4 hydrogel Broke at 499 % strain and bore 197 kPa stress. The elastic behavior of the hydrogels was confirmed by the rheological parameter frequency sweep and strain amplitude. Besides this our designed hydrogel shows an excellent response to deformation with conductivity 420 mS m-1, shows response to small strain (10 %) and large (400 %) strain, and has excellent anti-fatigue resistance with continuous stretching for 700 s at 300 % strain, with 140 msec response time, and gauge factor 7.4 at 750 % strain. The C4 hydrogel can also work as electronic skin when it is applied to different joints like the finger, elbow, neck, etc. The prepared hydrogel can also work as an electronic pen when it is worn to a plastic pen cover.
Collapse
Affiliation(s)
- Rafi Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Muhammad Tahir Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
3
|
Fang C, Luo Y, Naidu R. Advancements in Raman imaging for nanoplastic analysis: Challenges, algorithms and future Perspectives. Anal Chim Acta 2024; 1290:342069. [PMID: 38246736 DOI: 10.1016/j.aca.2023.342069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND While the concept of microplastic (<5 mm) is well-established, emergence of nanoplastics (<1000 nm) as a new contaminant presents a recent and evolving challenge. The field of nanoplastic research remains in its early stages, and its progress is contingent upon the development of reliable and practical analytical methods, which are currently lacking. This review aims to address the intricacies of nanoplastic analysis by providing a comprehensive overview on the application of advanced imaging techniques, with a particular focus on Raman imaging, for nanoplastic identification and simultaneous visualisation towards quantification. RESULTS Although Raman imaging via hyper spectrum is a potentially powerful tool to analyse nanoplastics, several challenges should be overcome. The first challenge lies in the weak Raman signal of nanoplastics. To address this, effective sample preparation and signal enhancement techniques can be implemented, such as by analysing the hyper spectrum that contains hundred-to-thousand spectra, rather than a single spectrum. Second challenge is the complexity of Raman hyperspectral matrix with dataset size at megabyte (MB) or even bigger, which can be adopted using different algorithms ranging from image merging to multivariate analysis of chemometrics. Third challenge is the laser size that hinders the visualisation of small nanoplastics due to the laser diffraction (λ/2NA, ∼300 nm), which can be solved with involving the use of super-resolution. Signal processing, such as colour off-setting, Gaussian fitting (via deconvolution), and re-focus or image re-construction, are reviewed herein, which show a great promise for breaking through the diffraction limit. SIGNIFICANCE Overall, current studies along with further validation are imperative to refine these approaches and enhance the reliability, not only for nanoplastics research but also for broader investigations in the realm of nanomaterials.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
James A, Velayudhaperumal Chellam P. Recent Advances in the Development of Sustainable Composite Materials used as Membranes in Microbial Fuel Cells. CHEM REC 2024; 24:e202300227. [PMID: 37650319 DOI: 10.1002/tcr.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
MFC can have dual functions; they can generate electricity from industrial and domestic effluents while purifying wastewater. Most MFC designs comprise a membrane which physically separates the cathode and anode compartments while keeping them electrically connected, playing a significant role in its efficiency. Popular commercial membranes such as Nafion, Hyflon and Zifron have excellent ionic conductivity, but have several drawbacks, mainly their prohibitive cost and non-biodegradability, preventing the large-scale application of MFC. Fabrication of composite materials that can function better at a much lower cost while also being environment-friendly has been the endeavor of few researchers over the past years. The current review aims to apprise readers of the latest trends of the past decade in fabricating composite membranes (CM) for MFC. For emphasis on environmental-friendly CM, the review begins with biopolymers, moving on to the carbon-polymer, polymer-polymer, and metal-polymer CM. Lastly, critical analysis towards technology-oriented propositions and realistic future directives in terms of strengths, weakness, opportunities, challenges (SWOC analysis) of the application of CM in MFC have been discussed for their possible large-scale use. The focus of this review is the development of hybrid materials as membranes for fuel cells, while underscoring the need for environment-friendly composites and processes.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, 110078, Delhi, India
| | | |
Collapse
|
5
|
Lakhdari N, Lakhdari D, Berkani M, Vasseghian Y, Moulai F, Rahman MM, Boukherroub R, Aminabhavi TM. NiFe-PANI composites synthesized by electrodeposition for enhanced photocatalytic degradation of diclofenac sodium from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119487. [PMID: 37939475 DOI: 10.1016/j.jenvman.2023.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
A simple inexpensive approach was used to synthesize NiFe-PANI nanocomposites and used for photodegradation of diclofenac sodium (DCF) in water sources. Morphological, optical, structural, and catalytic properties of the nanocomposites were investigated using X-ray diffraction (XRD) to confirm the cubic structure of NiFe nanoparticles and Fourier-transform infrared spectroscopy (FTIR) that revealed the presence of NiFe and PANI, scanning electron microscopy (SEM) showed the uniform distribution of NiFe nanoparticles onto the surface of PANI, Energy-Dispersive X-ray spectroscopy (EDX) was utilized to validate the composition of the obtained Permalloy NiFe-PANI nanocomposites, optical properties confirmed the decrease of Eg band gap from 2.62 to 2.51 eV by the addition of NiFe. The NiFe-PANI composite showed superior photocatalytic efficiency in degrading DCF, achieving 82.53% degradation in 15 min and 97.89% in 60 min. This was significantly higher than the PANI alone, which achieved 62.72 and 93.48% degradation in the same time intervals respectively. The results indicated that the photocatalytic efficiency remained consistent, with no observable decrease, even after five cycles of recycling. The NiFe-PANI catalyst served as an efficient and cost-effective photocatalyst for DCF degradation, and the study holds promise for the photocatalytic removal of other organic pollutants from water and wastewater.
Collapse
Affiliation(s)
- Nadjem Lakhdari
- Biotechnology laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli,BP. E66, Constantine, 25100, Algeria
| | - Delloula Lakhdari
- Biotechnology laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli,BP. E66, Constantine, 25100, Algeria; Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria; Laboratoire d'élaboration de Nouveaux Matériaux et leur Caractérisation (ENMC), Université Sétif-1, Algeria
| | - Mohammed Berkani
- Biotechnology laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli,BP. E66, Constantine, 25100, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan.
| | - Fatsah Moulai
- Research Center of Semi-conductor Technology for Energy, CRTSE, 02, Bd. Dr. Frantz FANON, B.P. 140 Algiers-7, Merveilles, 16038, Algeria
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Punetha VD, Pathak R, Bhatt S, Punetha M. Spectroscopic and microscopic investigations of functionalized polymer nanocomposites. ADVANCES IN FUNCTIONALIZED POLYMER NANOCOMPOSITES 2024:145-194. [DOI: 10.1016/b978-0-443-18860-2.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Hai X, Ma L, Zhu Y, Yang Z, Li X, Chen M, Yuan M, Xiong H, Gao Y, Shi F, Wang L. Determination of bioactive flavonoids using β-cyclodextrin combined with chitosan-modified magnetic nanoparticles. Carbohydr Polym 2023; 321:121295. [PMID: 37739528 DOI: 10.1016/j.carbpol.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
To accurately determine flavonoids (rutin, quercetin or kaempferol), it is necessary to extract them from complex matrices. The ultrasound-assisted magnetic dispersion microsolid phase extraction technique has been predominantly used for separation and enrichment of the target analytes. The combination of magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent (DESP) is likely to enhance the efficiency of flavonoid extraction from food. In this study, adsorbents were prepared by modifying chitosan with magnetic nanoparticles, and the eluent was a DESP derived from β-cyclodextrin and an organic acid. The successful preparation of these materials was confirmed by FTIR, XRD, FE-SEM and 1H NMR. The extraction recovery rates exceeded 93 %, with limits of detection and quantitation ranging from 0.9 to 2.4 μg/L and 2.7 to 7.2 μg/L, respectively, and the flavonoid clearance rates for ABTS and DPPH radicals reached 100 %. Therefore, the integration of magnetic chitosan nanoparticles with the DESP provides a new and efficient method for the extraction of flavonoids while also presenting a potential application of the DESP in separations.
Collapse
Affiliation(s)
- Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Yunnan Minzu University, Kunming 650504, PR China
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Minghong Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission, Ministry of Education, Yunnan Minzu University, Kunming 650504, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650504, PR China
| | - Huabin Xiong
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650504, PR China.
| | - Yuntao Gao
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650504, PR China.
| | - Feng Shi
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China
| | - Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, PR China
| |
Collapse
|
8
|
Yang Q, Wang X, Shi J, Wei J, He Y. Constructed a novel of Znln 2S 4/S-C 3N 4 heterogeneous catalyst for efficient photodegradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111152-111164. [PMID: 37804380 DOI: 10.1007/s11356-023-30052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Despite S-doped C3N4 can exhibit more efficient photo-reactivity than pure C3N4, there is still some space to further improve the detaching efficiency of electron-hole and enhance the photocatalytic efficiency of S-C3N4. The construction of heterojunction is an effective method to promote the photocatalytic efficiency. ZnIn2S4, as a novel photocatalyst, its VB (1.37 V) and CB (- 1.09 V) can match with S-C3N4. Therefore, we hope to construct the ZnIn2S4/S-C3N4 heterojunction for boosting the photocatalytic activity of S-C3N4. In this paper, ZnIn2S4/S-C3N4 heterojunction was prepared through hydrothermal method using S-C3N4, ZnCl2, InCl3·4H2O, and thioacetamide as raw materials and heated at 160 °C for 16 h. The optimum 18% ZnIn2S4/S-C3N4 nanocomposites exhibit dramatically enhanced photocatalytic performance for degradation of tetracycline with 86.3% removal rate within 120 min, higher than 50% degradation efficiency of pure S-C3N4. And in the process of photodegradation for tetracycline, the largest contribution rate is the photo-excited cavity (h+), followed by ·O2- and ·OH. Herein, we have provided a good example for removing antibiotic residues by using S-C3N4-based heterojunction towards environmental remediation.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China.
| | - Xueting Wang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Jing Shi
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiaqi Wei
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yangqing He
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
9
|
Xue Y, Noroozifar M, Sullan RMA, Kerman K. Electrochemical simultaneous determination of hydroquinone, catechol, bisphenol A, and bisphenol S using a novel mesoporous nickel-modified carbon sensor. CHEMOSPHERE 2023; 342:140003. [PMID: 37648164 DOI: 10.1016/j.chemosphere.2023.140003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
The widespread occurrence of endocrine disruptor compounds in wastewater has garnered significant attention owing to their toxicity, even at low concentrations, and their persistence in the water body. Among various analytical techniques, electrochemical sensors become popular for the environmental monitoring of water pollutants due to their low cost, rapid detection, high sensitivity, and selectivity. In this study, the mesoporous Ni (MNi) material was synthesized with an innovative method using Pluronic™ F-127 as a soft template and applied as a modifier for the simultaneous electrochemical sensing of hydroquinone (HQ), catechol (CC), bisphenol A (BPA), and bisphenol S (BPS). MNi with high porosity efficiently enhanced the redox-active surface area and conductivity of the glassy carbon electrode contributing to a significantly improved sensitivity in the detection of target chemicals. The pore size and surface area of MNi were estimated based on atomic force microscopy and Brunauer Emmett and Teller techniques to be ∼14.2 nm and 31.1 m2 g-1, respectively. The limit of detection for HQ, CC, BPA, and BPS was determined to be 5.3, 5.7, 5.6, and 61.5 nM, respectively. The electrochemical sensor presented in this study holds promise as a platform for developing portable and miniaturized tools offering the rapid and sensitive detection of these hazardous phenolic compounds in environmental water samples.
Collapse
Affiliation(s)
- Yilei Xue
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
10
|
Meng X, Wang L, Wang X, Zhen M, Hu Z, Guo SQ, Shen B. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis. CHEMOSPHERE 2023; 338:139550. [PMID: 37467848 DOI: 10.1016/j.chemosphere.2023.139550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Energy crises and environmental degradation are serious in recent years. Inexhaustible solar energy can be used for photocatalytic hydrogen production or CO2 reduction to reduce CO2 emissions. At present, the development of efficient photocatalysts is imminent. MXene as new two-dimensional (2D) layered material, has been used in various fields in recent years. Based on its high conductivity, adjustable band gap structure and sizable specific surface area, the MXene is beneficial to hasten the separation and reduce the combination of photoelectron-hole pairs in photocatalysis. Nevertheless, the re-stacking of layers because of the strong van der Waals force and hydrogen bonding interactions seriously hinder the development of MXene material as photocatalysts. By contrast, the MXene-based heterostructures composed of MXene nanosheets and other materials not only effectively suppress the re-stacking of layers, but also show the superior synergistic effects in photocatalysis. Herein, the recent progress of the MXene-based heterostructures as photocatalysts in energy and environment fields is summarized in this review. Particularly, new synthetic strategies, morphologies, structures, and mechanisms of MXene-based heterostructures are highlighted in hydrogen production, CO2 reduction, and pollutant degradation. In addition, the structure-activity relationship between the synthesis strategy, components, morphology and structure of MXene-based heterostructures, and their photocatalytic properties are elaborated in detail. Finally, a summary and the perspectives on improving the application study of the heterostructures in photocatalysis are presented.
Collapse
Affiliation(s)
- Xinyan Meng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lufei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyu Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mengmeng Zhen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Sheng-Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
11
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
12
|
Yaashikaa PR, Senthil Kumar P, Saravanan A, Karishma S, Rangasamy G. A biotechnological roadmap for decarbonization systems combined into bioenergy production: Prelude of environmental life-cycle assessment. CHEMOSPHERE 2023; 329:138670. [PMID: 37054843 DOI: 10.1016/j.chemosphere.2023.138670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Decarbonization has become a critical issue in recent years due to rising energy demands and diminishing oil resources. Decarbonization systems based on biotechnology have proven to be a cost-effective and environmentally benign technique of lowering carbon emissions. Bioenergy generation is an environmentally friendly technique for mitigating climate change in the energy industry, and it is predicted to play an important role in lowering global carbon emissions. This review essentially provides a new perspective on the unique biotechnological approaches and strategies based decarbonization pathways. Furthermore, the application of genetically engineered microbes in CO2 biomitigation and energy generation is particularly emphasized. The production of biohydrogen and biomethane via anaerobic digestion techniques has been highlighted in the perspective. In this review, role of microorganisms in bioconversion of CO2 into different types of bioproducts such as biochemical, biopolymers, biosolvents and biosurfactant was summarized. The current analysis, which includes an in-depth discussion of a biotechnology-based roadmap for the bioeconomy, provides a clear picture of sustainability, forthcoming challenges, and perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
13
|
Wu Y, Liu Y, Kamyab H, Manivasagan R, Rajamohan N, Ngo GH, Xia C. Physico-chemical and biological remediation techniques for the elimination of endocrine-disrupting hazardous chemicals. ENVIRONMENTAL RESEARCH 2023:116363. [PMID: 37295587 DOI: 10.1016/j.envres.2023.116363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Rajasimman Manivasagan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Gia Huy Ngo
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
14
|
Liu X, Sun Y, Tang Y, Wang M, Xiao B. Woody and herbaceous wastes for the remediation of polluted waters of wetlands. CHEMOSPHERE 2023:139132. [PMID: 37285982 DOI: 10.1016/j.chemosphere.2023.139132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Plants wastes play an important role during water remediation in wetlands. Plant waste is made into biochar, which is usually used directly or as a water biofilter to remove pollutants. While, the water remediation effect of combination for biochar from woody and herbaceous wastes coupling with substrate types in CWs have not been fully explored. To explore the water remediation effect of combination for biochar coupling with substrate on pH, Turbidity, COD, NH4+-N, TN and TP, four plant configuration modes combining seven woody plants and eight herbaceous plants (Plants A, Plants B, Plants C, Plants D) were coupled with three substrate types (Substrate 1, Substrate 2, Substrate 3) as 12 experiment groups, using water detection methods and significant differences test (LSD) to analyze. Results showed: (1) Compared to Substrate 3, Substrate 1 and Substrate 2 removed significantly higher in pollutants concentration (p < 0.05); (2) NH4+-N final concentration in Plants C and Plants D were both significantly lower than Plants A and Plants B coupling with Substrate 1 and Substrate 2 (p < 0.05). The TN final concentration of Plants C was significantly lower than Plants A in Substrate 1 (p < 0.05), and Plants A's turbidity was significantly lower than Plants C and Plants D's in Substrate 2 (p < 0.05); (3) The pollutants removal of group A1, A2, B1, B2, C1, C2, D1 and D2 were significantly higher than other experiment groups (p < 0.05). Group A2, B2, C1 and D1 had the best water remediation effect and better stability of plant community. Findings in this study will be beneficial for remediating polluted water and building sustainable wetlands.
Collapse
Affiliation(s)
- Xiaodong Liu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Innovative and Design, City University of Macau, Macau, 999078 China.
| | - Yerong Sun
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yueting Tang
- Huizhou Engineering Vocational College, Huizhou, 516001, China
| | - Min Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Bing Xiao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
15
|
Alloun W, Berkani M, Benaissa A, Shavandi A, Gares M, Danesh C, Lakhdari D, Ghfar AA, Chaouche NK. Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: Model development. CHEMOSPHERE 2023; 326:138394. [PMID: 36925000 DOI: 10.1016/j.chemosphere.2023.138394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic responses in plants and functions as a chemical signal between plant hosts and their symbionts. The Actinobacteria strain of AW22 with high IAA production ability was isolated in Algeria for the first time and was characterized as Streptomyces rubrogriseus through chemotaxonomic analysis and 16 S rDNA sequence alignment. The suitable medium for a maximum IAA yield was engineered in vitro and in silico using machine learning-assisted modeling. The primary low-cost feedstocks comprised various concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. Further, we combined the Box-Behnken design from response surface methodology (BBD-RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The critical process parameters screened via Plackett-Burman design (PBD) served as BBD and ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using thin-layer chromatography (TLC) and (HPLC) revealed Rf values equal to 0.69 and a retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum IAA yield of 188.290 ± 0.38 μg/mL using the process parameters generated by the ANN-GA model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25.8 °C; and pH 9, after eight days of incubation. An R2 of 99.98%, adding to an MSE of 1.86 × 10-5 at 129 epochs, postulated higher reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM modeling exhibiting an R2 of 76.28%. The validation experiments resulted in a 4.55-fold and 4.46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, respectively, confirming the validity of both models.
Collapse
Affiliation(s)
- Wiem Alloun
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria.
| | - Mohammed Berkani
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria.
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amin Shavandi
- 3BIO-BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| | - Maroua Gares
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| | - Camellia Danesh
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| | - Delloula Lakhdari
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria; Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noreddine Kacem Chaouche
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| |
Collapse
|
16
|
Tran TV, Jalil AA, Nguyen DTC, Nguyen TM, Alhassan M, Nabgan W, Rajendran S, Firmansyah ML. Novel ZIF-67-derived Co@CNTs nanocomposites as effective adsorbents for removal of tetracycline and sulfadiazine antibiotics. ENVIRONMENTAL RESEARCH 2023; 225:115516. [PMID: 36805897 DOI: 10.1016/j.envres.2023.115516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Tetracycline (TCC) and sulfadiazine (SDZ) are two of the most consumed antibiotics for human therapies and bacterial infection treatments in aquafarming fields, but their accumulative residues can result in negative effects on water and aquatic microorganisms. Removal techniques are therefore required to purify water before use. Herein, we concentrate on adsorptive removal of TCC and SDZ using cobalt@carbon nanotubes (Co@CNTs) derived from Co-ZIF-67. The presence of CNTs on the edge of nanocomposites was observed. Taguchi orthogonal array was designed with four variables including initial concentration (5-20 mg L-1), dosage (0.05-0.2 g L-1), time (60-240 min), and pH (2-10). Concentration and pH were found to be main contributors to adsorption of tetracycline and sulfadiazine, respectively. The optimum condition was found at concentration 5 mg L-1, dosage 0.2 g L-1, contact time 240 min, and pH 7 for both TCC and SDZ removals. Confirmation tests showed that Co@CNTs-700 removed 99.6% of TCC and 97.3% of SDZ with small errors (3-5.5%). Moreover, the kinetic and isotherm were studied, which kinetic and isotherm data were best fitted with pseudo second-order model and Langmuir. Maximum adsorption capacity values for TCC and SDZ were determined at 118.4-174.1 mg g-1 for 180 min. We also proposed the main role of interactions such as hydrogen bonding, π-π stacking, and electrostatic attraction in the adsorption of antibiotics. With high adsorption performance, Co@CNTs-700 is expected to remove antibiotics efficiently from wastewater.
Collapse
Affiliation(s)
- Thuan Van Tran
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto - Nigeria
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Saravanan Rajendran
- Departamento de Ingeniería Mec'anica, Facultad de Ingeniería, Universidad de Tarapac'a, Avda. General Vel'asquez 1775, Arica, Chile
| | - M L Firmansyah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| |
Collapse
|
17
|
Manoj D, Gnanasekaran L, Rajendran S, Jalil AA, Siddiqui MN, Gracia F, Soto-Moscoso M. A mechanothermal approach for the synthesis of Fe 3O 4 nanoparticles as dopant on mesoporous TiO 2 for electrochemical determination of catechol. ENVIRONMENTAL RESEARCH 2023; 222:115358. [PMID: 36702188 DOI: 10.1016/j.envres.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The subject of water contamination and how it gets defiled to the society and humans is confabulating from the past decades. Phenolic compounds widely exist in the water sources and it is emergent to determine the toxicity in natural and drinking water, because it is hazardous to the humans. Among these compounds, catechol has sought a strong concern because of its rapid occurrence in nature and its potential toxicity to humans. The present work aims to develop an effective electrochemical sensing of catechol using mesoporous structure of Fe3O4-TiO2 decorated on glassy carbon (GC) electrode. The creation of pure TiO2 using the sol-gel technique was the first step in the synthesis protocol for binary nanocomposite, which was then followed by the loading of Fe3O4 nanoparticles on the surface of TiO2 using the thermal decomposition method. The resultant Fe3O4-TiO2 based nanocomposite exhibited mesoporous structure and the cavities were occupied with highly active magnetite nanoparticles (Fe3O4) with high specific surface area (90.63 m2/g). When compared to pure TiO2, catechol showed a more prominent electrochemical response for Fe3O4-TiO2, with a significant increase in anodic peak current at a lower oxidation potential (0.387 V) with a detection limit of 45 μM. Therefore, the prepared magnetite binary nanocomposite can serve as an efficient electroactive material for sensing of catechol, which could also act as a promising electrocatalyst for various electrocatalytic applications.
Collapse
Affiliation(s)
- Devaraj Manoj
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| | - Lalitha Gnanasekaran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Mohammad Nahid Siddiqui
- Department of Chemistry and IRC for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| | | |
Collapse
|
18
|
Li S, Wu Y, Dao MU, Dragoi EN, Xia C. Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: Latest innovation avenues, insights, challenges, and future perspectives. CHEMOSPHERE 2023; 318:137954. [PMID: 36702404 DOI: 10.1016/j.chemosphere.2023.137954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Recently, extensive resources were dedicated to studying how to use catalysis to convert biomass into environmentally friendly fuels. Problems with this technology include the processing of lignocellulosic sources and the development/optimization of novel porous materials as efficient monofunctional and bifunctional catalysts for biomass fuel production. This paper reviews recent advancements in catalysts procedures. Besides, it offers assessments of the methods used in catalytic biomass pyrolysis. Understanding the catalytic conversion process of lignocellulosic biomass into bio-oil remains a key research challenge in biomass catalytic pyrolysis.
Collapse
Affiliation(s)
- Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - My Uyen Dao
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Danang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Danang, 550000, Viet Nam.
| | - Elena-Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
19
|
Iftekhar S, Deb A, Heidari G, Sillanpää M, Lehto VP, Doshi B, Hosseinzadeh M, Zare EN. A review on the effectiveness of nanocomposites for the treatment and recovery of oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16947-16983. [PMID: 36609763 DOI: 10.1007/s11356-022-25102-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The introduction of unintended oil spills into the marine ecosystem has a significant impact on aquatic life and raises important environmental concerns. The present review summarizes the recent studies where nanocomposites are applied to treat oil spills. The review deals with the techniques used to fabricate nanocomposites and identify the characteristics of nanocomposites beneficial for efficient recovery and treatment of oil spills. It classifies the nanocomposites into four categories, namely bio-based materials, polymeric materials, inorganic-inorganic nanocomposites, and carbon-based nanocomposites, and provides an insight into understanding the interactions of these nanocomposites with different types of oils. Among nanocomposites, bio-based nanocomposites are the most cost-effective and environmentally friendly. The grafting or modification of magnetic nanoparticles with polymers or other organic materials is preferred to avoid oxidation in wet conditions. The method of synthesizing magnetic nanocomposites and functionalization polymer is essential as it influences saturation magnetization. Notably, the inorganic polymer-based nanocomposite is very less developed and studied for oil spill treatment. Also, the review covers some practical considerations for treating oil spills with nanocomposites. Finally, some aspects of future developments are discussed. The terms "Environmentally friendly," "cost-effective," and "low cost" are often used, but most of the studies lack a critical analysis of the cost and environmental damage caused by chemical alteration techniques. However, the oil and gas industry will considerably benefit from the stimulation of ideas and scientific discoveries in this field.
Collapse
Affiliation(s)
- Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | - Anjan Deb
- Department of Chemistry, University of Helsinki, 00014, Helsinki, Finland
| | - Golnaz Heidari
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, People's Republic of China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | | | - Mehdi Hosseinzadeh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | | |
Collapse
|