1
|
Hu P, Ren W, Xi Z, Cai J, Ibrahim MAA, Shoeib T, Yang H. Dynamic process of UV-aging polystyrene microplastics, simultaneous adsorption of drugs, and subsequently coagulative removal together. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138100. [PMID: 40199081 DOI: 10.1016/j.jhazmat.2025.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
The aging of plastics and their adsorptive interactions with the residual contaminants in water has attracted increasing attentions. In this study, the dynamic process of UV-aging polystyrene (PS) microplastics (MPs) were semi-quantitatively analyzed using a coulter counter, and the adsorptive interactions between the aged PS MPs and two popular drugs[norfloxacin (NOR) and chloroquine phosphate (CQ)] were investigated simultaneously. The MPs presented a rapid size downtrend, reduced from micrometer to nanometer, and the particle number concentration increased about 2 -3 times after a 36.0 h aging effect. The apparent UV-aging process of PS MPs mainly obeyed the pseudo-first order kinetic model in currently measured MPs' size range. The drug uptakes of the aged MPs were fully consistent with the contents of oxygen-containing groups on MPs surface rather than MPs' size. The involved adsorption mechanisms were investigated in detail mainly including electrostatic attraction, hydrogen bonding, and π-π electron donor-acceptor interaction. The drug adsorbed MPs were subsequently efficiently removed by an enhanced coagulation together owing to the synergistic effects of the two pollutants. This study provides a novel and comprehensive perspective on the fundamental understanding the UV-aging process of MPs and the simultaneous adsorption behaviors, furthermore, a strategy was proposed for their collaborative removal.
Collapse
Affiliation(s)
- Pan Hu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wenxiao Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhonghua Xi
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Cai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hu Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Jiao H, Cui M, Yuan S, Dong B, Xu Z. Carbon nanomaterials for co-removal of antibiotics and heavy metals from water systems: An overview. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137566. [PMID: 39952121 DOI: 10.1016/j.jhazmat.2025.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Pollution resulting from the combination of antibiotics and heavy metals (HMs) poses a significant threat to human health and the natural environment. Adsorption is a promising technique for removing antibiotics and HMs owing to its low cost, simple procedures, and high adsorption capacity. In recent years, various novel carbon nanomaterials have been developed, demonstrating outstanding performance in simultaneously removing antibiotics and HMs. This work presents a comprehensive review of carbon nanomaterials (i.e., carbon nanotubes, graphene, resins, and other nanocomposites) for the co-removal of antibiotics and HMs in water systems. The mechanisms influencing the simultaneous removal of antibiotics and HMs include the bridging effect, electrostatic shielding, competition, and spatial site-blocking effects. These mechanisms can promote, inhibit, or have no impact on the adsorption capacity for antibiotics or HMs. Additionally, environmental factors such as pH, inorganic ions, natural organic matter, and microplastics affect the adsorption efficiency. This review also covers adsorbent regeneration and cost estimation. On the laboratory scale, the cost of the adsorption process primarily depends on the chemical and energy costs of adsorbent production. Our assessment highlights that the carbon-nanomaterial-mediated simultaneous removal of antibiotics and HMs warrants comprehensive consideration from both economic and environmental perspectives.
Collapse
Affiliation(s)
- Huiting Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
3
|
Zhang R, Zhang W, Bu C, Chen G, Li S, Han Y, Ma H, Xu A, Wang D, Ma L. Electrochemically enhanced micro-electrolytic ceramic substrate infiltration system as an efficient approach for treatment of imidacloprid wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:553. [PMID: 40234282 DOI: 10.1007/s10661-025-14018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
In this study, an electrochemically coupled micro-electrolytic technology-enhanced soil infiltration system (E-ME-SIS) was proposed to address the problem of the high cost of traditional soil infiltration system (SIS) and the difficulty of removing imidacloprid (IMI) wastewater efficiently by a single treatment process. Micro-electrolytic ceramic substrates (MECS) were prepared from iron, activated carbon, aluminum, and fly ash and combined with an external power source to optimize the electrochemical and micro-electrolytic synergy and investigate their effectiveness in treating IMI wastewater. The results showed that MECS had a rough surface with a specific surface area of 2.682 m2/g, combining strong adsorption capacity (maximum adsorption of 1.149 mg/g) and wear resistance (24 h wear rate of 6.4%). The removal of total nitrogen (TN), total phosphorus (TP), and IMI by E-ME-SIS was stabilized at 99%, 98%, and 98%, respectively, at a current density (CD) of 0.625 mA/cm2 and influent C/N (COD/N) = 5. This study significantly enhanced the removal of difficult-to-degrade pollutants by SIS through an electrochemically enhanced micro-electrolysis reaction, which provides an energy-saving and stable technical reference for the efficient treatment of IMI wastewater with a potential for engineering applications.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China
| | - Chengcheng Bu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China
| | - Guangyao Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China
| | - Shuyun Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China
| | - Yuchen Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China
| | - Haibin Ma
- School of Chemistry, Chemical & Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Anyong Xu
- Shandong Hanwei Environmental Technology Co., Ltd, liuquan road Qilu E-commerce Valley Building E-702, Zibo, 255000, China
| | - Desheng Wang
- Shandong Hanwei Environmental Technology Co., Ltd, liuquan road Qilu E-commerce Valley Building E-702, Zibo, 255000, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering,, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Li Y, Wu Y, Guo K, Wu W, Yao M. Effect of chlorination and ultraviolet on the adsorption of pefloxacin on polystyrene and polyvinyl chloride. J Environ Sci (China) 2025; 149:21-34. [PMID: 39181636 DOI: 10.1016/j.jes.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 08/27/2024]
Abstract
During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.
Collapse
Affiliation(s)
- Yanan Li
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China.
| | - Yaning Wu
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| | - Kai Guo
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| | - Weiqin Wu
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| | - Meijing Yao
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| |
Collapse
|
5
|
Qiu J, Xu Z, Dong B, Wang M. Co-occurrence of cadmium and ciprofloxacin in environmental media decreases ciprofloxacin degradation by biogenic manganese oxides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125488. [PMID: 39644959 DOI: 10.1016/j.envpol.2024.125488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The coexistence of antibiotics with heavy metals is detrimental to humans and the environment. In urban water environments, Cadmium (Cd) and ciprofloxacin (CIP) frequently co-occur. Biogenic manganese oxides (BMOs) are a promising environmental bioremediation material due to their remarkable adsorption and oxidation properties. However, BMOs' removal mechanism in an environment where Cd and CIP co-occur is not yet unknown. We identified a manganese (Mn)-oxidising bacterium, Bacillus sp. XM02, with a strong ability for Mn (II) oxidation (85.23%) and BMOs production, and investigated its competitive removal mechanism in an environment with Cd and CIP co-occurrence. The BMOs exhibited a glorious CIP degradation ability and led to a marked decrease in the toxicity of CIP following oxidative degradation in Escherichia coli experiments. In contrast, in the co-existence of Cd and CIP, Cd hindered CIP removal by BMOs, but CIP did not affect Cd removal. Kinetic experiments combined with XPS characterisation revealed that the k value of Cd (297.39 h-1) was much higher than that of CIP (5.53 h-1), demonstrating that Cd was immediately adsorbed onto the surface of BMOs through a Cd-O bond. The surface potentials of BMOs carrying Cd alone and both Cd and CIP on the surface were similar, revealing that the electronegativity of Cd-carrying BMOs was greatly weakened (from -34.8 mV to -21 mV/-23 mV), which further reduced the BMOs' electrostatic interaction with CIP. Moreover, the concentration of dissolved Mn (III) in the co-existence group was lower than that in the CIP alone, indicating that the presence of Cd reduced the transformation of Mn (IV) to Mn (III) by BMOs. Consequently, Cd attenuated the effect of active Mn (IV) sites of BMOs on CIP's piperazine ring oxidative degradation. These results offer a theoretical direction for the use of BMOs to reduce the risk posed by antibiotics and heavy metals pollution in co-occurrence environments.
Collapse
Affiliation(s)
- Jingjing Qiu
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China.
| | - Bin Dong
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China.
| | - Mei Wang
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| |
Collapse
|
6
|
Liu F, Zhang D, Ma Y, Jing M, Li G, Yang S. Sorption behavior of oxytetracycline on microplastics and the influence of environmental factors in groundwater: Experimental investigation and molecular dynamics simulation. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104489. [PMID: 39693682 DOI: 10.1016/j.jconhyd.2024.104489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Microplastics (MPs) and antibiotics can enter groundwater through the interaction of soil and surface water, and MPs as carriers of antibiotics can promote the migration of antibiotics and thus generate more serious ecological risks. Therefore, this paper used experimental and molecular dynamics (MD) simulation methods to investigate the sorption between four common types of MPs in groundwater, namely polyamide (PA), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), and oxytetracycline (OTC) with high detection rate in groundwater. Additionally, the impact of environmental factors on sorption was examined. The sorption kinetics of the four types of MPs followed the pseudo-second-order kinetics model, and the sorption isotherms of OTC on PA, PE, and PVC were highly linear, suggesting that the electrostatic interaction was the main sorption mechanism. Both experimental and simulation results indicated that PA had the highest affinity for OTC, due to the effect of the formation of hydrogen bonding between the amide groups of PA and OTC. The primary way pH affected sorption was by altering the form in which OTC exists. The effects of the representative substances of protein-like component (bovine serum albumin) and humus-like component (humic acid) in dissolved organic matter varied but were generally inhibitory. Ions could influence the sorption process by competitive sorption or forming complexes with the OTC.
Collapse
Affiliation(s)
- Fengjia Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Dan Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Yufei Ma
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| | - Mengyao Jing
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| | - Guijuan Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| | - Shengke Yang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
7
|
Li Y, Wang Y, Yang S, Bao T, Su F, Qian J. Adsorption behavior of levofloxacin hydrochloride on non-degradable microplastics aging with H 2O 2. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70021. [PMID: 39901449 DOI: 10.1002/wer.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Plastics pollutants, especially microplastics (MPs, <5 mm in diameter) and levofloxacin hydrochloride (Lev-HCl) often co-exist in the aquatic environment. To explore the adsorption processes and mechanisms of Lev-HCl by non-degradable MPs, in this study, H2O2 oxidation was used to age polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET) MPs. The results demonstrated that the equilibrium adsorption capacity increased significantly after aging, as H2O2-PET (1.167 mg/g) > PET (0.995 mg/g), H2O2-PS (1.057 mg/g) > PS (0.957 mg/g), H2O2-PVC (1.107 mg/g) > PVC (0.975 mg/g). After H2O2 aging, the hydrogen bond (-OH) was more obvious, and π-π interactions were significantly enhanced. These non-degradable MPs mainly adsorbed Lev-HCl by micropore filling (contributions: PVC 65.9%, PS 56%, PET 63.5%). The current study highlights the potential of non-degradable MPs to act as a vector for Lev-HCl in the aquatic environment, especially after H2O2 aging. PRACTITIONER POINTS: Adsorption behavior of Lev-HCl onto three non-degradable MPs was elucidated. The adsorption capacity increased significantly after aging for PVC, PS, and PET MPs. The hydrogen bonding and π-π interactions of H2O2-aged MPs were more significant. Multi-layer adsorption on non-homogeneous surfaces via micropore filling was revealed.
Collapse
Affiliation(s)
- Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Yiyan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Shutong Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Terun Bao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Padha S, Kumar R, Sharma Y, Dhar A. Unravelling land-based discharge of microplastics in River Basantar of Jammu & Kashmir, India: Understanding sinking behaviors and risk assessments. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104490. [PMID: 39731907 DOI: 10.1016/j.jconhyd.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/09/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g-1, with a mean abundance of 3 ± 1.594 item g-1, whereas MPs in surface water ranged from 200 to 850 items L-1 with a mean abundance of 530 ± 218.4 items L-1 among 12 sites for sediments and 10 sites for surface water. Besides, the sinking behavior of MPs was analyzed through portioning coefficients (Kd) at sediments-surface water interface, which ranges from 0.71 to 2.50 L Kg-1 for River Basantar. The most common shapes identified were fragments, fibres, and films, followed by pellets, foams, and lines. ATR-FTIR polymeric characterization reported polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl chloride, and thus, polymeric risk assessment analysis was also evaluated and normally distributed in the River Basantar. Polymer Hazard Index was calculated across all the sites which observed to be polluted under risk categories "III" and "IV" for both the sediments and surface water samples. Pollution Load Index (PLI) calculated across all the sites was >1 depicting all the sites for both sediments and surface water sampling to be polluted. Pollution Risk Index was assessed and majority of surface water and sediment samples were observed to be under "Very high" risk category. The study, using principal component analysis and heatmap analysis, found that MPs are primarily a result of urbanization and anthropogenic actions, like industrial discharges, household wastes, and agricultural runoffs. This study highlights the significance of more investigation and coordinated efforts to solve the worldwide problem of plastic pollution in freshwater environments. Results data provide insight into the current state of MP contamination and will help government authorities implement strict rules and perform management interventions to reduce and monitor pollution levels in River Basantar. Future studies on the partitioning of MPs in sediments and surface water must be focused on aggregation, biofouling, plastic density & size, salinity, and flow behaviors to understand transport and deposition in rivers.
Collapse
Affiliation(s)
- Shaveta Padha
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Yogesh Sharma
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India
| | - Anjali Dhar
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India.
| |
Collapse
|
9
|
Sekar V, Sundaram B. Adsorption behavior of Cu(II) on UV-aged polyethylene terephthalate and polypropylene microplastics in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35923-5. [PMID: 39832097 DOI: 10.1007/s11356-025-35923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment. Moreover, MPs will act as carriers for other contaminants, for example, heavy metals (HMs). Although many studies have explored MPs and HMs independently, their combined behavior and interactions remain poorly understood. Understanding these interactions is increasingly important given rising pollution levels. MP formation and adsorption behavior are heavily influenced by factors such as UV aging, which remains unclear. In this study, both virgin and UV-aged MPs specifically PET and PP (the most widely used plastics globally) were examined in their interactions with copper (Cu2+) solutions. Surface analysis techniques such as FTIR, SEM, XRD, and AAS were employed to compare the virgin and UV-aged MPs. The results revealed that UV-aged MPs exhibited high adsorption capacities for HMs compared to virgin MPs, which can be attributed to increased pore volume and oxidative degradation. Adsorption capacity differences at various concentrations showed up to a 20% increase, with UV-aged PET MPs displaying capacities ranging from 0.6 to 3.54 mg/g. Similarly, UV-aged PP MPs showed a 15% increase in adsorption capacity ranging from 1.51 to 4.25 mg/g. The present study provided the significant evidence on the behavior of MPs adsorption and underscores the need for further research on the long-term environmental impacts of aged MPs and their interactions with pollutants.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India
| | - Baranidharan Sundaram
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
| |
Collapse
|
10
|
Zhang D, Xing Y, Wang X, Li W, Guo Y, Tang Y, Zhang H, Chen J, Jiang B. The effect of polyvinyl chloride microplastics on soil properties, greenhouse gas emission, and element cycling-related genes: Roles of soil bacterial communities and correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136248. [PMID: 39442305 DOI: 10.1016/j.jhazmat.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Different shapes (membranes and particles) and concentrations (1 % (w/w) and 2 % (w/w)) of polyvinyl chloride (PVC) microplastics (MPs) were investigated to determine their impact on the soil environment. The incorporation of MPs can disrupt soil macroaggregates. Compared with 1 % (w/w) MPs, 2 % MPs resulted in a significant increase in soil organic carbon content. MP particles significantly increased soil CO2 emissions, and CH4 emissions were enhanced by both membrane and particle MPs at high concentrations. Microplastics can alter the abundance of Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteriota, and Firmicutes at the phylum level, and Nocardioides, Rhodococcus and Bacillus at the genus level. MP particles had a more significant impact on soil bacterial communities than MP membranes. The relative abundances of genes involved in the C, N, and P cycles were detected by qPCR, and more remarkable changes were observed in MP membrane treatments. The relative abundance of Vicinamibacteraceae and Vicinamibacterales exhibited a positive correlation with most C/N/P cycle-related genes, whereas Pseudarthrobacter and Nocardioides demonstrated a negative correlation. This study highlights that the influence of MPs on soil parameters is mediated by soil microorganisms, providing insight into the effects of MPs on the soil microenvironment.
Collapse
Affiliation(s)
- Duo Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Wenxin Li
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Ying Guo
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Yajuan Tang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Han Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Jiayu Chen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
11
|
Baral D, Bhattarai A, Chaudhary NK. Aquifer pollution by metal-antibiotic complexes: Origins, transport dynamics, and ecological impacts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117390. [PMID: 39579446 DOI: 10.1016/j.ecoenv.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Aquifer pollution by metal-antibiotic complexes is a rising environmental and public health concern owing to their enhanced mobility and persistence in groundwater. The purpose of this review is to examine the origins, transport dynamics, and ecological impacts of complexes formed through interactions between metal ions and antibiotics in agricultural runoff, pharmaceutical effluents, and wastewater discharge. Metal-antibiotic complexes are more resistant to degradation and are more soluble than their components. This complicates the conventional water purification efforts. These complexes disrupt microbial ecosystems, facilitate the spread of antibiotic-resistance genes, and negatively affect aquatic organisms. The entry of pollutants into drinking water sources poses notable health risks, including chronic exposure to contaminants and the emergence of antibiotic-resistant pathogens. This review emphasizes both preventative and remedial strategies to mitigate these impacts. Preventative measures emphasize the regulation of antibiotic and metal use in agriculture and industry and promote green chemistry alternatives. Remediation approaches include advanced treatment technologies such as membrane filtration, oxidation, and bioremediation. Integrated management practices and ongoing monitoring were discussed to address this complex issue. To protect water quality and public health, metal-antibiotic complexes in aquifers require stringent regulatory measures, innovative treatment solutions, and heightened public awareness. This review highlights the importance of coordinated efforts to prevent and remediate the emerging pollution problem.
Collapse
Affiliation(s)
- Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal.
| |
Collapse
|
12
|
Sánchez-Fortún A, D'ors A, Fajardo C, Costa G, Sánchez-Fortún S. Influence of polyethylene-type microplastics on long-term exposure to heavy metals in freshwater phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176151. [PMID: 39260488 DOI: 10.1016/j.scitotenv.2024.176151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of plastic materials has brought about significant social benefits but has also led to negative consequences, particularly their accumulation in aquatic environments. Studies have shown that small plastic particles, known as microplastics (MPs), can carry various harmful pollutants, such as heavy metals (HMs). Therefore, the aim of this research is to investigate the impact of polyethylene-type MPs on the long-term exposure of different HMs on freshwater microalgae Scenedesmus armatus and cyanobacteria Microcystis aeruginosa, in both isolated cultures and phytoplanktonic community conditions. Over a period of 28 days, the strains were subjected to concentrations of Ag+, Cu+2, and Cr+6 corresponding to their respective 72 h-EC10, with or without the presence of MPs. Throughout this period, the growth cell ratio, photosynthetic activity, and reactive oxygen species (ROS) were monitored. The findings indicated a substantial inhibitory impact on cell growth during the initial 7-14 days of exposure, followed by a reduction until reaching values like the controls after 28 days of exposure. There was a disturbance in photosynthetic activity during the first 72 h of exposure, which gradually returned to control levels, mainly significantly affected the respiration phase. Reactive oxygen species (ROS) activity was also affected during the initial 14 days of exposure. The presence or absence of MPs in the culture medium did not significantly alter the observed effects. However, interspecies competition created a more favorable environment for M. aeruginosa over the freshwater microalgae S. armatus. These findings suggest that the formation of MP-HMs complexes may have a limited impact on reducing the adverse effects of HMs in long-term exposures. However, because the impact depends on the specific HM involved, further studies are needed to gain a better understanding of the interaction between these pollutants.
Collapse
Affiliation(s)
- A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain
| | - G Costa
- Dpt. of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain.
| |
Collapse
|
13
|
Rezvani-Ghalhari M, Nabizadeh R, Alizadeh Sani M, Sanaei D, Bashardoust P, McClements DJ, Nasseri S, Mahvi AH. Adsorption of ciprofloxacin from aqueous solutions using cellulose-based adsorbents prepared by sol-gel method. Int J Biol Macromol 2024; 278:134847. [PMID: 39168190 DOI: 10.1016/j.ijbiomac.2024.134847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Ciprofloxacin (CIP) is one of the most widely used antibiotics to treat bacterial infections. Consequently, there is concern that it may contaminate water resources due to its high usage level. It is therefore necessary to monitor, trace, and reduce exposure to these antibiotic residues. In the current study, the extraction of CIP from water was performed using a green adsorbent material based on cellulose/polyvinyl alcohol (PVA) decorated with mixed metal oxides (MMO). This cellulose/MMO/PVA adsorbent was synthesized using a simple sol-gel method. The prepared adsorbent materials were then characterized using a range of methods, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, gas adsorption analysis, X-ray diffraction, and Fourier Transform infrared. The impact of pH, adsorbent dose, contact time, and CIP concentration on ciprofloxacin extraction were examined. The equilibrium and kinetic adsorption data were well described using the Freundlich model (R2 = 0.965). The optimum conditions for CIP adsorption were: pH = 4.5; adsorbent dosage = 0.55 g·L-1; contact time = 83 min; and initial CIP concentration = 2 mg·L-1. The adsorption capacity of the cellulose/MMO/PVA adsorbent for CIP removal was ∼19 mg·g-1 (CIP removal = 86.48 %). This study shows that cellulose/MMO/PVA adsorbents have potential for removing contaminants from aqueous environments.
Collapse
Affiliation(s)
- Mohammad Rezvani-Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Water and Wastewater Laboratory, Alborz Asayesh Environmental Company, Karaj, Iran
| | - Parnia Bashardoust
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
15
|
Xie S, Hamid N, Zhang T, Zhang Z, Peng L. Unraveling the nexus: Microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134324. [PMID: 38640666 DOI: 10.1016/j.jhazmat.2024.134324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
In recent years, aquaculture has expanded rapidly to address food scarcity and provides high-quality aquatic products. However, this growth has led to the release of significant effluents, containing emerging contaminants like antibiotics, microplastics (MPs), and antibiotic resistance genes (ARGs). This study investigated the occurrence and interactions of these pollutants in aquaculture environment. Combined pollutants, such as MPs and coexisting adsorbents, were widespread and could include antibiotics, heavy metals, resistance genes, and pathogens. Elevated levels of chemical pollutants on MPs could lead to the emergence of resistance genes under selective pressure, facilitated by bacterial communities and horizontal gene transfer (HGT). MPs acted as vectors, transferring pollutants into the food web. Various technologies, including membrane technology, coagulation, and advanced oxidation, have been trialed for pollutants removal, each with its benefits and drawbacks. Future research should focus on ecologically friendly treatment technologies for emerging contaminants in aquaculture wastewater. This review provided insights into understanding and addressing newly developing toxins, aiming to develop integrated systems for effective aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Shiyu Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tingting Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zijun Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Pang J, Chen H, Guo H, Lin K, Huang S, Lin B, Zhang Y. High-sensitive determination of tetracycline antibiotics adsorbed on microplastics in mariculture water using pre-COF/monolith composite-based in-tube solid phase microextraction on-line coupled to HPLC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133768. [PMID: 38422729 DOI: 10.1016/j.jhazmat.2024.133768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Microplastics (MPs) act as carriers for organic pollutants (e.g. antibiotics) and microorganisms (e.g. bacteria) in waters, leading to the proliferation of antibiotic resistance genes. Moreover, the antibiotics adsorbed on MPs may exacerbate this process. For further research, it is necessary to understand the types and amounts of antibiotics adsorbed on MPs. However, due to the heavy work of MPs collection and sample pretreatment, there is a lack of analytical methods and relevant data. In this study, an in-tube solid phase microextraction (IT-SPME) on-line coupled to HPLC-MS/MS method based on amorphous precursor polymer of three-dimensional covalent organic frameworks/monolith-based composite adsorbent was developed, which could efficiently capture, enrich and analyze tetracycline (TCs) antibiotics. Under the optimal extraction parameters, the developed method was capable of detecting TCs at levels as low as 0.48-1.76 pg. This method was applied to analyze the TCs adsorbed on MPs of different particle sizes in mariculture water for the first time, requiring a minimum amount of MPs of only 1 mg. Furthermore, it was observed that there could be an antagonistic relationship between algal biofilm and TCs loaded on MPs. This approach could open up new possibilities for analyzing pollutants on MPs and support deeper research on MPs.
Collapse
Affiliation(s)
- Jinling Pang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Hongzhe Chen
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Huige Guo
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Kunning Lin
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Shuyuan Huang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Beichen Lin
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
| | - Yuanbiao Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China.
| |
Collapse
|
17
|
Liu P, Shao L, Zhang Y, Silvonen V, Oswin H, Cao Y, Guo Z, Ma X, Morawska L. Atmospheric microplastic deposition associated with GDP and population growth: Insights from megacities in northern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134024. [PMID: 38493631 DOI: 10.1016/j.jhazmat.2024.134024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Microplastic (MP) pollution is evolving into one of the most pressing environmental concerns worldwide. This study assessed the impact of economic activities on atmospheric MP pollution across 17 megacities in northern China, analyzing the correlation between the deposition flux of atmospheric MPs and variables such as city population, gross domestic product (GDP), and industrial structure. The results have shown that the MP pollution is obviously impacted by human activities related to increased GDP, population, as well as tertiary service sector, in which the MP pollution shows most close relationship with the GDP growth. Polypropylene, polyamide, polyurethane, and polyethylene were identified as the primary components of atmospheric MPs. The average particle size of MPs in atmospheric dustfall is 78.3 µm, and the frequency of MP particles increases as the particle size decreases. The findings highlight the complex relationship between socio-economic development and atmospheric MP accumulation, providing essential insights for the formulation of targeted emission reduction strategies.
Collapse
Affiliation(s)
- Pengju Liu
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Longyi Shao
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxing Zhang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Henry Oswin
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yaxin Cao
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ziyu Guo
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
18
|
Lee U, Park K, Chang S, Cho M, Lee J. Feasibility evaluation of near dissolved organic matter microfiltration (NDOM MF) for the efficient removal of microplastics in the water treatment process. CHEMOSPHERE 2024; 356:141882. [PMID: 38582163 DOI: 10.1016/j.chemosphere.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Microfiltration (MF) using membranes with a mean pore size smaller than 0.45 μm has generally been used for particle removal from water, given that materials larger and smaller than 0.45 μm are regarded as particulates and dissolved organic matter (DOM), respectively. It is also the case for removing small-size microplastics (MPs). However, given their sizes (ca. 1 μm), there is room for further improvement of the productivity (i.e., water flux) in the pore size range of 0.45-1 μm on the condition that the removal rate is maintained. With this in mind, MF's water flux and removal rate were tested using seven different MF membranes, and the right pore, with the size of 0.8 μm, was found for MP removal, which is called near DOM (NDOM) MF. In the filtration test using polystyrene surrogate beads with an average particle diameter of 1.20 μm, NDOM MF exhibited a 1.7 to 13 times higher permeate flux than the conventional MF using 0.1, 0.2, and 0.45 μm membranes while maintaining a higher removal rate than 2 log. The excellent removal rate of the NDOM MF was attributable to the following three factors: (1) smaller mean pore size than the average particle diameter, (2) particle screening effect enhanced by the secondary layer formed by surface deposition, and (3) 3D mesh sublayer structure favorable for capturing penetrated particles. Furthermore, the outstanding filtration performance also appeared in a low-temperature (< 10°C) process, demonstrating that NDOM MF is feasible independently of temperature. Additionally, in constant flux filtration, NDOM MF demonstrated the long-term feasibility by lowering the transmembrane pressure and specific filtration energy by more than 2 times.
Collapse
Affiliation(s)
- Uje Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
19
|
Zhao Y, Ma C, Wei W, Wang Y, Cao H, Cui N, Liu Y, Liang H. Effects of single and combined exposure of virgin or aged polyethylene microplastics and penthiopyrad on zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171160. [PMID: 38395170 DOI: 10.1016/j.scitotenv.2024.171160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China.
| |
Collapse
|
20
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
21
|
Meng Z, Wu J, Huang S, Xin L, Zhao Q. Competitive adsorption behaviors and mechanisms of Cd, Ni, and Cu by biochar when coexisting with microplastics under single, binary, and ternary systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169524. [PMID: 38142002 DOI: 10.1016/j.scitotenv.2023.169524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In this study, the effects of coexistence with microplastics and co-ageing with the soil on adsorption behaviors and mechanisms of biochar for heavy metals were investigated. Adsorption experiments of Cd, Ni, and Cu by microplastics, biochar, and their combination were conducted in single, binary, and ternary systems. The results indicated that the heavy metal adsorption by microplastics was ranked as Ni > Cd > Cu, which increased with decreasing particle size, and the adsorption capacity of microplastics was enhanced after dry-wet and freeze-thaw ageing. Biochar preferentially adsorbed Cd in the single system, while the maximum adsorption of Cu was observed in the binary and ternary systems due to the minimizing impact of competition on the Cu adsorption by biochar. The heavy metal adsorption by the combination of microplastics and biochar was less than that by single biochar, and the smaller the particle size of microplastics, the greater the negative effects on heavy metal adsorption. Coexistence with microplastics reduced Cd adsorption of biochar by 0.72 %-50.35 %, Ni adsorption by 1.17 %-30.43 %, and Cu adsorption by 5.78 %-47.88 %, respectively. Moreover, coexistence with microplastics exacerbated the adverse impacts of competition on biochar adsorption for heavy metals. The contribution percentages of biochar mineral mechanisms for heavy metal adsorption were ranked as Cu > Cd > Ni. When coexisting with microplastics or after ageing, the mineral mechanisms of heavy metal adsorption by biochar significantly decreased. This study investigated the competitive adsorption behaviors and mechanisms of heavy metals by biochar when coexisting with microplastics, which highlighted that the application of biochar for the remediation of heavy metal pollution should be concerned with the impacts of microplastics.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Jingwei Wu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Lei Xin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Qin Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Nam H, Gil D, Lee JJ, Kim C. Dual-channel fluorescence dye: Fluorescent color-dependent visual detection of microplastics and selective polyurethane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169219. [PMID: 38097083 DOI: 10.1016/j.scitotenv.2023.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
In this study, we developed a dual-channel fluorescent dye ((E)-N'-(4-(diphenylamino)benzylidene)pyrazine-2-carbohydrazide) DPC for visual detection of 8 types of microplastics (MPs; HDPE, MDPE, LDPE, PET, PU, PVC, PS, and PP) and selective PU. The intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) properties of DPC were demonstrated by the spectroscopic analysis, DFT calculations, and Tyndall effect. MPs and nonplastics (cellulose, chitin, sand, shell, and wood) were stained with DPC in water and their respective fluorescence signals in the blue and green channels were analyzed. The staining procedure using DPC was optimized with the concentration of DPC and staining time as parameters. DPC was able to effectively stain 8 types of MPs and only PU in blue and green fluorescence signals, respectively. Furthermore, false positive detections of DPC were minimized through additional ethanol treatment after staining. Moreover, the effects of temperature, pH, and salinity on the staining ability of DPC were investigated. Surprisingly, DPC was able to selectively detect PU through the green fluorescence signal even in a single environment where various MPs existed. Most importantly, DPC is the first fluorescent dye capable of selectively monitoring PU in the green channel as well as staining 8 types of MPs in the blue channel. DPC showed promising potential to be used for MP monitoring on real environmental samples.
Collapse
Affiliation(s)
- Hyejin Nam
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Dongkyun Gil
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Jae Jun Lee
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Cheal Kim
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea.
| |
Collapse
|
23
|
Dai Y, Li L, Guo Z, Yang X, Dong D. Emerging isolation and degradation technology of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117864. [PMID: 38072105 DOI: 10.1016/j.envres.2023.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
24
|
Zhang Y, Li Y, Wang Y, Su F, Qian J, Liu S. Adsorption of levofloxacin by ultraviolet aging microplastics. CHEMOSPHERE 2023; 343:140196. [PMID: 37717913 DOI: 10.1016/j.chemosphere.2023.140196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Microplastics can combine with pollutants such as antibiotics and pose a threat to the environment and organisms. At the same time, the inevitable aging behavior of microplastics in the actual environment leads to changes in their physical and chemical properties, and thus changes the reaction mechanism between microplastics and other pollutants. In this study, we used three common microplastics PE/PS/PA to study the adsorption behavior of levofloxacin hydrochloride. Ultraviolet aging method was used to simulate the aging process of levofloxacin hydrochloride under sunlight, and compared with that of before aging. The results showed that the order of adsorption capacity was PS-UV > PA-UV > PE-UV > PA > PS > PE. Aging behavior can significantly enhance the adsorption capacity of microplastics to pollutants. Both Langmuir and Freundlich models can be used to fit the isothermal adsorption process well, indicating that the adsorption process was not a simple monolayer adsorption, but also a multi-molecular layer adsorption. The experiments showed that the adsorption process was affected by various mechanisms, including π-π conjugation, hydrogen bond, ion exchange and electrostatic interaction. This study elucidated the interaction mechanism between microplastics and levofloxacin hydrochloride, which has important significance for future control of microplastics and antibiotic pollution.
Collapse
Affiliation(s)
- Yue Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yiyan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Sinan Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
25
|
Gan M, Zhang Y, Shi P, Cui L, Sun H. Microplastic pollution in typical seasonal rivers in northern China: temporal variation and risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1479-1490. [PMID: 37581367 DOI: 10.1039/d3em00281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Rivers are important channels for the transport of microplastics (MPs) from land to sea. In this work, the temporal variation and risk assessment of MP pollution in the surface water of the Wei River, a typical seasonal river in northern China, were quantified. The number abundance of MPs in the dry season was significantly higher than that in the wet season (p < 0.05). Fiber was the most abundant type of MP in both dry and wet seasons. Infrared spectrometer and Raman spectroscopy identification showed that polypropylene (PP) and polyethylene (PE) were the major polymers found in both dry and wet seasons, and the mixture of different MP polymers was more diverse in the dry season. The risk assessment showed that the average pollution load index (PLI) and risk quotient (RQ) were 2.10 and 1.19 in the dry season, which significantly decreased to 1.25 and 0.74, respectively, in the wet season (p < 0.05). In total, the results from this study highlight the characteristics of seasonal rivers that influence the temporal distribution and risk assessment of microplastics, providing scientific reference for policymakers and river managers to effectively deal with MP pollution.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
26
|
Li S, Yang Y, Yang S, Zheng H, Zheng Y, M J, Nagarajan D, Varjani S, Chang JS. Recent advances in biodegradation of emerging contaminants - microplastics (MPs): Feasibility, mechanism, and future prospects. CHEMOSPHERE 2023; 331:138776. [PMID: 37100247 DOI: 10.1016/j.chemosphere.2023.138776] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Plastics have become an essential part of life. When it enters the environment, it migrates and breaks down to form smaller size fragments, which are called microplastics (MPs). Compared with plastics, MPs are detrimental to the environment and pose a severe threat to human health. Bioremediation is being recognized as the most environmentally friendly and cost-effective degradation technology for MPs, but knowledge about the biodegradation of MPs is limited. This review explores the various sources of MPs and their migration behavior in terrestrial and aquatic environments. Among the existing MPs removal technologies, biodegradation is considered to be the best removal strategy to alleviate MPs pollution. The biodegradation potential of MPs by bacteria, fungi and algae is discussed. Biodegradation mechanisms such as colonization, fragmentation, assimilation, and mineralization are presented. The effects of MPs characteristics, microbial activity, environmental factors and chemical reagents on biodegradation are analyzed. The susceptibility of microorganisms to MPs toxicity might lead to decreased degradation efficiency, which is also elaborated. The prospects and challenges of biodegradation technologies are discussed. Eliminating prospective bottlenecks is necessary to achieve large-scale bioremediation of MPs-polluted environment. This review provides a comprehensive summary of the biodegradability of MPs, which is crucial for the prudent management of plastic waste.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yalun Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Yang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun M
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
27
|
Jiang H, Bu J, Bian K, Su J, Wang Z, Sun H, Wang H, Zhang Y, Wang C. Surface change of microplastics in aquatic environment and the removal by froth flotation assisted with cationic and anionic surfactants. WATER RESEARCH 2023; 233:119794. [PMID: 36868113 DOI: 10.1016/j.watres.2023.119794] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are increasingly released into the environment due to the widespread usage and improper management of plastics. Considerable research efforts have been devoted to the remediation of MPs. Froth flotation has been demonstrated as an effective method to remove MPs in water and sediment. However, there is a lack of knowledge on the regulation of the hydrophobicity/hydrophilicity of MPs surfaces. We found that exposure to the natural environment resulted in the increased hydrophilicity of MPs. The flotation efficiencies of polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), and polyethylene glycol terephthalate (PET) MPs decreased to zero after six months of natural incubation in rivers. According to various characterizations, the hydrophilization mechanism is mainly correlated with surface oxidation and the deposition of clay minerals. Inspired by surface wettability conversion, we applied surfactants (collectors) to enhance MPs hydrophobicity and flotation efficiency. Anionic sodium oleate (NaOL) and cationic dodecyl trimethyl ammonium chloride (DTAC) were used to regulate surface hydrophobicity. The effects of collector concentration, pH, conditioning time, and metal ions on MPs flotation were thoroughly elucidated. Characterizations and adsorption experiments were performed to describe the heterogeneous adsorption of surfactants on MPs surfaces. The interaction between surfactants and MPs was explained through density functional theory (DFT) simulations. The dispersion energy between hydrophobic hydrocarbon chains attracts collectors on the MPs surface, and the collector molecules wrap and laminate to MPs surfaces. Flotation using NaOL exhibited a higher removal efficiency, and NaOL was environmentally friendly. Subsequently, we investigated the activation of Ca2+, Fe3+, and Al3+ to further improve the collecting efficiency of NaOL. Under the optimized conditions, MPs in natural rivers could be removed by froth flotation. This study shows the great promise of froth flotation for the application of MPs removal.
Collapse
Affiliation(s)
- Hongru Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China
| | - Kai Bian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China
| | - Jiming Su
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China
| | - Zhiyi Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China
| | - Han Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, PR China.
| | - Yingshuang Zhang
- School of Chemical Engineering and Technology, Xinjiang University, 830017 Urumqi, Xinjiang, PR China.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
28
|
Oliveira Vargas G, Schnorr C, Bastista Nunes F, da Rosa Salles T, Zancan Tonel M, Binotto Fagan S, Zanella da Silva I, F. O. Silva L, Roberto Mortari S, Luiz Dotto G, Rodrigo Bohn Rhoden C. Highly Furosemide Uptake Employing Magnetic Graphene Oxide: DFT modeling Combined to Experimental Approach. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|