1
|
Wu F, Pan X, Zhou Y, Zhu Y, Liu K, Li W, Han J. The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107269. [PMID: 39946963 DOI: 10.1016/j.aquatox.2025.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on Chlorella pyrenoidosa was illustrated based on the physiological-biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of C. pyrenoidosa at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.
Collapse
Affiliation(s)
- Feifan Wu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| | - Xiangjie Pan
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Yuhao Zhou
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; Research and Development Department of Jiangsu Jingruite Environmental Protection New Materials Co., Ltd, No. 159 Chengjiang Middle Road, Jiangyin, Jiangsu, 214434, China
| | - Yan Zhu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
2
|
Chen Y, Li M, Gao W, Guan Y, Hao Z, Liu J. Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters. J Environ Sci (China) 2024; 146:251-263. [PMID: 38969453 DOI: 10.1016/j.jes.2023.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 07/07/2024]
Abstract
The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17β-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Mengyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Weichun Gao
- College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yinyan Guan
- College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Yang C, Yan S, Zhang B, Yao X, Mo J, Rehman F, Guo J. Spatiotemporal distribution of the planktonic microbiome and antibiotic resistance genes in a typical urban river contaminated by macrolide antibiotics. ENVIRONMENTAL RESEARCH 2024; 262:119808. [PMID: 39153565 DOI: 10.1016/j.envres.2024.119808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The widespread application of macrolide antibiotics has caused antibiotic resistance pollution, threatening the river ecological health. In this study, five macrolide antibiotics (azithromycin, clarithromycin, roxithromycin, erythromycin, and anhydro erythromycin A) were monitored in the Zao River across three hydrological periods (April, July, and December). Simultaneously, the changes in antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and planktonic bacterial communities were determined using metagenomic sequencing. A clear pollution gradient was observed for azithromycin and roxithromycin, with the concentrations in the dry season surpassing those in other seasons. The highest concentration was observed for azithromycin (1.36 μg/L). The abundance of MLS resistance genes increased along the Zao River during the dry season, whereas the opposite trend was obtained during the wet season. A significant correlation between the levels of MLS resistance genes and macrolide antibiotics was identified during the dry season. Notably, compared with the reference site, the abundance of transposase in the effluent from wastewater treatment plants (WWTPs) was significantly elevated in both dry and wet seasons, whereas the abundance of insertion sequences (IS) and plasmids declined during the dry season. The exposure to wastewater containing macrolide antibiotics altered the diversity of planktonic bacterial communities. The bacterial host for ARGs appeared to be Pseudomonas, primarily associated with multidrug subtypes. Moreover, the ARG subtypes were highly correlated with MGEs (transposase and istA). The partial least-squares path model (PLS-PM) demonstrated a positive correlation between the abundance of MGEs and ARGs, indicating the significance of horizontal gene transfer (HGT) in the dissemination of ARGs within the Zao River. Environmental variables, such as TN and NO3--N, were significantly correlated with the abundance of MGEs, ARGs, and bacteria. Collectively, our findings could provide insights into the shift patterns of the microbiome and ARGs across the contamination gradient of AZI and ROX in the river.
Collapse
Affiliation(s)
- Chuanmao Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Shiwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Baihuan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
4
|
Zhou Y, Zhu Y, Wu F, Pan X, Li W, Han J. Transcriptomics revealed the key molecular mechanisms of ofloxacin-induced hormesis in Chlorella pyrenoidosa at environmentally relevant concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124887. [PMID: 39236839 DOI: 10.1016/j.envpol.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Emerging pollutants such as antibiotics have aroused great concern in recent years. However, the knowledge of low concentration-induced hormesis was not well understood. This study evaluated and quantified hormetic effects of ofloxacin on Chlorella pyrenoidosa. LogNormal model predicted the maximal non-effect concentration was 0.13 mg/L and 2.96 mg/L at 3 and 21 d, respectively. The sensitive alterations in chlorophyll fluorescence suggested PSII was the main target. Transcriptomics revealed ofloxacin inhibited genes related to photosynthetic system while the cyclic electron around PSI decreased the pH value in stroma side and stimulated photoprotection via up-regulating psbS. The stimulation in citrate cycle pathway met the urgent requirements of energy for DNA replication and repair. In addition, the negative feedback of G3P in glycolysis pathway inhibited Calvin cycle. The degradation products illustrated the occurrence of multiple detoxification mechanisms such as demethylation and ring-opening. The mobilization of cytochrome P450 generated the constant detoxication of ofloxacin while glutathione was consumptively involved in biological binding. This study provided new insights into the molecular mechanisms of antibiotic-induced hormesis in microalgae.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Feifan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
5
|
Ding N, Yu W, Mo J, Rehman F, Kasahara T, Guo J. Does exposure timing of macrolide antibiotics affect the development of river periphyton? Insights into the structure and function. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107070. [PMID: 39217791 DOI: 10.1016/j.aquatox.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Discharged sewage is the dominant source of urban river pollution. Macrolide antibiotics have emerged as prominent contaminants, which are frequently detected in sewage and rivers and pose a threat to aquatic microbial community. As a typical primary producer, periphyton is crucial for maintaining the biodiversity and functions of aquatic ecosystem. However, effects of antibiotic exposure time as well as the recovery process of periphyton remain undetermined. In the present study, five exposure scenarios of two typical macrolides, erythromycin (ERY) and roxithromycin (ROX) were investigated at 50 µg/L, dose to evaluate their potential detrimental effects on the structure and function of periphyton and the subsequent recovery process in 14 days. Results revealed that the composition of periphytic community returned to normal over the recovery period, except for a few sensitive species. The antibiotics-caused significant photodamage to photosystem II, leading to continuous inhibition of the photosynthetic capacity of periphyton. Furthermore, no significant difference in carbon metabolism capacity was observed after direct antibiotic exposure, while the amine carbon utilization capacity of periphyton remarkably increased during the recovery process. These results indicated that periphyton community was capable of coping with the periodic exposure of antibiotic pollutants and recovering on its own. However, the ecological functions of periphyton can be permanently disturbed due to macrolide exposure. Overall, this study sheds light on the influence of macrolide exposure on the development, structure and function of the periphytic microbial community in rivers.
Collapse
Affiliation(s)
- Ning Ding
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Wenqian Yu
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Tamao Kasahara
- Faculty of Agriculture, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka 811-2415, Japan
| | - Jiahua Guo
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
6
|
Liu Z, Liu Q, Hao C, Zhao Y. Insights into the response mechanisms of activated sludge system under long-term dexamethasone stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173007. [PMID: 38740206 DOI: 10.1016/j.scitotenv.2024.173007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Dexamethasone (DEX) is a hormone drug that is often detected in wastewater treatment plants, but its impact on activated sludge systems is unknown. This study explored the long-term effects of DEX on nutrient removal, microbial activities, microbial assembly, and microbial interactions in the activated sludge system. During the 90-day DEX exposure experiment, both chemical oxygen demand and total nitrogen removal efficiencies were initially inhibited and then recovered. Microbial activities, i.e., specific oxygen uptake rate and denitrification, did not differ significantly from that of the control reactor (p > 0.05), possibly due to the secretion of extracellular polymers that act as a protective barrier against excess reactive oxygen species induced by DEX. This barrier protects cell membrane integrity and ensures stable treatment performance. Analysis of microbial assembly identified the drift of stochastic processes (from 92.7 % to 51.8 %) and homogeneous selection of deterministic processes (from 1.6 % to 38.7 %) as the main driving forces of microbial community structure succession under long-term DEX stress. Although long-term exposure to 1000 μg/L DEX did not significantly increase the abundance levels of functional bacteria (Nitrosomonas and 996-1) and key genes (AmoCAB and Hao), the ammonia oxidation capacity of the activated sludge system was enhanced. Analysis of microbial interactions indicated that streamlining of functional subnetworks and increased cooperation were the primary reasons. This is the first study to explore the long-term effects of DEX on activated sludge and provide insights into microbial interaction and assembly. Moreover, the findings of this study broaden our knowledge and lay an experimental foundation for reducing risks associated with hormone drugs.
Collapse
Affiliation(s)
- Zhichao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiaona Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenlin Hao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanmin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Liu S, Zhang Z, Zhao C, Zhang M, Han F, Hao J, Wang X, Shan X, Zhou W. Nonlinear responses of biofilm bacteria to alkyl-chain length of parabens by DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134460. [PMID: 38718505 DOI: 10.1016/j.jhazmat.2024.134460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.
Collapse
Affiliation(s)
- Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zixuan Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jie Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaorong Shan
- Sid and Reva Dewberry Dept. of Civil, Environmental, & Infrastructure Engineering, George Mason University, Fairfax, Virginia, USA
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
8
|
Zhou Y, Chen X, Zhu Y, Pan X, Li W, Han J. Mechanisms of hormetic effects of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172856. [PMID: 38697534 DOI: 10.1016/j.scitotenv.2024.172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 μg/L and 20.08 % by 15.78 μg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
| | - Xinyang Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
9
|
Li J, Li W, Liu N, Du C. Chronic toxic effects of erythromycin and its photodegradation products on microalgae Chlorella pyrenoidosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106922. [PMID: 38615581 DOI: 10.1016/j.aquatox.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The photodegradation products (PDPs) of antibiotics in the aquatic environment received increasing concern, but their chronic effects on microalgae remain unclear. This study initially focused on examining the acute effects of erythromycin (ERY), then explored the chronic impacts of ERY PDPs on Chlorella pyrenoidosa. ERY of 4.0 - 32 mg/L ERY notably inhibited the cell growth and chlorophyll synthesis. The determined 96 h median effective concentration of ERY to C. pyrenoidosa was 11.78 mg/L. Higher concentrations of ERY induced more serious oxidative damage, antioxidant enzymes alleviated the oxidative stress. 6 PDPs (PDP749, PDP747, PDP719, PDP715, PDP701 and PDP557) were identified in the photodegradation process of ERY. The predicted combined toxicity of PDPs increased in the first 3 h, then decreased. Chronic exposure showed a gradual decreasing inhibition on microalgae growth and chlorophyll content. The acute effect of ERY PDPs manifested as growth stimulation, but the chronic effect manifested as growth inhibition. The malonaldehyde contents decreased with the degradation time of ERY at 7, 14 and 21 d. However, the malonaldehyde contents of ERY PDPs treatments were elevated compared to those in the control group after 21 d. Risk assessment still need to consider the potential toxicity of degradation products under long-term exposure.
Collapse
Affiliation(s)
- Jiping Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China; College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Naisen Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
10
|
Li SX, Gao XR, Yi J, Jia LY, Ren J. A new strategy of using periphyton to simultaneously promote remediation of PAHs-contaminated soil and production of safer crops. ENVIRONMENTAL RESEARCH 2024; 246:118149. [PMID: 38199466 DOI: 10.1016/j.envres.2024.118149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Contaminated farmland leads to serious problems for human health through biomagnification in the soil-crop-human chain. In this paper, we have established a new soil remediation strategy using periphyton for the production of safer rice. Four representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (Phe), pyrene (Pyr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were chosen to generate artificially contaminated soil. Pot experiments demonstrated that in comparison with rice cultivation in polluted soil with ΣPAHs (50 mg kg-1) but without periphyton, adding periphyton decreased ΣPAHs contents in both rice roots and shoots by 98.98% and 99.76%, respectively, and soil ΣPAHs removal reached 94.19%. Subsequently, risk assessment of ΣPAHs based on toxic equivalent concentration (TEQ), pollution load index (PLI), hazard index (HI), toxic unit for PAHs mixture (TUm), and incremental lifetime cancer risk (ILCR) indicated that periphyton lowered the ecological and carcinogenicity risks of PAHs. Besides, the role of periphyton in enhancing the rice productivity was revealed. The results indicated that periphyton alleviated the oxidative stress of PAHs on rice by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC). Periphyton reduced the toxic stress of PAHs on the soil by promoting soil carbon cycling and metabolic activities as well. Periphyton also improved the soil's physicochemical properties, such as the percentage of soil aggregate, the contents of humic substances (HSs) and nutrients, which increased rice biomass. These findings confirmed that periphyton could improve rice productivity by enhancing soil quality and health. This study provides a new eco-friendly strategy for soil remediation and simultaneously enables the production of safe crops on contaminated land.
Collapse
Affiliation(s)
- Su-Xin Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, PR China
| | - Xiao-Rong Gao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, PR China.
| | - Jun Yi
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan, 430040, PR China
| | - Ling-Yun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, PR China
| | - Jun Ren
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, PR China
| |
Collapse
|
11
|
Zhang B, Yu W, Liang J, Yao X, Sun H, Iwata H, Guo J. Seasonal variation in structural and functional distribution of periphyton in a macrolide antibiotics-contaminated river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123495. [PMID: 38342431 DOI: 10.1016/j.envpol.2024.123495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Periphyton, a microbial assemblage of autotrophic and heterotrophic organisms, is vital to aquatic ecosystems. While exposure to macrolide antibiotics has been confirmed to reduce the biodiversity and damage the critical ecological functions in indoor microcosm bioassays, the distribution of periphyton along a macrolide antibiotic pollution gradient in a river has yet to be determined. Herein, we established the spatiotemporal distribution of five major macrolides, i.e., azithromycin (AZI), roxithromycin (ROX), erythromycin (ERY), clarithromycin (CLA), and anhydro erythromycin (ERY-H2O) in water and periphyton of Zao River (Xi'an, China), after which we evaluated the effects on the structures, photosynthetic activity, and carbon utilization capacity of periphyton in March, June, and September 2023. In contrast with the reference sites, the macrolides were identified in all sewage treatment plants (STPs) impacted sites with concentrations ranging from 0.05 to 2.18 μg/L in water and from not detected - 9.67 μg/g in periphyton. Regarding community structure, the occurrence of macrolides was negatively linked to FirmicutesExiguobacterium undae and Exiguobacterium sibiricum, CyanobacteriaOscillatoriales and Vischeria sp., and ChlorophytaMonostroma grevillei, Selenastrum sp. LU21 and Desmodesmus subspicatus. At the functional level, only the metabolism of phenolic acids was significantly decreased in river reach with high antibiotic levels in June, compared to the other five carbon sources that were not altered. The overall photosynthetic activity of periphytic photosystem II remained unchanged in both reference and STPs impacted groups throughout three seasons. Overall, the macrolides released from STPs were correlated with the altered periphytic structures in the river, whereas a similar trend was not detected for the community functions owing to the functional redundancy. A mesocosm experiments warrants further consideration to validate the field results.
Collapse
Affiliation(s)
- Baihuan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Wenqian Yu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiayi Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
12
|
Liang J, Li C, Mo J, Iwata H, Rehman F, Song J, Guo J. Metatranscriptomic profiles reveal the biotransformation potential of azithromycin in river periphyton. WATER RESEARCH 2024; 251:121140. [PMID: 38246076 DOI: 10.1016/j.watres.2024.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Assessment of the interaction between the biotransformation of chemical contaminants and enzyme activity from aquatic microbial communities is critical for improving the micropollutant degradation in river remediation. Here, association mining based on metatranscriptomic analysis was initially applied to determine the genes encoding enzymes involved in the azithromycin (AZI) transformation process and the corresponding microbial hosts in periphyton, followed by revealing the dynamic variation in the community structure and function. In terms of the biotransformation potential, the highly correlated 15 enzymes were suggested to be primarily involved in AZI biotransformation, energy supply, and antibiotic resistance processes, especially aryl-alcohol dehydrogenases (EC: 1.1.1.90), hydroxylamine dehydrogenase (EC: 1.7.2.6), and monooxygenases (EC: 1.14.11.57) that were involved in the biotransformation of AZI. In the matter of community ecological function, the photosystem II (PSII) reaction center in the periphytic photosynthetic process, as indicated by Fv/Fm, was inhibited after AZI exposure, which may be attributed to the down-regulated genes enriched in the photosynthesis - antenna proteins (ko00196), photosynthesis (ko00195), and two-component system (ko02020) pathways. Furthermore, the periphytic utilization capacity for carbohydrates and phenolic acids was enhanced, which was in accordance with all the increased expression of transcripts involved in the corresponding molecular pathways, including aminobenzoate degradation (ko00627), starch and sucrose metabolism (ko00500), ABC transporters (ko02010), phosphotransferase system (ko02060), galactose metabolism (ko00052), amino sugar and nucleotide sugar metabolism (ko00520). Taken together, this study highlighted the critical role of river periphyton in the micropollutant degradation and unraveled the molecular mechanism of antibiotic biotransformation as well as the structural and functional damage in the periphyton.
Collapse
Affiliation(s)
- Jiayi Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chenghao Li
- School of Economics & Management, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Campus, Lahore, Pakistan
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
13
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
14
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
15
|
Burkin MA, Tevyashova AN, Bychkova EN, Melekhin AO, Galvidis IA. Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy. BIOSENSORS 2023; 13:921. [PMID: 37887114 PMCID: PMC10605010 DOI: 10.3390/bios13100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant forms. A novel azithromycin derivative, which was used as hapten conjugate, ensured the group immunorecognition of six major macrolide representatives (105-41%), namely erythromycin, erythromycin ethylsuccinate, clarithromycin, roxithromycin, azithromycin, and dirithromycin in a competitive immunoassay based on anti-clarithromycin antibodies. The heterologous hapten-based ELISA format resulted in a 5-fold increase in sensitivity, with an IC50 value of 0.04 ng/mL for erythromycin. In this study, we proposed an underexploited strategy in an immunoassay field to significantly improve the detectability of analytes in environmental samples. Unlike most approaches, it does not require special enhancers/amplifiers or additional concentration/extraction procedures; instead, it involves analyzing a larger volume of test samples. A gradual volume increase in the samples (from 0.025 to 10 mL) analyzed using a direct competitive ELISA, immunobeads, and immunofiltration assay formats based on the same reagents resulted in a significant improvement (more than 50-fold) in assay sensitivity and detection limit up to 5 and 1 pg/mL, respectively. The suitability of the test for detecting the macrolide contamination of natural water was confirmed by the recovery of macrolides from spiked blank samples (71.7-141.3%). During 2022-2023, a series of natural water samples from Lake Onega and its influents near Petrozavodsk were analyzed, using both the developed immunoassay and HPLC-MS/MS. The results revealed no contamination of macrolide antibiotic.
Collapse
Affiliation(s)
- Maksim A. Burkin
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| | - Anna N. Tevyashova
- Gause Institute of New Antibiotics, 199021 Moscow, Russia; (A.N.T.); (E.N.B.)
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 199021 Moscow, Russia; (A.N.T.); (E.N.B.)
| | - Artem O. Melekhin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Federal Centre for Animal Health, 111622 Moscow, Russia
| | - Inna A. Galvidis
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| |
Collapse
|